—— ГЕОХИМИЯ —

УДК 549

КЛИНОПИРОКСЕН-ОЛИВИН-ИЛЬМЕНИТОВАЯ МЕГАКРИСТНАЯ АССОЦИАЦИЯ В КИМБЕРЛИТЕ ТРУБКИ УДАЧНАЯ

© 2004 г. С. И. Костровицкий, З. В. Специус, Н. В. Алымова, Л. Ф. Суворова

Представлено академиком Н.В. Соболевым 31.10.2003 г.

Поступило 24.11.2003 г.

Кимберлит представляет собой породу порфировой структуры, вкрапленниками в которой служат оливины или псевдоморфозы серпентина по нему, а мезостазис имеет существенно карбонатсерпентиновый состав. Другие минералы, в первую очередь вкрапленники пикроильменита и граната, обычно характеризуются неравномерным, рассеянным характером распределения в породе, и их содержание не превышает 0.1–0.3 мас. %. В этом отношении встреченный нами в трубке Удачная-Восточная кимберлит с чрезвычайно высокой (до 60% от объема породы) насыщенностью пикроильменита представляет собой уникальнейший случай.

В крупногабаритной глыбе кимберлита из трубки Удачная-Восточная на глубине свыше 400 м встречено обособление кимберлита, насыщенное крупными вкрапленниками пикроильменита и оливина размером от 3-5 до 20 мм и более. Отдельные мегакристы пикроильменита находятся в сростках с клинопироксеном или содержат последний в виде крупных включений (до 1 см и более). Можно отметить три аспекта уникальности этого проявления: 1) совместное нахождение трех мегакристных минералов (ранее мегакристы клинопироксена в кимберлите трубки Удачная не были встречены); 2) очень высокая насыщенность кимберлитов мегакристами пикроильменита; 3) абсолютная незатронутость кимберлита процессом серпентинизации, обеспечившая неизмененность всех минералов.

Мегакристное проявление представляет собой линзовидную зонку размером 1.0 × (0.3–0.5) м, которая оказалась обогащенной (более 70% объема породы) крупными вкрапленниками пикроильменита и оливина. Здесь же встречаются отдельные обломки мантийных ксенолитов. В некоторых

Институт геохимии им. А.П. Виноградова Сибирского отделения Российской Академии наук, Иркутск участках этой зоны насыщенность пикроильменитом чрезвычайно высока и превышает содержание оливина.

Вмещающий проявление кимберлит представлен брекчиевой разновидностью серого цвета среднепорфировой структуры, отличительной особенностью которой является полная сохранность оливина во вкрапленниках и основной массе, отсутствие видимых признаков серпентинизации. Кимберлит содержит не более 7% ксенолитов вмещающих пород. Насыщенность вкрапленниками оливина размером менее 5-8 мм, преимущественно округлой формы, достигает 40-50% от объема породы. Крупные мегакристы оливина (более 1 см) редки. Пикроильменит практически отсутствует и встречается в виде редких единичных зерен размером менее 5 мм. Для основной массы кимберлита, характеризующейся существенно оливинкарбонатным составом, характерно крайне незначительное количество оксидных минералов.

Кимберлит зонки также имеет брекчиевую текстуру, но отличается темно-серой окраской, крупнопорфировой структурой, исключительной обогащенностью мегакристами пикроильменита и оливина. Темную окраску придает высокая насыщенность базиса кимберлита мелкокристаллической рудной минерализацией, представленной пикроильменитом, титаномагнетитом и перовскитом. Пикроильменит находится в виде выделений обломочной угловато-округлой формы размером от 1×2 до 40×23 мм с неравномерной концентрацией зерен, составляющей от 10 до 60% от объема породы (рис. 1). Крупные зерна, как правило, трещиноваты. Отдельные редкие выделения ильменита содержат включения желто-бурого оливина и бутылочно-зеленого клинопироксена. Включения оливина чаще имеют овальную форму, но нередко встречается и неправильноокруглая, с отдельными тонкими апофизами, соподчиненными развитой во вмещающем пикроильмените трещиноватости. Нередко оливин встречается в раздробленных периферийных зонах макрокристов ильменита, выполняя отдельные трещинки. Встречаются редкие включения

Институт Якутнипроалмаз АК "Алроса", Мирный

Рис. 1. Фотография образца кимберлита с высокой насыщенностью пикроильменита из трубки Удачная-Восточная.

сульфидов вытянутой формы, локализованные в участках трещиноватого ильменита.

