—— ГЕОХИМИЯ —

УДК 552.32

ПЕТРОГЕНЕЗИС ДАРЬИНСКОГО ЩЕЛОЧНОГО КОМПЛЕКСА КЕТКАПСКО-ЮНСКОЙ МАГМАТИЧЕСКОЙ ПРОВИНЦИИ АЛДАНА

© 2004 г. В. Ф. Полин, член-корреспондент РАН В. Г. Сахно, А. Н. Соляник

Поступило 12.05.2004 г.

Ассоциации гранитоидов и щелочно-салических пород широко развиты по южной окраине Алданского щита [4–6, 8–10 и др.]. Интерес к ним обусловлен контрастным сонахождением натровых субщелочных и калиевых щелочных и субщелочных пород, а также малой распространенностью и недостаточной изученностью щелочных пород калиевой линии химизма. Решение проблемы происхождения калиевых и калиевонатриевых щелочных и щелочно-салических пород имеет важное теоретическое и прикладное значение и в связи с их перспективностью в качестве глиноземного и калиевого сырья.

Авторами подобная ассоциация изучалась в юго-восточной части Алданского щита на примере Кеткапско-Юнской магматической провинции (ККЮМП). В предлагаемой работе рассмотрен ее характерный представитель – дарьинский щелочно-сиенитовый интрузивный комплекс.

Кеткапско-Юнская магматическая провинция представляет собой уникальную структуру, характеризующуюся наличием серии полиформационных магматических комплексов, спорадически распределенных в ее пределах. В западном секторе (Бокурский вулканоплутон) широко представлены щелочные породы, преимущественно вулканогенные. Центральная и восточная части провинции характеризуются преобладанием гипабиссальных тел субщелочных гранитоидов, в том числе золотоносных. Щелочные интрузивные породы здесь встречаются эпизодически в виде "роёв" даек и серий мелких силлов.

Развитие щелочного вулкано-плутонизма и интрузивного щелочного магматизма связывается со вторым этапом мезозойского магматизма Алданского щита [9, 12]. Возраст щелочного магматизма фиксирован в интервале 167–85 млн. лет [4, 8, 10, 11].

Породы дарьинского комплекса представлены семействами ультраосновных и основных фоидо-

Дальневосточный геологический институт Дальневосточного отделения Российской Академии наук, Владивосток литов, щелочных габброидов, фельдшпатоидных и щелочных сиенитов. Они идентифицируются как щелочные пироксениты, щелочные габброкосьвиты, ийолиты и миссуриты, шонкиниты, фойяиты, миаскиты, фергуситы, луявриты и мариуполиты, ледмориты и бороланиты, лаурвикиты, святоноситы, тенсбергиты, кварцевые щелочные сиениты и нордмаркиты. Дайково-жильные образования представлены эссекситами, сельвсбергитами, бостонитами, лейцитовыми сиенит-порфирами, тингуаитами и грорудитами, щелочными пегматитами [10, 12].

Химические составы дарьинских пород распределены в интервале содержаний кремнезема от 38 до 67 мас. %. Большинство их образует высоко- и умеренно-кальциевую, железистую, метаглиноземистую, высокощелочную калинатровую серию. Миссуриты, ийолиты, щелочные пироксениты и габбро-косьвиты принадлежат к магнезиальной и высококальциевой подгруппе, умереннои высококалиевой (табл. 1). По величине щелочности и щелочно-известковому индексу (=49.5) дарьинские породы близки к границе щелочных и субщелочных образований. Имеет место прямая корреляция между величинами железистости и щелочности, объясняемая возможным фракционированием на коротких интервалах геохимических трендов. Большая часть пород принадлежит к миаскитовой серии, примерно четверть составляют агпаитовые разности (рис. 1). Единичные образцы перглиноземисты, в некоторых из них присутствует модальный корунд [10].

