— ГЕОХИМИЯ —

УДК 553.22+553.43(470.5)

ГИДРОКСИЛЭЛЛЕСТАДИТОВЫЕ МЕТАСОМАТИТЫ ИЗ ГУМЕШЕВСКОГО СКАРНОВО-МЕДНО-ПОРФИРОВОГО МЕСТОРОЖДЕНИЯ (СРЕДНИЙ УРАЛ)

© 2004 г. А. И. Грабежев, В. Г. Гмыра, Г. В. Пальгуева

Представлено академиком Н.П. Юшкиным 04.08.2003 г.

Поступило 14.08.2003 г.

Минералы группы эллестадита (фтор-, хлор-, гидроксилэллестадит), конечного члена сульфатного ряда апатита [1], встречаются достаточно редко. Они охарактеризованы в виде минералогических находок в нескольких известных нам первоисточниках [1–5]. На Гумешевском месторождении обнаружено крупное тело метасоматитов, сложенных преимущественно гидроксилэллестадитом.

Гумешевское месторождение D₁₋₂-возраста, известное с XVIII в. высокачественным поделочным малахитом, находится на северной окраине г. Полевского (в 60 км южнее Екатеринбурга). Метасоматиты и рудные тела приурочены к контактовой зоне субмеридиональной кварцдиоритовой дайкообразной малой интрузии с мраморами [6]. Полная генерализованная схема зональности биметасоматической скарновой колонки имеет вид: пропилитизированный гранитоид-амфиболовый эпидозит-амфиболовый эпидот-гранатовый эндоскарн(часто с пироксеном)-актинолитовый гранатовый экзоскарн (иногда с пироксеном)-андрадитовый экзоскарн-мрамор. В южной части месторождения иногда встречаются салитовые и андрадит-салитовые скарны. На месторождении исключительно сильно выражен ретроградный метасоматизм. Широко распространены разнообразные магнетит-сульфидно-актинолит-кварц-карбонатные рудоносные метасоматиты и массивные сульфидные руды по мраморам. Повсеместно во всех минералах наблюдаются низкотемпературные вторичные флюидные включения с температурой гомогенизации 135-210°С и соленостью 2-9 мас. %/экв NaCl (определения А.А. Боровикова, ОИГГМ СО РАН).

Гидроксилэллестадитовые метасоматиты встречены на южном фланге месторождения в скв. 3871. Метасоматиты могут являться составной частью первоначально единой биметасоматическо-инфильтрационной колонки, образовавшейся на контакте диоритовых порфиритов и первичных мраморов (рис.1). Интересующая нас экзоскарновая часть колонки слагается преимущественно кальцием и кремнием (табл. 1, ан. 1). Возможно, первоначально эта зона была представлена мрамором или волластонитовым экзоскарном, сейчас полностью замещенным описываемым ниже метасоматитом. Последний наблюдается в интервале 530.4-534.5 м (ниже керн отсутствует) и слагается массивным светло-голубовато-серым гидроксилэллестадитовым метасоматитом с 90-сантиметровым участком метасоматита преимущественно пломбьеритового состава, который в настоящей работе не рассматривается. Контакты между этими ме-

Рис. 1. Строение зоны гидроксилэллестадитовых и пломбьеритовых метасоматитов (скв. 3871, южный фланг Гумешевского месторождения). 1 – диоритовые порфириты сильно клиноцоизитизированные; 2 – альбитовые эпидозиты по ним; 3 – гидроксилэллестадитовые метасоматиты; 4 – пломбьеритовые метасоматиты; 5 – ангидрит-гипсовые прожилки; 6 – кварцевые прожилки.

Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения Российской Академии наук, Екатеринбург

Компо- нент	1	2	3	4	5
SiO ₂	18.47	17.10	17.30	15.30	17.31
TiO ₂	0.01	0.01	-	_	-
Al_2O_3	0.06	0.02	Следы	1.84	0.13
Fe ₂ O ₃	1.35	_	0.21	0.11	0.22
FeO	0.36	0.20	-	_	-
MnO	0.04	0.00	0.04	0.18	0.01
MgO	0.25	0.04	Следы	1.38	0.47
CaO	53.28	55.40	54.51	55.00	55.18
SrO	_	_	0.28	_	-
Na ₂ O	< 0.05	0.14	0.34	0.33	_
K ₂ O	< 0.05	0.09	0.07	0.10	-
P_2O_5	0.06	0.12	0.66	1.31	3.06
CO_2	2.50	1.90	1.65	0.66	0.61
SO ₃	_	21.60	21.56	20.75	20.69
S _{общ}	9.03	_	_	_	_
F	_	0.16	0.28	3.60	0.57
Cl	_	0.14	0.91	_	1.64
H_2O^+	_	_	2.04	0.30	0.53
H_2O^-	0.80	_	0.72	_	0.10
Cu	0.06	_	_	_	_
–O=F, Cl	_	-	0.32	1.52	0.61
Сумма	86.27	96.92	100.25	99.34	99.91