Макрокристы оливина характеризуются угловато-округлой, овальной формами, обычно бесцветные или светло-серые, желто-бурые, иногда непрозрачные, разных размеров – от 1–2 до 10 мм и более. Кристаллические включения в оливине редки и представлены клинопироксеном, гранатом и сульфидами. Клинопироксен обнаруживается в виде включений в пикроильмените и оливине, а также в виде сростков с пикроильменитом, образующих крупные выделения размером до 2×1.5 см. Граница между пироксеном и ильменитом в сростках неправильно-угловатая, обусловленная микротрещиноватостью пикроильменита, существовавшей до кристаллизации клинопироксена. Внутри клинопироксеновых выделений можно встретить мелкие угловатые включения ильменита. Таким образом, взаимоотношения как оливина, так и клинопироксена с пикроильменитом указывают на некоторую асинхронность их образования при более ранней кристаллизации пикроильменита. Основная масса кимберлита данного проявления является существенно карбонат-оливиновой, с высокой насыщенностью оксидных минералов – пикроильменита, титаномагнетита, перовскита. Оливин представлен идиоморфными и субидиоморфными кристаллами, нередко зональными по составу.

Состав минералов из описанного выше проявления был изучен нами на рентгеновском микроанализаторе марки JXA-50A в Институте геохимии СО РАН. Проанализирован состав 30 вкрапленников пикроильменита, 5 зерен клинопироксена и 15 зерен оливина.

Пикроильмениты из проявления характеризуются относительно широкой вариацией содержания окислов Al₂O₃ и Cr₂O₃ соответственно 0.1–0.92 и 0.24–3.47 мас. % при сравнительно стабильном содержании основных окислов MgO, FeO и TiO₂

(табл. 1). Как по средним составам, так и по диапазону изменчивости, ильмениты из проявления не отличаются от пикроильменитов, содержащихся в рассеянном виде в кимберлитах трубки Удачная-Восточная (рис. 2). Пикроильменит из мантийных ксенолитов [1, 2] отличается от пикроильменита из желваков как из мегакристного проявления, так и из кимберлита трубки Удачная повышенной магнезиальностью, более высоким содержанием Cr_2O_3 и относительно низким содержанием гематитового минала (рис. 2).

Представительные анализы клинопироксена приведены в табл. 2, из которых очевиден относительно стабильный состав данного минерала во всех изученных зернах. Корреляция составов клинопироксена и сосуществующего пикроильменита, судя по данным таблицы, не обнаруживается, по-видимому, из-за небольших вариаций состава минералов. В пределах отдельных зерен состав клинопироксена однороден. По классификации Стефенса и Доусона [5] клинопироксен может быть отнесен к группам диопсида и малохромистого диопсида. При сравнительно низком содержании FeO, Na₂O, Cr₂O₃, TiO₂ (см. табл. 2) диопсиды из зонки оказались наиболее сопоставимыми с клинопироксенами из включений типа маридов флогопит-амфибол-рутил-ильменит-диопсидового состава, образование которых связывается [5] с кристаллизацией из протокимберлитового расплава.

По составу в пределах проявления выделяются две группы оливина, соответствующие высокомагнезиальным и железистым разновидностям мега-, макрокристов. Оливины основной массы характеризуются промежуточными составами и нередко демонстрируют прямую зональность (табл. 3). В целом, как для кимберлита, насыщенного ильменитом, так и для вмещающего проявления кимберлита характерно заметное преобладание высокомагнезиального оливина над железистым.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 1 2004

1	2	3	4	5	6	7	8	9	10	11	12
46.7	45.8	47.9	46.8	50.2	47.5	47.8	47.3	45.9	47.1	47.8	50.5
0.61	0.56	0.44	0.10	0.92	0.75	0.45	0.32	0.60	0.51	0.58	0.51
1.56	2.47	0.51	1.31	0.24	1.01	1.28	0.84	2.45	1.21	0.82	1.6
15.9	16.6	14.6	16.5	11.0	13.8	13.9	15.4	15.8	15.0	15.5	11.4
26.3	25.5	27.8	27.7	27.2	27.4	26.5	27.1	26.2	26.9	25.5	25.7
0.24	0.24	0.21	0.26	0.19	0.18	0.27	0.26	0.28	0.25	0.25	0.28
8.68	8.66	8.45	7.92	9.96	8.50	9.09	8.49	8.29	8.6	8.9	10.9
97.99	99.83	99.91	100.59	99.71	99.18	99.29	99.71	99.52	99.57	100.45	100.89
31.3	30.7	30	28.1	34.9	30.3	32.3	30.2	29.6	30.7	32.2	37.7
53.2	50.8	55.4	55.2	53.5	54.8	52.9	54.2	52.5	53.5	52.0	49.7
12.6	14.9	13.1	14.8	9.7	12.4	12.4	13.8	14.2	13.5	14.2	9.9
	1 46.7 0.61 1.56 15.9 26.3 0.24 8.68 97.99 31.3 53.2 12.6	1246.745.80.610.561.562.4715.916.626.325.50.240.248.688.6697.9999.8331.330.753.250.812.614.9	12346.745.847.90.610.560.441.562.470.5115.916.614.626.325.527.80.240.240.218.688.668.4597.9999.8399.9131.330.73053.250.855.412.614.913.1	123446.745.847.946.80.610.560.440.101.562.470.511.3115.916.614.616.526.325.527.827.70.240.240.210.268.688.668.457.9297.9999.8399.91100.5931.330.73028.153.250.855.455.212.614.913.114.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Таблица 1. Представительные анализы пикроильменитов из трубки Удачная-Восточная

