= геохимия =

УДК 549.27+553.491(553.461)

ПЛАТИНО-ПАЛЛАДИЕВЫЙ ТИП ОРУДЕНЕНИЯ В ХРОМИТОВЫХ РУДАХ ГИПЕРБАЗИТОВ ЗАПАДНОГО САЯНА

© 2004 г. М. Ю. Подлипский, А. П. Кривенко, член-корреспондент РАН Г. В. Поляков

Поступило 08.01.2004 г.

С хромитовыми проявлениями в дунит-гарцбургитовых массивах офиолитовых поясов обычно связаны незначительные проявления Os, Ir и Ru, при резко подчиненном количестве Pd, Pt и Rh [1]. Среднее содержание металлов платиновой группы (МПГ) оценивается в 0.35 г/т [2] и при разработке хромитовых руд МПГ в большинстве случаев не извлекаются. Преобладающими минералами МПГ в таких хромитовых месторождениях являются сплавы Os-Ir-Ru или сульфиды ряда лаурит RuS₂-эрликманит OsS₂ [1]. Однако в последние годы в хромититах, приуроченных к офиолитовым гипербазитам, обнаружен совершенно иной тип платинометального оруденения – преимущественно платино-палладиевый. Содержания МПГ в этом типе руд составляют 3-5 г/т, а иногда достигают в некоторых районах мира 100 г/т [3-6]. Среди минералов Pt и Pd наиболее часто встречаются соединения Pt-Fe-Ni-Cu, Pt-Cu, Pt-As (сперрилит), Pd-Sb, Pd-Cu-Sb и Pd-Hg. Эти минералы в хромитовых рудах ассоциируют с серпентином, сульфидами и арсенидами Ni, аваруитом и являются более поздними по отношению к хромиту.

Гипербазиты Западного Саяна являются типичным примером дунит-гарцбургитовых массивов, входящих в состав офиолитовых ассоциаций [7]. Наши исследования [8–10] показали, что с большинством этих массивов связана Os–Ir–Ruминерализация и только в хромитовых рудах Калнинского массива установлено платино-палладиевое оруденение, по геохимическим и минералогическим признакам сопоставимое с платино-палладиевым оруденением в хромитовых рудах офиолитовых гипербазитов других регионов.

Гарцбургит-дунитовый массив Кална расположен в Куртушибинском офиолитовом поясе Западного Саяна (рис. 1). В пределах массива выявлены многочисленные линзообразные тела прожилкововкрапленнных хромитовых руд, представленных серпентин-карбонат-хромитовыми агрегатами с

Институт геологии

содержанием хромшпинелида до 70%. Хромиты высокохромистые, содержание Cr_2O_3 в минералах в среднем составляет 60.7 мас. %. В хромитовых рудах присутствуют самородное железо с примесью хрома Fe(Cr) и аваруит Ni₃Fe, в единичных зернах отмечаются орселит Ni_{5-x}As₂, маухерит Ni₁₁As₈, хизлевудит, изредка арсенопирит и пирит.

При шлиховом опробовании аллювия и в хромитовых рудах нами определено более 30 мине-

Рис. 1. Схема строения офиолитовых поясов в восточной части Западного Саяна: l-3 – офиолитовая ассоциация (V– \mathcal{E}_1): l – гипербазиты (К – Калнинский массив), 2 – габбро, габбро-диабазы, 3 – вулканогенноосадочные толщи: метабазальты, сланцы кремнистые, углистые, глаукофановые; 4 – Западно-Саянская каледонская складчатая система; 5 – Хемчикско-Систигхемская каледонская складчатая система; 6 – среднепалеозойские впадины.

Сибирского отделения Российской Академии наук, Новосибирск

Рис. 2. Состав Pt–Fe–Cu-сплавов из аллювия водотоков бассейна р. Кална и из вкрапленных хромитовых руд Калнинского массива.

ральных видов МПГ [10]. Преобладающими (48% по числу зерен) являются соединения Pt с Fe и Cu, составы которых приведены на рис. 2. Pt–Fe–Cuсплавы содержат в качестве основной примеси Pd, реже Rh. На основании минералогических наблюдений последовательность преобразования изоферроплатины Pt₃Fe следующая:

 $Pt_3Fe \rightarrow Pt_2FeCu \rightarrow Pt(Cu,Ni,Fe)_3 \rightarrow (Pt,Pd)Cu_4.$