Породы дарьинского комплекса не обладают четко выраженной геохимической специализацией. По содержанию индикаторных редких элементов (Nb, Ta, Zr, Ni, Co, Cr, V, Rb, Cs, Pb, TR и P) комплекс включает характеристики симатических, коровых и гибридных нефелиновых сиенитов [1]. Сложное сочетание мантийных и коровых характеристик магматитов, вероятно, указывает на поликомпонентный, подкоровый с ассимиляцией корового материала, характер источника их вещества. Фойяиты обнаруживают низкие концентрации Ca, Ti, Nb, Ta, Sr, Ba, Eu и тяжелых РЗЭ, при высоких содержаниях Th, U, Zr, Rb, Pb, TR_{Ce}, peз-

Компонент	ПРИ-10И	ПН-2000-1	ПН-9260-2	ПН-М62-038	ПН-174.506/7	ПН-174.506/5	ПН-174.479	ПН-177.557
SiO ₂	43.28	53.19	53.44	54.99	55.06	56.39	58.29	62.44
TiO ₂	1.56	0.26	0.54	0.99	0.14	0.20	0.11	0.64
Al_2O_3	8.77	21.20	21.99	10.45	20.98	22.22	21.20	18.62
Fe ₂ O ₃	8.32	2.43	2.92	6.27	1.61	1.40	1.43	1.60
FeO	6.02	1.25	1.70	3.14	0.73	0.73	1.02	0.89
MnO	0.27	0.09	0.19	0.21	0.10	0.12	0.16	0.10
MgO	8.19	1.06	0.35	3.24	0.17	0.11	0.12	0.36
CaO	16.32	1.82	4.69	8.90	4.83	1.24	2.47	1.86
Na ₂ O	0.80	7.54	4.13	3.46	4.03	7.78	6.40	4.59
K ₂ O	4.40	8.47	8.12	6.34	8.69	7.38	7.51	7.42
P_2O_5	0.55	0.05	0.02	0.27	0.05	0.01	0.07	0.05
H ₂ O	0.40	0.25	0.10	0.17	0.20	0.01	0.15	0.05
nnn	1.31	2.01	1.36	1.24	2.91	1.99	0.75	0.97
Сумма	100.19	99.62	99.55	99.67	99.50	99.58	99.68	99.59
f	0.40	0.54	0.84	0.51	0.80	0.86	0.88	0.69
a	0.70	1.02	0.70	1.212	0.76	0.94	0.88	0.84
n	0.22	0.58	0.43	0.46	0.41	0.62	0.52	0.48
С	0.83	0.13	0.36	0.56	0.35	0.09	0.20	0.18
l	0.24	0.85	0.92	0.36	0.85	0.96	0.91	0.97
	Щ(ВВ)*	Щ(ВВ)	Щ(В)	Щ(BB)	Щ(В)	Щ(ВВ)	Щ(ВВ)	Щ(ВВ)
Cr	72	7	1	32	1	1	1	1
Ni	38	3	2	15	1	1	1	3
Со	100	3	7	32	2	1	3	2
Sc	12	2	2	14	1	1	2	2
V	280	110	120	250	63	45	69	53
Pb	7	50	39	11	19	53	56	25
Rb	-	173	125	121	191	279	297	245
Cs	-	5.64	2.64	1.14	9.32	21.09	39.50	4.59
Ba	330	467	1469	1714	180	26	272	103
Sr	-	1669	2581	1638	678	97	381	517
Ga	9	35	24	20	20	34	28	18
Та	-	0.81	0.87	0.44	0.14	0.52	0.36	0.75
Nb	-	27.8	20.6	24.2	3.8	15.6	14.8	12.2
Hf	-	4.51	4.33	3.70	4.94	9.32	8.97	4.19
Zr	66	240	198	164	188	503	379	125
Y	13	4	16	10	20	5	23	28
Th	-	11.30	15.28	9.60	5.46	53.37	1.76	6.75
U	-	5.36	7.19	2.10	2.03	13.41	9.03	2.11
La	16.00	38.52	46.90	42.69	16.07	91.62	50.39	43.76
Ce	-	81.34	111.43	93.76	39.18	132.29	83.83	97.41
Pr	-	6.73	9.58	10.48	4.81	10.12	7.37	12.99
Nd	-	20.89	37.32	44.78	22.96	26.70	26.40	46.60
Sm	-	2.00	5.66	7.22	3.94	2.04	3.91	7.80
Eu	_	0.48	1.51	1.83	0.93	0.29	0.89	1.43

