—— ГЕОЛОГИЯ —

УДК 552.32

ПЕТРОГЕНЕЗИС ЩЕЛОЧНЫХ ВУЛКАНИТОВ КЕТКАПСКО-ЮНСКОЙ МАГМАТИЧЕСКОЙ ПРОВИНЦИИ АЛДАНА

© 2004 г. В. Ф. Полин, член-корреспондент РАН В. Г. Сахно

Поступило 30.07.2003 г.

Происхождение щелочно-салических пород как интрузивных, так и эффузивных давно привлекает внимание петрологов в связи с необычностью их минералого-петрографического состава, условий проявления и связанной с ними минерагении. Господствует точка зрения о различном генезисе петрографически однотипных щелочно-салических пород в зависимости от типа породных ассоциаций, в составе которых они встречаются [4]. Большинство имеющихся моделей не в состоянии удовлетворительно разрешить проблему происхождения щелочных пород, связанных с гранитоидами, либо имеют ограниченную применимость и требуют для реализации соблюдения ряда определенных условий.

Данная работа посвящена весьма характерным образованиям ассоциации щелочно-салических пород с гранитоидами на территории Кеткапско-Юнской магматической провинции (ККЮМП) Алданского щита. Рассматривается Бокурский вулкано-плутон, в котором крупные фрагменты вулкано-плутонических построек сохранились в кальдерах проседания диаметром до 5–8 км. Массив представляет собой бифокальную структуру центрального типа, обусловленную сочетанием куполовидного магматогенного поднятия и наложенных на него двух "слившихся" вулканических кальдер – Бокурской и Улаханской, а также серии сопутствующих вулканизму кольцевых даек и поствулканического комплекса гипабиссальных магматических тел. Становление массива происходило в два этапа и началось в раннеюрское время с формирования асимметричного в плане магматогенного поднятия. В ходе второго этапа в ядерной части массива, в пределах кальдер и их обрамления, образовалась полиформационная вулкано-плутоническая ассоциация, представленная четырьмя магматогенными комплексами. Внешняя зона массива сформирована интрузиями субщелочных гранитоидов юрско-мелового учурского и раннемелового кеткапского комплексов. В меньшей мере здесь развиты гипабиссальные тела пород щелочно-сиенитового дарьинского комплекса [9]. В состав вулканогенного бокурского комплекса входят щелочные вулканические породы ряда фонотефрит-тефрифонолит-фонолит и щелочной трахит, представленные пирокластической, лавовой и дайковой фациями, при резком преобладании первой. Отмеченные выше породы в последовательности, близкой к антидромной, слагают три вулканогенные толщи, выполняющие Бокурскую и Улаханскую кальдеры. Становление магматогенных комплексов обязано двум этапам магматизма: раннесреднеюрскому и позднеюрско-раннемеловому. Возраст калиевого щелочного вулканизма фиксирован в интервале 140–150 млн. лет [5 и др.].

Породы бокурского комплекса образуют высоко кальциевую, железистую, метаглиноземистую серию. Лишь некоторые из наиболее кислых членов комплекса слабо перглиноземисты. Они классифицируются, с некоторой долей условности, как лейцитовые фонотефриты, шошониты, тефрифонолиты, щелочные латиты и трахиандезиты, щелочные трахиты и лейцитовые, реже нефелиновые фонолиты. По величине щелочности и щелочно-известковистому индексу (= 50) комплекс занимает границу между щелочными и субщелочными сериями (табл. 1). Щелочно-салические вулканиты отличаются от базальтоидов большей общей щелочностью, переводящей фонолиты в разряд высокощелочных образований. Тип щелочности – натриево-калиевый, калиевый подтип; фонолиты и щелочные базиты относятся к натриевому подтипу, по [7]. В микроэлементном составе для большей части пород специфичны высокие содержания Ва и Sr, что позволяет отнести их к латитовому геохимическому типу, связанному, как принято считать, с надплюмовым либо рифтогенным магматизмом [10 и др.]. В распределении редких элементов обращают на себя внимание: высокая фракционированность по крупноионным литофилам и LREE при практическом отсутствии фракционирования по HREE, отрицательные ниобий-танталовые аномалии, умеренные и низкие содержания рубидия, титана и элементов его группы при нередко повышенных значениях величин Zr/Nb, Ba/La, La/Ta, Th/Nb, La/Yb, K/Nb, т.е. наблюдаются характеристики, относимые к так называемым надсубдукционным (табл. 1, рис. 1). Формы спайдерграмм для боль-

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

Таблица 1. Представительные анализы и некоторые другие параметры щелочных вулканитов бокурского комплекса ККЮМП