Таблица 1. Химические составы метасоматита (1) и минералов группы эллестадита (2–5), мас. %

Примечание. 1 - химический анализ гидроксилэллестадитового метасоматита (присутствует небольшая примесь кальцита, андрадита, сульфидов, талька и, возможно, гипса), перерасчет большей части общей серы в реально присутствующую сульфатную серу с учетом теоретического содержания гидроксильной воды в гидроксилэллестадите дает близкую к 100 мас. % сумму анализа; 2 – микрозондовый анализ гидроксилэллестадита, обр. 3871-531, пояснения в тексте; 3 – гидроксилэллестадит в ассоциации с диопсидом, волластонитом, везувианом, кальцитом из дорудного скарна, рудник Чичибу, Япония [2]; 4 – фторэллестадит из окаменелых зон в угольных отвалах Копейского месторождения, Южный Урал [4]; 5 – хлорэллестадит из дорудного скарна в ассоциации с диопсидом, волластонитом, везувианом, окенитом и кальцитом, Крестморе, Калифорния [1]. Прочерк - компонент не определялся. Химический анализ 1 и определения CO₂ в анализе 2 выполнены в Центральной химической лаборатории Екатеринбурга. Анализ 2 получен В.Г. Гмыра на микрозонде JXA-5.

тасоматитами резкие, генетические взаимоотношения неясны.

В начале интервала рассматриваемый метасоматит на 90-95% слагается минералом, который по микрозондовому анализу и оптическим свойствам диагностируется как гидроксилэллестадит (табл.1, ан. 2). На рентгеновских дифрактограммах наиболее сильно выражены рефлексы 3.45; 2.84; 2.80; 2.71; 2.64; 1.85 Å, соответствующие минералам эллестадитовой группы [1–3]. Инфракрасный спектр минерала полностью соответствует таковому же гидроксилэллестадита из Японии [2]. Наличие на инфракрасном спектре двойной полосы поглощения с максимумами при 1449 и 1422 см⁻¹ свидетельствует [2, 7] о присутствии в структуре минерала аниона (CO₃OH)³⁻. Содержание в минерале СО₂ определялось из навески породы, обработанной при комнатной температуре 5% НСІ до окончания выделения пузырьков СО2. Судя по отсутствию на инфракрасном спектре полос поглощения с максимумами при 713 и 825 см⁻¹, свойственных кальциту, возможная механическая примесь этого минерала в обработанном образце не превышает 0.5 мас. % (в соответствии с экспериментами [7]). При увеличении времени обработки метасоматита кислотой эллестадит начинает разлагаться, как это установлено и всеми другими исследователями.

По сравнению с имеющимися в литературе анализами минералов группы эллестадита, содержащими 0.7-3.1 мас. % P₂O₅ (табл. 1, ан. 3-5), в нашем образце наблюдается минимальное количество фосфора (0.12 мас. % Р₂О₅). Характерно также отсутствие или низкое содержание титана, алюминия, марганца, магния и щелочей. В минерале наблюдается очень мало фтора и хлора, т.е. должна абсолютно преобладать гидроксильная вода. Ее количество определить не удалось, судя по термограмме выделение гидроксильной воды начинается при температуре 980°С. В изученных ранее образцах вода выделяется при температуре 1000-1200°С [1, 2]. Можно полагать, что впервые обнаружен природный конечный член эллестадитовой группы минералов, характеризующийся почти полной заменой апатитового аниона (РО₄)³⁻ компенсирующими заряд анионами $(SO_4)^{2-}$, $(SiO_4)^{4-}$ и (СО₃ОН)³⁻. Вопросы изоморфизма в сульфатном ряду апатита рассмотрены в работах [1-5, 8]. Теоретическая кристаллохимическая формула гидроксилэллестадита по [1, 2]

$Ca_{10}(SiO_4, SO_4, CO_3OH)_6(OH)_2$.