Таблица 1. Представительные анализы и другие параметры некоторых типов щелочных магматитов дарьинского комплекса ККЮМП

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 3 2004

Таблица 1. Окончание

Компонент	ПРИ-10И	ПН-2000-1	ПН-9260-2	ПН-М62-038	ПН-174.506/7	ПН-174.506/5	ПН-174.479	ПН-177.557
Gd	_	1.63	4.52	4.86	3.05	2.21	3.47	6.06
Tb	_	0.16	0.58	0.52	0.47	0.15	0.51	0.84
Dy	-	0.70	2.79	2.18	2.70	0.72	3.03	4.61
Но	_	0.10	0.47	0.30	0.53	0.13	0.64	0.87
Er	_	0.29	1.36	0.80	1.88	0.45	2.29	2.48
Tm	-	0.04	0.20	0.11	0.33	0.37	0.38	0.44
Yb	2.00	0.28	1.24	0.79	2.24	0.70	2.80	2.26
Lu	_	0.04	0.20	0.15	0.38	0.14	0.50	0.35
В	_	96.00	-	19.00	20.00	90.00	83.00	29.00
$\Sigma TR + Y$	_	157.20	239.76	220.47	119.47	272.93	209.41	255.90
$(La/Yb)_n$	5.34	92.18	25.27	36.14	4.80	87.57	12.03	12.95
Rb/Sr	_	0.104	0.048	0.074	0.282	2.876	0.780	0.474
Rb/Zr	_	0.720	0.631	0.738	1.016	0.555	0.784	1.960
Zr/Nb	_	8.633	9.611	6.777	49.474	32.244	25.608	10.246
Ba/La	20.62	12.12	31.32	40.15	11.20	0.28	5.40	2.35
Ba/Nb	-	16.80	71.31	70.82	47.37	1.67	18.38	8.44
La/Ta	_	47.32	53.90	97.02	114.79	176.19	139.97	58.35

Примечание. Оксиды – в мас. %, остальные элементы в г/т. * Здесь и далее по горизонтали петрохимическая серия: Щ – щелочная; подтипы (в скобках): В – высокощелочной, ВВ – весьма высокощелочной. Петрохимические модули: a = (Na + K)/Al; n = Na/(Na + K); c = Ca/(Ca + Na + K); f = Fe/(Fe + Mg); l = Al/(Ca + Na + K); все – в молекулярных количествах. Химические анализы выполнены в ДВГИ ДВО РАН. Аналитик – Л.И. Алексеева. Определения REE и редких элементов проводились в ГЕОХИ СО РАН (Иркутск) методом ICP-MS. Аналитики: Е.В. Смирнова, Г.П. Сандимирова. Прочерк – определения не проводились.

ко обособляясь от других разновидностей щелочных магматитов (рис. 2, табл. 1).

На диаграммах Та–La, Th–Ta, Ti / Cr–Ni, Ti–Zr, Th–Hf–Ta и дискриминантных диаграммах Пирса абсолютное большинство пород дарьинского комплекса располагается в пределах полей лав вулканических дуг.

Графики распределения РЗЭ представляют пеструю картину. В целом выделяются четыре разновидности спайдерграмм, существенно различающиеся по содержанию микроэлементов и (или) их соотношениям (рис. 2). У большинства проанализированных пород, исключая фойяиты, имеются лишь незначительные европиевые минимумы. Характерны повышенные и высокие (за исключением миссуритов и ледморитов-бороланитов) содержания легких лантаноидов при низких и очень низких – тяжелых.