Компонент	ПН-145.588	ПН-144.577	ПН-145.568	ПН-135-1544	ПН-135-1543	ПН-136-1526	ПН-177.474
SiO ₂	51.13	52.53	54.43	55.80	56.45	58.10	58.97
TiO_2	1.08	1.03	0.40	0.66	0.86	0.56	0.22
$Al_2\bar{O}_3$	12.82	15.21	16.53	18.14	15.75	19.70	20.44
Fe_2O_3	6.04	5.37	5.70	3.49	5.83	3.05	0.81
FeO	5.63	4.33	2.83	2.98	4.50	2.49	1.71
MnO	0.21	0.17	0.05	0.24	0.16	0.14	0.13
MgO	5.20	3.30	3.48	1.24	1.88	0.56	0.17
CaO	8.44	7.49	6.02	5.54	4.60	3.78	3.58
Na ₂ O	3.12	2.99	3.25	3.37	3.77	4.59	6.07
K_2O	4.06	5.44	5.42	6.95	4.95	6.38	6.75
P_2O_5	0.18	0.82	0.66	0.30	0.52	0.17	0.11
H_2O	0.08	0.01	0.00		0.10	0.04	0.10
<u></u>	1.61	0.83	0.92	0.80	0.13	0.14	0.45
Сумма	99.60	99.52	99.69	99.68	99.50	99.70	99.51
f	0.47	0.53	0.46	0.67	0.68	0.70	0.85
a	0.75	0.70	0.68	0.72	0.73	0.74	0.81
n	0.55	0.46	0.48	0.43	0.54	0.52	0.58
C 1	0.01	0.50	0.49	0.43	0.42	0.52	0.27
l	0.31 Copug III	0.02	0.75	0.78	$\frac{0.80}{\text{CIII}(\mathbf{R})}$	0.92	$\frac{0.83}{Copyg III (BB)}$
Cr	18	-Сщ (В) 15	22	Серия	СЩ (В)	27	
Ni	13	15	11	24	30	26	4 5
Co	33	26	23	14	18	9	4
Sc	30	16	14	6	22	5	1
V	276	213	233	172	151	93	53
Rb	132	140	147	255	111	195	309
Cs	5.60	2.58	3.80	3.63	_	3.55	10.41
Ba	813	1281	1309	1826	1209	1487	180
Sr	968	1224	1471	1836	1108	1673	289
Ga	21	20	18	23	_	-	27
Ta	0.14	0.34	0.37	0.45	_	0.45	_
Nb	7.8	8.0	8.4	8.4	7.0	8.6	17.6
Hf	3.94	3.95	3.67	2.41	_	3.96	4.83
Zr	245	182	228	238	212	211	313
Y	31	30	23	24	28	25	22
Th	5.29	5.31	6.09	6.70	-	6.89	13.14
U	1.33	1.83	2.21	1.34	_	1.77	3.44
La	37.34	36.41	29.71	41.51	45.33	41.37	38.92
Ce	83.40	86.17	72.43	74.12	86.63	73.09	65.89
Pr	10.36	10.29	7.66	9.84	_	9.54	6.39
Nd	48.96	47.49	34.62	43.54	49.36	40.79	23.95
Sm	9.65	3.21	6.35	8.01	8.97	7.30	3.96
Eu	2.44	2.39	1.72	2.18	2.01	2.05	0.70
Ga	/.55	/.44	5.57	0.01	-	5.41	3.50
	1.10	1.08	0.75	0.91	1.01	0.85	0.55
Dy Ho	0.07	5.55	5.85	4.00	_	4.45	5.02
Fr	2.78	2.81	2.11	2.36	_	2 20	1 08
Tm	0.30	2.81	0.30	0.35	_	0.37	1.90
Yh	2 29	247	1.83	2 25	2 01	2 46	230
Lu	0.31	0.37	0.29	0.30	0.33	0.32	0.37
B	25.53	54.72	30.37	11.14	13.10	1.00	49.51
$\Sigma TR + Y$	243.95	237.11	190.70	220.80	>223.65	216.05	174.18
$(La/Yb)_n$	10.90	9.86	10.86	12.34	15.08	11.24	11.32
Rb/Sr	0.136	0.114	0.100	0.139	0.100	0.117	1.069
Rb/Zr	0.54	0.77	0.64	1.07	0.52	0.92	0.99
Zr/Nb	31.41	22.75	27.14	28.33	30.28	24.53	17.78
Ba/La	21.77	35.18	44.06	43.99	26.67	35.94	4.62
Ba/Nb	104.23	160.12	155.83	217.38	172.71	172.91	16.42