Кристаллохимическая формула нашего образца отвечает (без учета гидроксильной воды):

$$(Ca_{9.89}, Na_{0.05}, K_{0.02}, Fe_{0.03})_{9.99}[(SiO_4)_{2.85}(SO_4)_{2.70}(CO_3OH)_{0.43}(PO_4)_{0.06}]_{6.00}(OH_x, F_{0.08}, Cl_{0.04})_{1.00}]_{1.00}$$

Отметим, что апатит в измененных гранитоидах месторождения также почти не содержит хлора. Почти полное отсутствие в минерале фосфора может быть связано с чисто кальцитовым первичным составом субстрата (мрамор) для метасоматита. В шлифах гидроксилэллестадит представлен агре-

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 5 2004

гатом с размером зерен 0.1–1.5 мм, структура породы близаллотриоморфнозернистая (иногда зерна имеют плохо выраженную таблитчатую форму). Бесцветен, показатель преломления на уровне апатита, интерференционная окраска светло-серая. Одноосный, отрицательный. Редко наблюдаемая спайность параллельна удлинению зерен, когда оно четко выражено. Такие зерна имеют прямое погасание.

Хорошо прослеживается близость составов данного минерала и метасоматита (табл. 1, ан. 1, 2). В метасоматите наблюдается 1–3 об. % изотропного или аномального (с красно-фиолетовой интерференционной окраской) граната андрадитового состава (железистость составляет 0.81–0.83 по микрозондовому анализу). Гидроксилэллестадит и особенно гранат иногда частично замещены кальцитом. В породе присутствует до 1 об. % неравномерно распределенной редкой вкрапленности пирита и халькопирита. Кроме того, микрозондовым анализом установлены недиагностируемые другие минералы и точечные аномалии с умеренным и высоким содержанием магния (до 35 мас. % MgO).

В конце интервала (534.0–534.5 м) в метасоматите резко увеличивается количество такситово распределенных халькопирита (до 5 об. %) и андрадита, появляется магнетит и много кальцита. Довольно часто в гидроксилэллестадитовом метасоматите встречаются зоны мощностью 0.01– 0.2 мм сильного рассланцевания и дробления, в которых присутствуют гипс, ангидрит, кальцит, тальк и бесцветный железо-магниевый хлорит.

Метасоматиты секутся многочисленными, легко выщелачивающимися ангидрит-гипсовыми прожилками мощностью 2–4 мм в количестве до 5 об. %.

Минералы эллестадитовой группы встречены преимущественно в ассоциации с дорудными скарновыми минералами, перечисленными в табл. 1. Мы не наблюдали реакционные взаимоотношения гидроксилэллестадита с гранатом, но, скорее всего, гидроксилэллестадит эпигенетичен по отношению к безводным скарновым минералам и сформировался в послескарновый низкотемпературный период минералообразования. В экспериментальных условиях минералы группы эллестадита были получены при температуре 235°С [2]. Выше показано, что гистерогенное разложение скарнов и низкотемпературная перекристаллизация метасоматитов исключительно сильно выражены на Гумешевском месторождении. Халькопиритовое оруденение явно наложено на метасоматит, так как в противном случае должны были бы наблюдаться продукты разложения халькопирита с образованием железосодержащих минералов. Образование гидроксилэллестадита в дорудную стадию подчеркивается и другими исследователями [2].

Таким образом, установлен конечный член эллестадитовой группы минералов (с содержанием всего 0.12 мас. $% P_2O_5$), образующий значительное по масштабу тело гидроксилэллестадитовых метасоматитов. Последние сформировались в этап гистерогенного разложения скарнов по мрамору или андрадит-волластонитовому скарну до развития пирит-халькопиритового оруденения. Данные метасоматиты целесообразно выделить в самостоятельный тип.

Авторы признательны Н.С. Бородиной, С.В. Прибавкину, В.П. Молошагу и В.Г. Петрищевой (ИГГ УрО РАН) за помощь в работе.

Исследования выполнены при финансовой поддержке РФФИ (проект 03-05-64206).

СПИСОК ЛИТЕРАТУРЫ

- 1. McConnell D. // Amer. Miner. 1937. V. 22. P. 977-986.
- Harada K.K., Nagashima K.N., Kato A. // Amer. Miner. 1971. V. 56. № 9/10. P. 1507–1518.
- Rouse R.C., Dunn P.J. // Amer. Miner. 1982. V. 67. P. 90–96.
- Чесноков Б.В., Баженова Л.Ф., Бушмакин А.Ф. // Зап. ВМО. 1987. Т. 116. С. 743–746.
- Marincea S., Bilal E., Verkaeren J. et al. // Can. Miner. 2001. V. 39. № 5. P. 1435–1453.
- Грабежев А.И., Сотников В.И., Боровиков А.А., Азовскова О.Б. // ДАН. 2001. Т. 380. № 2. С. 242– 244.
- Brophy G.P., Nash J.T. // Amer. Miner. 1968. V. 53. № 3/4. P. 445–454.
- Васильева З.В., Лицарев М.А., Органова Н.И. // ДАН. 1958. Т. 118. № 3. С. 577–580.