На диаграмме Th–Ta фигуративные точки дарьинских пород образуют тренд, близкий к линии ассимиляции–фракционной кристаллизации щелочно-базитового расплава – производного обогащенного мантийного источника. Последний, по аналогии с источником мезозойских щелочных пород Мурунского массива [2], может быть отождествлен с метасоматически обогащенной мантией

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 3 2004

типа EM1. Сопряженное распределение тория, тантала и кремнезема позволяет полагать, что дарьинские фельдшпатоидные и щелочные сиениты представляют, возможно, либо результат магмати-

Рис. 1. Диаграмма Мениара–Пикколи [14] для пород дарьинского комплекса.

7*

Рис. 2. Распределение содержаний редких и несовместимых элементов, нормированных к примитивной мантии, по [15]. *1–8*: фигуративные точки представительных проб пород из табл. 1: *1* – ПРИ-10И, миссурит; *2* – ПН-2000-1, тингуаит; *3* – ПН-9260-2, бороланит; *4* – ПН-М62-038, шонкинит-фергусит; *5* – ПН-174.506 / 7, ледморит-бороланит; *6* – ПН-174.506 / 5, фойяит; *7* – ПН-174.479, тенсбергит; *8* – ПН-177.557, щелочной кварцевый сиенит.

ческого замещения в земной коре под воздействием потока растворов и эманаций, исходящих от очага целочно-базальтовой магмы, либо флюидного синтексиса [3].

На диаграмме Sr/Ca–Ba/Ca положение точек дарьинских щелочных и лейцитовых сиенитов плохо согласуется как с гипотезой простого парциального плавления, так и с идеей фракционирования первичного расплава. Значительное искажение вносит дополнительный фактор, в качестве которого можно предположить интрателлурический мантийный флюид, привносящий, в частности, Sr и Ba. Его воздействием объясняется положение виртуальных точек большей части дарьинских пород на диаграмме Sr–Rb/Sr Руб–Даценко в поле мантийных образований, выше тренда пород рифтовых зон континентов, и на диаграммах Ферштатера – в области производных калиевой щелочно-базальтовой магмы.

Отрицательная европиевая аномалия в изученном образце фойяита, как и аномально низкое по сравнению с прочими изученными щелочными породами содержание в нем бария и стронция, может быть объяснено либо фракционированием полевых шпатов, либо, что кажется более реальным, воздействием подкисленного позднемагматического флюида по механизму, предложенному в [7]. С учетом отмеченных выше особенностей состава этих пород для них не исключена возможность образования при эманационной дифференциации щелочно-базитовой магмы путем обособления флюидизированной натриевой фазы.

Из анализа большой подборки геохимических диаграмм и величин реперных отношений эле-

ментов (см. табл. 1) сделано заключение, что разноосновные группы щелочных пород дарьинского комплекса не связаны между собой отношениями фракционной дифференциации, а являются продуктами относительно "самостоятельных" расплавов. В то же время поведение сидерофильных элементов в гипербазитах и базитах, согласующееся с гипотезой фракционирования, находится с этим выводом в противоречии. Выходом из него может служить предположение, что становление комплекса обязано особому механизму петрогенезиса, объясняющему сочетание в составах пород характеристик мантийных и коровых расплавов.

Синтез полученных материалов при учете геологической ситуации позволил предположить в качестве наиболее приемлемой для образования большинства щелочно-салических пород ККЮМП модель флюидного синтексиса [3]. Согласно ей состав возникающего "синтексического" расплава будет близок к составу, образующемуся при кристаллизационной дифференциации соответствующего мантийного расплава, но более щелочным за счет притока щелочей в зону силицификации мантийного расплава и гораздо более обильным за счет корового материала. В рамках предложенной модели находят объяснение многие из особенностей мезозойского щелочного вулкано-плутонизма в пределах ККЮМП и всего Алданского щита: а) ограниченность масштабов и сравнительно редкая встречаемость щелочно-салических комплексов; б) значительное разнообразие минералого-петрографического состава щелочно-салических и сопутствующих им щелочных пород;

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 3 2004

<u>№</u> 3

2004

ДОКЛАДЫ АКАДЕМИИ НАУК том 398

в) усиление щелочности в конечных членах "альбазитовых" ассоциаций; г) обогащенность летучими и акцессорной минерализацией; д) повышенная сидеро- и халькофильность щелочно-салических пород по сравнению с обычными гранитоидами; е) общая "зараженность" их малыми элементами мантийного профиля [6, 10, 13 и др.].