Примечание. Оксиды – мас. %, остальные – г/т. Петрохимические серии: СЩ – субщелочная, Щ – щелочная; подтипы (в скобках): В – высокощелочной, ВВ – весьма высокощелочной. Петрохимические модули: a = (Na + K)/AI; n = Na/(Na + K); c = Ca/(Ca + Na + K); f = Fe/(Fe + Mg); l = Al/(Ca + Na + K); sec – в мол. количествах. Химические анализы выполнены в ДВГИ ДВО РАН. Аналитик Л.И. Алексеева. Определения REE и редких элементов проводились в ГЕОХИ СО РАН (Иркутск) методом ICP-MS. Аналитики Е.В. Смирнова, Г.П. Сандимирова. Прочерк – определения не проводились.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 3 2004

Рис. 1. Распределение содержаний редких и несовместимых элементов, нормированных к примитивной мантии, по [13]. Пробы: *I* – ПН-145.588, шошонит; *2* – ПН-144.577, фонотефрит; *3* – ПН-145.567, щелочной трахиандезит; *4* – ПН-135–1544, тефрифонолит; *5* – ПН-135–1543, латит; *6* – ПН-136–1526, щелочной трахит; *7* – ПН-177.474, фонолит.

шинства разноосновных пород, исключая одну из разновидностей фонолита, сходны между собой и свидетельствуют об их генетическом родстве. Очень показательны отсутствие у большей части пород европиевого минимума и высокая фракционированность по легким РЗЭ при слабом фракционировании по тяжелым, что обычно характерно для тоналит-трондьемитовых ассоциаций. Европиевая аномалия имеется лишь в изученном об-

Рис. 2. Диаграмма М.Г. Руб–В.М. Даценко "Sr–Rb/Sr" по [3] для пород бокурского комплекса. Поля составов магмообразующих источников: К – коровых, М – мантийных, МК – мантийно-коровых. *1* – типовые составы гранитов М-, I-, S- и А-типов; 2 – тренды дифференциации типовых вулканических серий: I – толеитовая ОД, II – известково-щелочная ОД, III – известковощелочная АКО, IV – рифтовых зон континентов, 3 – фигуративные точки пород бокурского комплекса.

разце фонолита, который выделяется также аномально низкими содержаниями бария, стронция и лантаноидов. На диаграмме Rb/Sr–Sr (рис. 2) бокурские вулканиты показывают содержания стронция еще более высокие, чем типовые рифтогенные комплексы континентов, и только виртуальная точка фонолита попадает в разряд мантийно-коровых пород. Из сказанного вытекает вывод о гибридном характере геохимических характеристик изученных пород бокурского комплекса. Им присущи некоторые специфические черты, с одной стороны, пород латитового ряда, с другой – образований континентальных вулканических дуг по [12 и др.]. Необходимо отметить, что подобное распределение редкоземельных и некогерентных элементов отмечается для калиевых основных и ультраосновных пород и других регионов, из чего можно сделать заключение о едином механизме их формирования.

Анализ петро- и геохимических диаграмм позволяет предположить, что разноосновные группы щелочных пород бокурского комплекса не связаны между собой отношениями фракционной дифференциации, а становление серии его пород с близкими петрогеохимическими параметрами обязано особому петрогенетическому механизму. Распределение макроэлементов и большинства микроэлементов слабо согласуется с гипотезой кристаллизационной дифференциации комплекса с участием главных минеральных фаз: клинопироксена, плагиоклаза, магнетита. Каждый тип пород имеет самостоятельную вариационную линию на диаграммах железистость–кремнезем и сидерофилы–кремнезем, что также противоре-

