== ГЕОХИМИЯ =

УДК 552.323.6(550)

Рb–Sr–Nd-ИЗОТОПНЫЕ ХАРАКТЕРИСТИКИ МАНТИЙНЫХ ИСТОЧНИКОВ КИМБЕРЛИТОВ НАКЫНСКОГО ПОЛЯ (ЯКУТИЯ)

© 2004 г. Ю. Ю. Голубева, Г. В. Овчинникова, Л. К. Левский

Представлено академиком В.И. Коваленко 11.09.2003 г.

Поступило 17.09.2003 г.

Впервые представлены данные по U–Pb-изотопии трех образцов кимберлитов из двух трубок Накынского поля, в комплексе с их новыми Sr– Nd-изотопными характеристиками и ICP-MS-геохимией по единой коллекции образцов (табл. 1– 3). В настоящее время известно ограниченное число публикаций [1–4], посвященных геохимии кимберлитов Накынского поля, в которых авторы подчеркивают своеобразие их состава и сопоставляют их с районами Снэп-Лэйк (провинция Слейв, Канада) и Золотицким полем Архангельской провинции.

Для анализа редких элементов были отобраны 8 образцов кимберлитов из двух трубок Накынского поля (6 – из трубки Ботуобинская, 2 – из трубки Нюрбинская). Анализ редких элементов выполнен методом ICP-MS (аналитик Д.З. Журавлев, ИМГРЭ). Из этих же образцов выбраны 3 образца порфировых кимберлитов для анализа Pb–Sr–Nd-изотопных систем. Изучение изотопного состава кимберлитов проводилось в ИГГД РАН, методика анализов описана ранее [5].

Для анализа полученных данных (см. табл. 1) построена диаграмма распределения редких элементов (рис. 1), на которую нанесены анализы образцов кимберлитов трубок Ботуобинская и Нюрбинская, трубки Удачная-Восточная (Далдынское поле, Якутия) и Золотицкого поля (Архангельская провинция, по [5]). Спектры распределения редких элементов в кимберлитах двух трубок Накынского поля перекрываются и практически совпадают. Похожее распределение имеет образец кимберлита Золотицкого поля Архангельской провинции. Общей чертой кимберлитов данных полей является пониженное содержание некогерентных элементов (U, Nb, Ta), а также, как установлено нами ранее [3], легких редкоземельных элементов, что

Институт рудных месторождений, петрографии, минералогии и геохимии

Российской Академии наук, Москва

отличает их от других известных кимберлитов Якутии и Архангельской провинции. Исходя из близких геохимических характеристик образцов кимберлитов Золотицкого и Накынского полей, можно предположить их принадлежность к одному и тому же типу, предложенному авторами [7] как "золотицкий" тип.

Изотопные отношения в Sr–Nd–Pd-системах изученных образцов приведены в табл. 2 и 3 и представлены на рис. 2, 3.

Изотопный состав Sr и Nd. Образцы двух трубок Накынского поля различаются по изотопному составу Sr, что видно на рис. 2 и табл. 2. Трубка Ботуобинская несколько обогащена радиогенным стронцием (ϵ_{Sr} +43 и +55) по сравнению с трубкой Нюрбинская и кимберлитами других полей Якутии. Согласно [9, 10], первичные ⁸⁷Sr/⁸⁶Sr-отношения для кимберлитов Якутии колеблются от 0.7035 до 0.7071. По-видимому, повышенные значения ε_{sr} в кимберлитах трубки Ботуобинская обусловлены примесью корового материа-Точка анализа кимберлита трубки ла. Нюрбинская близка кимберлиту Верхотинского поля (трубка им. В. Гриба) Архангельской провинции.

Между первичными отношениями ¹⁴³Nd/¹⁴⁴Nd двух трубок также наблюдаются различия (см. табл. 2). В образцах трубки Нюрбинская значения є_{Nd} приближаются к нулю (см. табл. 2), по [1] они колеблются от +0.9 до -0.7. Трубка Ботуобинская обладает несколько более высокими значениями є_{Nd} (+1.8 и +2.0). Как видно на рис. 2, кимберлиты трубки Ботуобинская по значениям $\varepsilon_{\rm Nd}$ близки кимберлитам Кепинского поля, а образец из трубки Нюрбинская – кимберлитам Верхотинского поля (трубка им. В. Гриба). Таким образом, кимберлиты Накынского поля обладают значениями изотопного состава Nd, близкими к среднему составу Земли (BSE) (є_{Nd} около нуля), при этом образцы трубки Нюрбинская размещаются в поле отрицательных значений этой величины, т.е. стремятся к области обогащенной мантии EMI-типа, что не позволяет отнести их ни к одной из двух групп кимберлитов Южной Африки.