Примечание. 1–9 – составы зерен из мегакристного проявления; 10 – среднее из 24 анализов зерен мегакристов из проявления; 11 – среднее из 22 анализов желваков ильменита из кимберлита трубки; 12 – среднее 11 анализов ильменита из ксенолитов лерцолитов (Гаранин и др., 1984; Соловьева и др., 1994).

При этом заметим, что оливин, имеющий прямые границы с пикроильменитом (из срастаний, кристаллических включений), всегда является высокожелезистым, что и определяет его принадлежность к одной ассоциации. Подобие состава пикроильменитов из описанного уникального проявления и в целом из кимберлитов трубки Удачная-Восточная предполагает общий для них генезис.

Общее содержание ильменита в кимберлите трубки Удачная-Восточная составляет 0.05– 0.08 мас. % [6]. Высокая концентрация мегакристов пикроильменита, находящихся в проявлении в

Рис. 2. Треугольная диаграмма состава пикроильменита из трубки Удачная-Восточная: *1* – из мегакристного проявления, *2* – из кимберлита трубки Удачная-Восточная, *3* – из мантийных ксенолитов трубки Удачная-Восточная.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 1 2004

КОСТРОВИЦКИЙ и др.

Компо-	1	2	3	4	5	6	7	8	9	10	11
нент	305a	305a	305b	305b	01-403	01-403	305c				
SiO ₂	54.6		55.3		54.8		55.3	53.8	54.2	54.3	54.6
TiO ₂	0.19	47.9	0.2	47.4	0.27	46.2	0.22	0.66	0.34	0.29	0.37
Al_2O_3	1.6	0.48	1.88	0.45	1.7	0.47	0.84	0.40	0.50	2.08	2.39
Cr ₂ O ₃	0.29	1.07	0.35	1.2	0.3	1.18	0.36	0.13	0.63	0.40	0.49
FeO	4.1	40.0	4.32	41.0	4.34	40.37	4.45	4.16	4.63	4.63	4.81
MnO	0.11	0.36	0.06	0.24	0.17	0.48	0.11	0.11	0.11	0.11	0.13
MgO	16.0	8.88	15.9	8.34	16.4	9.43	16.5	16.3	17.0	17.7	18.3
CaO	20.9	<0.1	20.3	< 0.1	20.1	<0.1	21.0	23.7	20.6	18.1	17.1
Na ₂ O	0.79	< 0.05	1.02	< 0.05	1.25	< 0.05	1.1	0.57	1.28	1.60	1.63
Total	98.4		99.3		99.62		99.8	99.71	99.21	99.28	99.71
Mg [#]	87.5		86.8		87.1		86.8	87.6	86.7	87.2	87.3
Ca#	48.4		47.8		46.8		47.8	51.1	46.6	42.3	40.1

Таблица 2. Составы клинопироксенов и сосуществующих пикроильменитов из разных проявлений в кимберлитах

Примечание. 1–7 – из мегакристного проявления трубки Удачная: 1–6 – сростки, включения Срх в Ilm, 7 – мегакрист Срх; 8 – среднее (21 анализ) для пироксенов основной массы кимберлитов [3]; 9 – среднее (7 анализов) из включений типа MARID [4]; 10 – из зон замещения в мегакристах граната, трубка Удачная (данные авторов); 11 – среднее (18 анализов) для мегакристов клинопироксена из южноафриканских трубок [3].