На первой стадии замещения происходит привнос Си и Ni с образованием туламинита Pt₂FeCu и промежуточных соединений Pt(Cu,Ni,Fe)₃ и Рt(Cu,Ni,Fe)₄. Далее идет дальнейший привнос Cu, Pd и вынос Fe, Ni с образованием медистых фаз РtСu₄, изредка РtСu₅ (табл. 1). Эти минералы образуют каймы по туламиниту, вплоть до полного его замещения. В заметном количестве в выборке (29%) присутствуют сплавы Os-Ir-Ru, в основном представленные гексагональными разностями. Кроме этого обнаружен сперрилит $PtAs_2$ (16%), а также весьма редкий минерал – потарит PdHg (4%). Потарит почти всегда находится в срастаниях с магнетитом, который образовался, вероятно, при гидротермальном изменении хромита. В PdHg наблюдается устойчивая примесь меди (табл. 1). В единичных зернах, а также в виде включений и кайм в Pt-Fe-Cu-сплавах зафиксирован широкий спектр минералов МПГ [10], многообразие и вза-

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 1 2004

имоотношения которых свидетельствуют о длительной эволюции и многоэтапности платинометального оруденения.

Хромитовые руды Калнинского массива по геохимии МПГ подразделяются на два типа. В первом типе преобладают тугоплавкие платиноиды (Os, Ir, Ru) с невысоким суммарным их со-

Рис. 3. Нормированные по хондриту C1 содержания МПГ в хромитовых рудах Калнинского массива.

7*

№ п.п.	Pt	Pd	Cu	Fe	Hg	Bi	As	S	Te	Сумма
1	0.00	35.49	0.79	0.00	62.78	0.00	0.00	0.00	0.00	99.06
2	1.06	35.87	1.13	0.13	62.36	0.06	0.12	0.00	0.00	100.73
3	0.00	36.51	1.92	0.00	61.38	0.14	0.00	0.00	0.00	99.95
4	0.00	37.13	0.96	0.21	62.54	0.09	0.00	0.00	0.06	101.00
5	0.00	35.93	2.06	0.00	61.07	0.07	0.00	0.00	0.00	99.13
6	0.00	35.76	0.55	0.00	62.90	Не опр.	Не опр.	0.00	Не опр.	99.21
7	0.27	36.15	0.23	0.10	62.51	»	»	0.03	»	99.30
8	0.00	36.93	2.03	0.00	61.75	»	»	Не опр.	»	101.16
№ п.п.	Os	Rh	Pt	Pd	Fe	Cu	Ni	As	Sb	Сумма
9	0.00	0.00	0.00	55.04	0.00	15.08	0.00	0.00	29.32	99.44
10	0.00	0.00	0.00	55.97	0.00	14.97	0.00	0.00	28.92	99.86
11	0.00	0.00	1.12	54.96	0.00	14.72	0.00	0.00	30.13	100.93
12	0.00	0.00	0.00	68.55	0.00	3.02	0.00	2.59	26.19	100.35
13	0.00	0.00	2.28	70.46	0.00	1.20	1.29	5.26	20.81	101.30
14	0.00	0.74	1.28	43.08	0.00	0.00	23.68	30.94	Не опр.	99.72
№ п.п.	Ru	Ir	Rh	Pt	Pd	Fe	Cu	Ni	As	Сумма
15	0.00	0.00	0.00	13.25	19.71	0.00	65.02	0.00	1.93	99.91
16	0.00	0.00	0.00	11.33	21.14	0.00	66.34	0.00	1.15	99.96
17	0.00	0.00	0.00	8.17	27.38	0.00	61.21	0.00	3.26	100.91
18	0.00	0.00	0.00	9.90	22.52	0.00	65.93	0.00	2.17	100.52
19	0.00	0.00	1.54	37.75	1.66	5.91	39.57	12.98	0.00	99.41
20	0.00	0.00	0.32	26.72	4.56	0.10	69.00	1.00	0.00	101.69
21	0.00	0.00	0.00	27.39	8.71	0.00	65.77	0.00	0.00	101.87
22	0.00	0.00	0.00	47.10	1.10	8.23	27.63	15.59	0.00	99.65
23	0.00	0.00	0.00	28.66	7.83	0.39	62.30	0.47	0.00	99.65

Таблица 1. Химический состав минералов Pd и Pt из хромитовых руд Калнинского массива и из аллювия водотоков бассейна р. Кална, мас. %

Примечание. Анализы выполнены в ОИГГиМ СО РАН на микроанализаторе "Camebax", аналитик Л.Н. Поспелова. 1–8 – потарит PdHg; 9–11 – неназванный Pd₂CuSb; 12, 13 – мертиит Pd₈(Sb,As)₃; 14 – маякит PdNiAs, 15–18 – Cu–Pd-сплавы; 19–23 – Cu–Pt-сплавы. Н.о. – элемент не определялся.