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

			Нюрбинская						
Компонент	Б-5-89	Б-5-101	Б-16/4-415	Б-16/4-210	Б-16/4-270	Б-16/4-350	H-32/222-440	H-24/168-266	
	1	2	3	4	5	6	7	8	
SiO ₂	40.31	32.77	30.49	32.4	31.88	29.79	34.14	33.00	
TiO ₂	0.37	0.31	0.39	0.63	0.62	0.56	0.76	0.41	
Al_2O_3	4.15	2.25	2.8	2.6	2.67	1.37	4.26	3.04	
Fe ₂ O ₃	9.02	7.46	4.92	6.13	5.66	6.35	8.08	6.79	
MgO	29.74	24.07	21.67	31.26	31.12	30.63	24.59	27.06	
CaO	1.05	11.03	15.05	7.35	7.88	8.93	10.16	9.06	
Na ₂ O	0.12	0.11	0.23	0.10	0.09	0.16	0.39	0.25	
K ₂ O	0.14	0.29	1.53	0.83	0.55	0.24	2.56	0.88	
P_2O_5	0.68	0.54	0.54	0.71	0.77	0.63	0.72	0.38	
Cr	750	672	882	1321	1488	1058	1663	797	
Ni	2657	1686	1200	1087	1423	1418	1278	1089	
Co	101	98	48	47	44	15	44	48	
Sc	9.5	6.6	7.9	10.7	11.4	10.2	12.9	7.6	
V	54	39	51	53	45	44	91	61	
Rb	4.7	7.9	38.6	25.6	17.4	6.9	64.8	21.2	
Cs	0.9	0.6	0.8	0.5	0.3	0.3	0.7	0.6	
Ba	71	94	512	532	811	969	490	230	
Sr	140	318	698	408	809	492	502	189	
Та	1.0	0.8	1.2	1.9	2.0	1.8	1.7	1.0	
Nb	20	16	24	33	34	31	33	19	
Hf	1.6	1.1	1.4	1.9	1.8	1.4	1.7	1.2	
Zr	65	44	59	74	71	56	77	54	
Y	12.7	8.7	9.7	9.6	8.8	10.7	11.3	7.9	
Th	1.81	1.28	1.90	1.29	1.35	1.17	1.81	1.34	
U	0.99	0.80	0.75	0.35	0.37	0.24	0.39	0.41	
La	12.9	9.3	16.6	13.4	14.1	20.8	20.6	13.6	
Ce	28.2	21.2	33.2	28.9	29.6	60.7	44.1	28.8	
Pr	3.5	2.7	4.2	3.8	3.8	8.7	5.5	3.6	
Nd	14.7	11.7	17.5	16.7	15.7	39.5	22.8	15.0	
Sm	3.0	2.5	3.4	3.3	3.1	7.0	4.6	2.9	
Eu	0.86	0.66	0.97	0.95	0.72	1.71	1.33	0.76	
Gd	2.79	2.24	2.98	3.14	2.78	5.36	3.69	2.44	
Tb	0.38	0.31	0.37	0.40	0.37	0.59	0.47	0.32	
Dy	2.03	1.59	1.89	1.99	1.96	2.35	2.29	1.60	
Но	0.41	0.31	0.34	0.36	0.33	0.39	0.38	0.27	
Er	1.00	0.76	0.84	0.84	0.80	0.91	0.88	0.66	
Tm	0.13	0.10	0.11	0.10	0.10	0.09	0.10	0.09	
Yb	0.79	0.57	0.67	0.61	0.61	0.52	0.57	0.49	
Lu	0.12	0.08	0.10	0.09	0.09	0.08	0.08	0.07	
Pb	2.82	3.17	1.35	1.75	0.89	1.84	0.73	0.44	

Таблица 1. Главные породообразующие (мас. %) и редкие элементы (ppm) в кимберлитах Накынского поля (Якутия)

Примечание. 1–3, 8 – автолитовые кимберлитовые брекчии, 4–7 – порфировые кимберлиты.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 6 2004

Образец	Rb, ppm		Sr, ppm	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$({}^{87}\text{Sr}/{}^{86}\text{Sr})_t$		ε _{Sr}
Нюрбинская Н-32/222-440	63.9	5	507.1	0.36490	0.707290 ± 24	0.7053	98	16
Ботуобинская Б-16/4-350	7.5	5	649.2	0.03363	0.708333 ± 31	0.708159		55
Ботуобинская Б-16/4-270	17.59		827.5	0.06149	0.707578 ± 38 0.70725		59	43
Образец	Sm, ppm	Nd, ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$(^{143}\text{Nd}/^{144}\text{Nd})_t$	ε _{Nd}	$T_{\rm Nd}$	ОМ, млрд. лет
Нюрбинская Н-32/222-440	4.63	23.27	0.1203	0.512445 ± 8	0.512158	-0.2		1.2
Ботуобинская Б-16/4-350	7.03	39.59	0.1073	0.512527 ± 9	0.512271	2.0		0.9
Ботуобинская Б-16/4-270	2.95	14.75	0.1211	0.512550 ± 12	0.512261	1.8		1.0