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 3 2004

чит гипотезе фракционирования единого расплава. Вывод подкрепляется крайне незначительными вариациями величин отношения Rb/Sr в абсолютном большинстве пород (кроме одного образца фонолита), равно как и отсутствием постоянства отношения подвижных некогерентных элементов к относительно инертным: Rb/Zr; Ba/Nb и др. (рис. 2, табл. 1). Отношения этих элементов зачастую образуют самостоятельные микротренды, что может свидетельствовать либо о самостоятельном источнике для каждого типа пород, либо о различном сочетании по крайней мере двух компонент. В то же время поведение микроэлементов в породных группах не противоречит гипотезе парциального плавления одного источника. Распределение тория и тантала в ряду шошонит-щелочной трахиандезит позволяет предположить, что для этих пород существовал некий единый тип источника, обогащенного торием (равно как крупноионными литофилами и легкими РЗЭ). На диаграмме Th-Та фигуративные точки упомянутых пород образуют тренд, близкий к линии ассимиляции-фракционной кристаллизации щелочно-базитового расплава – производного обогащенного мантийного источника. Последний, по аналогии с источником мезозойских щелочных пород Мурунского массива [1], может быть отождествлен с метасоматически обогащенной мантией типа EM1. На SB-диаграмме И.Н. Говорова с соавторами положение точек бокурских фонотефритов и шошонитов интерпретируется как принадлежащее тренду калиевых щелочных магм, производных калиевых метаперидотитов, что согласуется с данными по распределению тория и тантала. Положение здесь точек щелочносалических пород (кроме фонолита) можно толковать как тренд фракционирования с участием плагиоклаза и клинопироксена. Противоречие этой гипотезе упомянутого выше большого числа фактов может быть разрешено предположением о существовании не менее чем двух источников щелочно-салических расплавов. Отрицательная европиевая аномалия в фонолите, равно как и аномально низкие по сравнению с щелочными трахитами содержания в нем бария и стронция, могут быть объяснены либо фракционированием полевых шпатов, либо, что кажется более вероятным, воздействием подкисленного позднемагматического флюида по механизму, предложенному в [2]. С этих позиций для подобного типа фонолитов не исключена возможность образования путем эманационной(?) дифференциации щелочно-базитовой магмы.

Набор указанных признаков при учете геологической ситуации позволил предположить в качестве наиболее приемлемой для образования большинства щелочно-салических пород бокурского комплекса модель флюидного синтексиса, в понимании [4], предусматривающую возникновение, последующее ощелачивание и десиликацию очага вторичной кислой магмы под воздействием потока тепла и флюидов, исходящих от внедрившегося в земную кору высокотемпературного мантийного расплава. Согласно этой модели, состав возникающего "синтексического" расплава будет близок к составу, образующемуся при кристаллизационной дифференциации соответствующего мантийного расплава, но более щелочным за счет притока щелочей в зону силификации мантийного расплава и гораздо более обильным за счет корового материала. В рамках этой модели находят объяснение многие из особенностей мезозойского щелочного вулкано-плутонизма в пределах Кеткапско-Юнской провинции и всего Алданского щита. Наблюдаемая на Бокурском (Улаханском) массиве сложная последовательность внедрения (от натриевых гранитоидов к щелочным калиевым породам и вновь к гранитоидам, теперь уже калиевым) [8] отражает пульсационный характер флюиднотеплового потока и множественность источников (метаперидотитовый?, гранулит-базитовый И гнейсо-амфиболитовый) расплавов [9].

Бокурский комплекс может быть отнесен к проявлениям "низковулканического" (по Е.Е. Милановскому) рифтинга, связанного с существованием трансформной (трансформно-раздвиговой?) континентальной окраины калифорнийского типа [6, 11 и др.].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Владыкин Н.В., Царук И.И. //* Геология и геофизика. 2003. Т. 44. № 4. С. 325–339.
- Жариков В.А. // Вестн. МГУ. Сер. 4. Геология. 1996. № 4. С. 3–12.
- Даценко В.М. В сб.: Материалы II Всероссийского петрографического совещания. Сыктывкар, 2000. Т. 2. С. 270–274.
- Добрецов Г.Л., Добрецов Н.Л. // Геология и геофизика. 1983. Т. 24. № 1. С. 69–74.
- Кичигин Л.Н. Магматизм Северо-Востока СССР. М.: Наука, 1973. С. 147–153.
- Митрофанов Н.П. В сб.: Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2001. Т. 1. В. 2. С. 104–119.
- Пермяков Б.Н. В сб.: Материалы II Всероссийского петрографического Совещания. Сыктывкар, 2000. Т. 1. С. 159–161.
- Полин В.Ф., Петраченко Е.Д. Материалы XI сессии Северо-Восточного отделения ВМО. Магадан, 2001. Т. 1. С. 185–191.
- Полин В.Ф., Ханчук А.И., Цурикова Л.С. Материалы XII сессии Северо-Восточного отделения ВМО. Магадан, 2003. С. 103–107.
- 10. *Таусон Л.В.* Геохимические типы и потенциальная рудоносность гранитоидов. М.: Наука, 1977. 280 с.
- Ханчук А.И., Иванов В.В. // Геология и геофизика. 1999. Т. 40. № 11. С. 1635–1645.
- 12. Pearce J.A., Harris N.B.W., Tindl A.G. // J. Petrol. 1984. V. 25. P. 956–983.
- 13. Wood D.A. // J. Geol. 1979. V. 7. № 3. P. 499–503.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 3 2004