Компо- нент	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	38.79	38.31	39.72	41.96	40.08	39.9	38.66	40.71	40.75	40.18	40.08
TiO ₂	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
FeO	13.88	14.44	7.57	6.68	11.02	14.27	14.82	9.53	14.69	8.13	11.63
MnO	0.15	0.18	0.16	< 0.1	0.19	0.15	0.15	0.12	0.17	0.13	0.14
MgO	45.93	46.0	51.1	51.27	47.73	45.65	45.62	49.43	44.84	50.81	47.77
CaO	0.21	0.18	0.18	0.12	0.23	0.17	< 0.1	0.16	<0.1	< 0.1	<0.1
NiO	0.24	0.23	0.38	0.3	0.39	0.28	< 0.15	0.36	<0.15	0.42	0.19
Total	99.37	99.47	99.21	100.33	99.64	100.56	99.37	100.31	100.45	99.68	99.81
Mg [#]	85.5	85.03	92.33	93.19	88.53	85.08	84.59	90.24	84.47	91.76	87.98

Таблица 3. Составы оливинов из мегакристной ассоциации

Примечание. 1–5 – мегакристы оливина размером более 1 см; 6–7 – включения оливина в мегакристах пикроильменита; 8, 9 – макрокристы оливина размером 3–5 мм; 10–11 – центр и край идиоморфного кристалла зонального оливина из основной массы кимберлита (размеры кристалла 600 × 300, каймы 50–70 мкм).

ассоциации с клинопироксеном и оливином, сохранившаяся обломочная форма зерен свидетельствуют о захвате кимберлитовым расплавом минералов данной ассоциации (прежде всего пикроильменита) с одного локального источника. Таким источником могли быть ильменитсодержащие перидотиты, либо относительно крупное тело, насыщенное ильменитом, которое сформировалось в результате кристаллизации в магматическом очаге или на стенке канала (по которому шло восхождение расплава) ликвировавшей высокотитанистой жидкости. Интервалы *PT*-параметров кристаллизации минералов ассоциации составляют по геотермобарометру П. Нимиса, В. Тэйлора [7] 1054–1091°С и 39.8–42.5 кбар. Глубина источника пикроильменита должна быть не менее расчетной глубины кристаллизации клинопироксена, т.е. около 120 км. Позднее произошли дезинтеграция минералов ассоциации и их захват последующими порциями флюидного расплава. Возможное объяснение происхождения данного уникального проявления гравитационным осаждением минералов уже в трубочных условиях хуже согласуется с особенностями взаимоотношений проявления с вмещающим кимберлитом. Впрочем, вне зависимости от трактовки, где захвачена Di–Ol–IIm-мегакристовая ассоциация,

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 1 2004

присутствие в парагенезисе диопсида, сопоставимого по составу с пироксенами из включений типа MARID, указывает на ее образование в процессе кристаллизации высокотитанистой магмы, предположительно протокимберлитовой, на мантийных глубинах. Широкие вариации состава пикроильменита (прежде всего по Cr₂O₃), как показано Н.В. Соболевым и другими исследователями [8–10], могут быть объяснены фракционированием соответствующего расплава, из которого он кристаллизовался.

Уникальное проявление высокого насыщения кимберлитов пикроильменитом в ассоциации с оливином и клинопироксеном может явиться ключом к расшифровке проблемы происхождения ильменитовой мегакристной ассоциации в кимберлитах.

Исследования выполнены при финансовой поддержке РФФИ (гранты 02–05–64793 и 03–05– 06120).

СПИСОК ЛИТЕРАТУРЫ

1. Гаранин В.К., Кудрявцева Г.П., Сошкина Л.Т. Ильменит из кимберлитов. М.: Изд-во МГУ, 1984. 240 с.

- Соловьева Л.В., Владимиров Б.М., Днепровская Л.В. и др. Кимберлиты и кимберлитовые породы: Вещество верхней мантии под древними платформами. Новосибирск: Наука, 1994. 238 с.
- 3. *Mitchell R.H.* Kimberlites. Mineralogy, Geochemistry, and Petrology. N.Y.: Plenum Press, 1986. 442 p.
- 4. *Dawson J.B., Smith J.V. //* Geochim. et cosmochim. acta. 1977. V. 41. P. 309–323.
- 5. Доусон Дж. Кимберлиты и ксенолиты в них. М.: Мир, 1983. 244 с.
- Маршинцев В.К., Ковальский В.В., Мигалкин К.Н. и др. В кн.: Магматические образования северовостока Сиб. платформы. Якутск: ЯФ СО АН СССР, 1975. С. 112–131.
- Nimis P., Taylor W.R. // Contribs. Mineral. and Petrol. 2000. V. 139. № 5. P. 541–554.
- Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.
- 9. *Green D.H., Sobolev N.V. //* Contribs. Mineral. and Petrol. 1975. V. 50. P. 217–229.
- 10. *Griffin W.L., Moore R.O., Ryan C.G. et al.* // Russ. Geol. Geophys. 1997. V. 38. № 2. P. 421–443.