Таблица 2. Nd–Sr-изотопные данные для кимберлитов Накынского поля (Якутия)

Примечание. Первичные изотопные отношения, ε_{Sr} и ε_{Nd} рассчитаны на t = 364 млн. лет [1] с учетом современных изотопных составов UR (87 Rb/ 86 Sr = 0.825 и 87 Sr/ 86 Sr = 0.7045) и CHUR (147 Sm/ 144 Nd = 0.1967 и 143 Nd/ 144 Nd = 0.512638). Модельные возрасты T_{Nd} DM рассчитаны с учетом современного изотопного состава деплетированной мантии (DM): 147 Sm/ 144 Nd = 0.2135 и 143 Nd/ 144 Nd = 0.513151.

Таблица 3. U–Pb-изотопные данные для кимберлитов Накынского поля (Якутия)

Образец	Pb, ppm	U, ppm	²³⁸ U/ ²⁰⁴ Pb	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	Th, ppm	²³² Th/ ²⁰⁴ Pb
Нюрбинская H-32/222-440	0.73	0.458	42.2	20.565 (18.112)	15.619 (15.487)	40.787 (37.657)	1.808	172
Ботуобинская Б-16/4-350	1.84	0.310	11.03	19.790 (19.149)	15.595 (15.561)	39.321 (38.540)	1.169	43
Ботуобинская Б-16/4-270	0.89	0.400	29.7	20.320 (18.594)	15.621 (15.528)	39.995 (38.115)	1.348	103

Примечание. В скобках приведены изотопные отношения Pb, исправленные на *t* = 364 млн. лет для кимберлитов Накынского поля [1]. Для анализа использованы фракции +0.25–0.5.

Изотопный состав Рb представлен в табл. 3 и на рис. 3. На этих графиках приведены модельные кривые эволюции изотопного состава Pb мантии, верхней и нижней коры. При построении графиков использованы упрощенные модели эволюции Рb в мантийном, верхнекоровом и нижнекоровом резервуарах, которые приведены в [5].

Рис. 1. Распределение редких элементов, нормированных к примитивной мантии (ПМ) [6], в кимберлитах Накынского (трубки Ботуобинская и Нюрбинская), Далдынского (трубка Удачная-Восточная) полей Якутии и Золотицкого поля (Архангельская провинция) [5]. Здесь и на рис. 2, 3: 1, 2 – кимберлиты Накынского поля (Якутия): 1 – трубка Нюрбинская, 2 – трубка Ботуобинская; 3 – кимберлиты трубки Удачная-Восточная (Далдынское поле, Якутия); 4–6 – кимберлиты Архангельской провинции [6]: 4 – Кепинского поля, 5 – Верхотинского поля (трубки им. В. Гриба), 6 – Золотицкого поля.

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 6 2004

Рис. 2. Диаграмма є_{Nd}-є_{Sr} для кимберлитов Накынского поля (Якутия), Золотицкого, Верхотинского (трубка им. В. Гриба), Кепинского полей (Архангельская провинция). Поля по [8].

Как видно на рис. 3, изотопные отношения первичного свинца кимберлитов Накынского поля и Архангельской провинции похожи и в некоторых случаях перекрываются. Как и кимберлиты Архангельской провинции, точки изотопных составов кимберлитов Накынского поля располагаются в области кривой эволюции свинца мантии (рис. 3а) и с возможной незначительной примесью Рb нижней коры (рис. 3б). Причем анализ кимберлитов трубки Нюрбинская (Якутия) и Верхотинского и Золотицкого полей (Архангельская провинция) практически перекрываются, находясь вне полей кимберлитов I и II групп Южной Африки. В то же время образцы кимберлитов трубки Ботуобинская располагаются среди либо вблизи точек анализов Кепинского поля, попадая в поле кимберлитов группы I Южной Африки.

Rb–Sr-датировкам, Согласно полученным А.М. Агашевым с соавторами [1], возраст кимберлитов Накынского поля составляет 364±8 млн. лет. Рассчитанные нами модельные возрасты $T_{(Nd)}DM$ для кимберлитов Накынского поля (см. табл. 2) находятся в интервале 0.9–1.2 млрд. лет. При этом для трубки Нюрбинская модельный возраст составляет 1.2 млрд. лет (1.1–1.2 млрд. лет по [1]), а для трубки Ботуобинская 0.9-1.0 млрд. лет. Эти модельные возрасты, вероятно, характеризуют возраст обогащения источника магм кимберлитов Накынского поля, т.е. предположительно источник кимберлитов был обогащен за 0.54 и 0.84 млрд. лет перед возникновением кимберлитовых магм, причем раньше в источнике кимберлитов трубки Нюрбинская. Изотопный состав кимберлитов Накынского поля располагается вблизи поля среднего состава Земли (BSE), а в кимберлитах трубки Нюрбинская, как и в кимберлитах Золотицкого поля (Архангельская провинция), возможно участие литосферной мантии ЕМІ-типа, это подтверждается и данными по изотопии Рb: кимберлиты трубки Нюрбинская несколько обеднены радиогенным Pb по сравнению с трубкой Ботуобинская.