Таблица 2. Содержание (г/т) металлов платиновой группы в хромитовых рудах Калнинского массива

№ проб	Pt	Pd	Rh	Ru	Ir	Os	Σ ЭΠΓ
K-15/1*	1.950	0.860	0.058	0.110	0.057	0.039	3.074
Кл-28	0.930	0.110	0.078	0.295	0.230	0.104	1.747
9026*	0.032	0.009	0.019	0.475	0.023	0.055	0.613
9044*	0.025	0.010	0.009	0.262	0.057	0.041	0.404
Кл-31	0.120	0.015	0.016	0.381	0.066	0.062	0.660
K-14a*	0.009	0.008	0.003	0.184	0.062	0.089	0.355
K-15/2*	0.048	0.006	0.029	0.185	0.120	0.075	0.463

Примечание. Анализы выполнены в отделе аналитических исследований ФГУП "ЦНИГРИ". Звездочкой отмечены пробы Минусинской ГРЭ.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 1 2004

держанием, что характерно для альпинотипных гипербазитов, а в другом – установлена Pt–Pd–Rhспециализация с содержанием МПГ до 3 г/т (табл. 2, рис. 3). В протолочке из этой пробы обнаружены зерна размером до 0.2 мм сперрилита PtAs₂, который значительно преобладает, Pt-Fe-Cuсплавов и неназванного антимонида Pd и Cu. В сперрилите PtAs₂ из примесей всегда присутствует Rh (до 4.7 мас. %) и S (до 3.5 мас. %), между содержаниями которых наблюдается прямая корреляционная зависимость. В виде включений в сперрилите наиболее распространен мертиит Pd₈Sb₃, который часто локализован в составе многофазных включений, ассоциируя с ковеллином, борнитом, маякитом PdNiAs (табл. 1). Неназванный антимонид Pd и Cu найден в виде округлых зерен серого цвета. В отраженном свете минерал имеет кремовый оттенок, изотропный. Состав минерала отвечает формуле Pd₂CuSb (табл. 1). Неназванный Pd₂CuSb тесно ассоциирует со сперрилитом, образуя срастания, включения, каймы и практически всегда замещается палладистой медью состава PdCu₄, PdCu₃, а также предположительно оксидом Pd и Cu. Для PdCu₄ и PdCu₃ наблюдается существенная примесь Pt, содержание которой обратно коррелирует с содержанием Pd, а также устойчивая примесь As (табл. 1).

Таким образом, в пределах Калнинского массива установлена своеобразная ассоциация минералов МПГ, имеющая, как показывает материал по офиолитовым комплексам других районов мира [3], промышленное значение. Ее характерными особенностями являются: преобладание Pt–Fe–Cuсплавов, содержащих в качестве основной примеси Pd, многообразие минеральных фаз, многостадийность платинометального оруденения, с развитием на поздних гидротермальных этапах минералов Pd и Rh, редко встречающихся в альпинотипных гипербазитах. Этот тип Pt-хромитового оруденения может рассматриваться как новый для России важный источник металлов платиновой группы, актуальность которого возрастает в связи с известным дефицитом хрома в стране.

Работа выполнена при финансовой поддержке проекта СО РАН № 6.2.2 и программы "Ведущие научные школы" НШ–1573.2003.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Legendre O., Auge T. In: Metallogeny of basic and ultrabasic rocks. L., 1986. P. 361–372.
- Page N.J., Singer D.A., Moring B.C. et al. // Econ. Geol. 1986. V. 81. P. 1261–1271.
- 3. Bacuta G.C., Kay R.W., Gibbs A.K. et al. // J. Geochem. Explor. 1990. V. 37. P. 113–145.
- Corrivaux L., Laflamme J.H.G. // Can. Miner. 1990. V. 28. P. 579–595.
- Pedersen R.B., Johannesen G.M., Boyd R. // Econ. Geol. 1993. V. 88. P. 782–803.
- 6. *Prichard H.M., Ixer R.A., Lord R.A. et al.* // Can. Miner. 1994. V. 32. P. 271–294.
- Добрецов Н.Л., Пономарева Л.Г. // Геология и геофизика. 1976. № 2. С. 40–53.
- Кривенко А.П., Подлипский М.Ю. Всерос. совещ. "Современные проблемы формационного анализа, петрология и рудоносность магматических образований". Новосибирск: Изд-во СО РАН; филиал "Гео", 2003. С. 179–180.
- 9. Кривенко А.П., Толстых Н.Д., Нестеренко Г.В., Лазарева Е.В. // Геология и геофизика. 1994. № 1. С. 70–78.
- Подлипский М.Ю., Кривенко А.П. Всерос. совещ. "Современные проблемы формационного анализа, петрология и рудоносность магматических образований". Новосибирск: Изд-во СО РАН; филиал "Гео", 2003. С. 261–262.