Породы дарьинского комплекса по содержанию многих элементов подобны островодужным или окраинно-континентальным сериям субщелочного ряда, однако по своей геологической позиции и ряду геохимических характеристик они близки к внутриплитным образованиям. Исходный расплав калиевых щелочных пород дарьинского комплекса, по расчетам [6] близкий к лейцитовому тефриту, очевидно, является продуктом глубокого мантийного уровня. Происхождение щелочно-салических магм связывается с широкомасштабным избирательным усвоением корового вещества высокотемпературными мантийными расплавами в процессе их подъема к поверхности.

Главные геохимические черты болышинства пород дарьинского комплекса не связаны с фракционной кристаллизацией, а обусловлены составами источников, глубинами зарождения расплавов и глубиной протекания флюидного синтексиса. Лишь для отдельных его членов не исключена возможность образования путем флюидно-магматического замещения карбонатных толщ щелочно-базальтовым расплавом (миссуриты и некоторые разновидности щелочных пироксенитов) и эманационной (?) дифференциации первичной магмы (фойяиты, мариуполиты). Формирование габброкосьвитов предположительно связывается с фракционированием (расслоением?) первичного расплава.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бородин Л.С., Осокин Е.Д., Ганзеев А.А. В сб.: Проблемы петрологии и геохимии гранитоидов. Свердловск, 1971. С. 159–176.
- 2. Владыкин Н.В., Царук И.И. // Геология и геофизика. 2003. Т. 44. № 4. С. 325–339.
- Добрецов Г.Л., Добрецов Н.Л. // Геология и геофизика. 1983. Т. 24. № 1. С. 69–74.
- 4. Ельянов А.А., Моралев В.М. // ДАН. 1961. Т. 141. № 3. С. 687–689.
- 5. Ельянов А.А., Андреев Г.В. Магматизм и металлогения платформенных областей многоэтапной активизации. Новосибирск: Наука, 1991. 168 с.
- 6. *Еремеев Н.В.* Вулкано-плутонические комплексы калиевых щелочных пород. М.: Наука, 1984. 136 с.
- 7. Жариков В.А. // Вестн. МГУ. Сер. 4. Геология. 1996. № 4. С. 3–12.
- Кичигин Л.Н. В кн.: Магматизм Северо-Востока СССР. М.: Наука, 1973. С. 147–153.
- 9. Максимов Е.П., Угрюмов А.Н. // Сов. геология. 1971. № 7. С. 107–119.
- Некрасов И.Я., Ленников А.М., Октябрьский Р.А. и др. Петрология и платиноносность кольцевых щелочно-ультраосновных комплексов. М.: Наука, 1994. 381 с.
- 11. Орлова М.П., Авдеева О.И., Федорова И.В., Яковлева Л.В. // ДАН. 1978. Т. 240. № 3. С. 677–680.
- 12. Полин В.Ф., Петраченко Е.Д. В кн.: Материалы XI сессии Северо-вост. отд-ния ВМО. Магадан, 2001. Т. 1. С. 185–191.
- 13. Полин В.Ф., Сахно В.Г. // ДАН. 2004. Т. 394. № 3. С. 364–367.
- Maniar P.D., Piccoli P.M. // Geol. Soc. Amer. Bull. 1989. V. 101. P. 635–643.
- 15. Wood D.A. // J. Geol. 1979.V. 7. № 3. P. 499–503.