Рис. 3. Диаграммы ²⁰⁷Pb/²⁰⁴Pb – ²⁰⁶Pb/²⁰⁴Pb (а) и ²⁰⁸Pb/²⁰⁴Pb – ²⁰⁶Pb/²⁰⁴Pb (б) для кимберлитов Накынского (Якутия), Золотицкого, Верхотинского (трубка им. В. Гриба) и Кепинского полей (Архангельская провинция). Модельные кривые эволюции Рb мантии (М), нижней коры (НК) и верхней коры (ВК) по [5]. Цифры на линиях – время в млн. лет. Поля по [8].

ДОКЛАДЫ АКАДЕМИИ НАУК том 394 № 6 2004

Проведенные исследования выявили особенности кимберлитов двух трубок Накынского поля, а также определили черты сходства кимберлитов Накынского поля и Архангельской провинции:

1) спектры распределения редких элементов в кимберлитах трубок Ботуобинская и Нюрбинская совпадают и имеют одинаковые отрицательные аномалии Th, U, Nb, а также пониженные содержания легких редкоземельных элементов [3]; похожее распределение имеют кимберлиты Золотицкого поля и Архангельской провинции;

2) изотопный состав Sr и Nd несколько варырует в кимберлитах трубок Накынского поля. Трубка Ботуобинская обладает более высокими положительными значениями ε_{Sr} и ε_{Nd} и близка кимберлитам Кепинского поля Архангельской провинции. Кимберлит трубки Нюрбинская приближается к значениям BSE и трубке им. В. Гриба (Верхотинское поле, Архангельская провинция);

3) поведение изотопного состава Pb кимберлитов двух трубок Накынского поля коррелируется с данными по изотопному составу Sr и Nd. Так, изотопные отношения первичного свинца в кимберлитах трубки Ботуобинская близки кимберлитам Кепинского поля и кимберлитам I группы Южной Африки. Кимберлиты трубки Нюрбинская находятся в поле кимберлитов Золотицкого поля Архангельской провинции;

4) рассчитанные модельные возрасты $T_{(Nd)}$ DM для кимберлитов Накынского поля, вероятно, характеризуют возраст обогащения источника магм, т.е. предположительно источник кимберлитов был обогащен за 0.54 и 0.84 млрд. лет перед формированием кимберлитовых магм, причем раньше в источнике кимберлитов трубки Нюрбинская.

Авторы выражают глубокую признательность И.П. Илупину (ЦНИГРИ) за предоставленные образцы по трубкам Ботуобинская и Нюрбинская (Накынское поле, Якутия).

Работа выполнена при финансовой поддержке РФФИ (проекты 03–05–64214, 03–05–06020), гранта президента РФ для поддержки ведущих научных школ НШ-1251.2003.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Agashev A.M., Watanabe T., Budaev D.A. et al. // Geology. 2001. V. 29. № 3. P. 267–270.
- Pokhilenko N., Agashev A., McDonald J. et al. // Extended Abstr. VIII Intern. Kimberlite Conf. Victoria, Canada, 2003.
- 3. Голубева Ю.Ю., Илупин И.П., Журавлев Д.З. // ДАН. 2003. Т. 390. № 5. С. 668–672.
- Серов И.В., Гаранин В.К., Зинчук Н.Н. и др. // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге XXI века. Воронеж: Воронеж. гос. ун-т. 2003. С. 339–346.
- 5. Кононова В.А., Левский Л.К., Первов В.А. и др. // Петрология. 2002. Т. 10. № 5. С. 493–509.
- McDonough W.F., Sun S.S. // Chem. Geol. 1995. V. 120. P. 223–253.
- Богатиков О.А., Кононова В.А., Первов В.А., Журавлев Д.З. // Петрология. 2001. Т. 9. № 3. С. 227– 241.
- 8. Smith C.B. // Nature. 1983. V. 304. P. 51-54.
- 9. Агашев А.М., Орихаши Ю., Ватанабе Т. и др. // Геология и геофизика. 2000. Т. 41. № 1. С. 90–99.
- 10. Костровицкий С.И., Морикио Т., Владыкин Н.В., Лепин В.С. // ДАН. 1999. Т. 369. № 3. С. 371–374.