= геохимия =

УДК 533.21/.24+541.123.3+549.231+549.261+549.263+546.97

КОЭФФИЦИЕНТЫ РАСПРЕДЕЛЕНИЯ РОДИЯ МЕЖДУ РАСПЛАВОМ И МОНОСУЛЬФИДНЫМ ТВЕРДЫМ РАСТВОРОМ ПРИ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИИ РАСПЛАВА В СИСТЕМЕ Fe-FeS-NiS-Ni

© 2004 г. Е. Ф. Синякова, В. И. Косяков, Б. Г. Ненашев

Представлено академиком Н.В. Соболевым 14.01.2004 г.

Поступило 30.01.2004 г.

Важная роль процессов кристаллизации расплавов при формировании медно-никелевых магматогенных месторождений типа Норильска и Седбери подчеркивается многими исследователями [1-3]. В частности, полагают, что фракционирование примесей элементов платиновой группы (ЭПГ) обусловлено их перераспределением в результате направленной кристаллизации сульфидного расплава [4]. Так как затвердевание расплава (L) начинается с выделения моносульфидного твердого раствора (mss), в настоящее время большое внимание уделяют измерению коэффициентов распределения (k) между этой фазой и расплавом [5–11]. Для большинства ЭПГ эти экспериментальные результаты удовлетворительно согласуются между собой, однако для родия такие данные противоречивы. Так, измеренные значения $k_{\rm Rh} = x_{\rm Rh}^S / x_{\rm Rh}^L$, где $x_{\rm Rh}^S$ и $x_{\rm Rh}^L$ – мол. %, в системе Си-Fe-Ni-S лежат в интервале от 0.2 до 21, т.е., по данным разных авторов, при кристаллизации этот элемент может концентрироваться как в расплаве, так и в твердом растворе [5–11]. Неопределенность данных о поведении родия явилась причиной, по которой авторы [12] отказались от модели кристаллизации, фракционной используемой большинством исследователей для объяснения минералогической зональности магматических сульфидных рудных месторождений [1, 2]. Однако в работе [4] на основе обобщения литературных данных показано, что величина k_{Rh} может быть как больше, так и меньше единицы, а для описания его зависимости от концентрации серы в расплаве $(x_{\rm S})$ использовано линейное приближение.

Институт минералогии и петрографии

Сибирского отделения Российской Академии наук, Новосибирск

им. акад. А.В. Николаева

Большой разброс данных свидетельствует о том, что коэффициент распределения родия зависит также от концентрации металлических компонентов. Поэтому для понимания особенностей поведения этой примеси необходимо в общем случае определить функциональную зависимость $k_{\rm Rh}(x_{\rm Cu}, x_{\rm Ni}, x_{\rm S})$ в поле первичной кристаллизации mss. Для решения этой задачи необходим большой экспериментальный материал. В настоящей работе мы ограничились исследованием фракционирования родия при кристаллизации железо-никелевого сульфидного расплава.

В работах [5–11] для измерения коэффициентов распределения проводили изотермический отжиг образцов и после закалки исследовали в них химический состав фаз. Для решения сформулированной выше задачи этим методом необходимо большое количество образцов. Более приемлемым способом получения данных о коэффициентах распределения компонентов является направленная кристаллизация, позволяющая измерять составы сосуществующих фаз вдоль некоторой траектории на поверхности ликвидуса [13]. Это дает возможность построить искомую зависимость по данным о распределении макро- и микрокомпонентов вдоль нескольких направленно закристаллизованных образцов.

В работе проведена направленная кристаллизация шести образцов, состав которых приведен в табл. 1. Методика приготовления образцов и проведения эксперимента описана в [14]. В отличие от этой работы в исходную смесь макрокомпонентов вводили примесь родия чистотой 99.99%. Направленную кристаллизацию образца осуществляли, опуская ампулу с гомогенным расплавом из горячей зоны в холодную со скоростью 2.3 · 10⁻⁸ м/с. Эти условия обеспечивали протекание процесса в квазиравновесном режиме [13]. Температура в нижнем конце кварцевого контейнера в начале и в конце кристаллизации приведена в табл. 1.

Слиток длиной ~70 мм и диаметром ~7 мм разрезали сечениями, перпендикулярными продольной

Институт неорганической химии

Сибирского отделения Российской Академии наук, Новосибирск

Образец		Исходный с	Температура, °С			
	S	Fe	Ni	Rh	T_1	T_2
Ι	45.000	42.475	12.475	0.050	1010	680
II	43.000	28.400	28.400	0.200	860	636
III	46.700	26.550	26.550	0.200	970	724
IV	47.000	17.900	34.900	0.200	962	727
V	48.000	9.900	41.900	0.200	967	633
VI	48.000	0	51.800	0.200	943	672

Таблица 1. Характеристика экспериментов

Примечание. T_1 и T_2 – начальная и конечная температура на нижнем конце ампулы.

оси, на ~20 частей, которые были использованы для приготовления аншлифов и их исследования методами микроскопического, микрорентгеноспектрального и рентгенофазового анализа. Начальная часть всех слитков была образована из моносульфидного твердого раствора (Fe_zNi_{1-z})S_{1±δ}. Второй участок отвечал кристаллизации хизлевудитового твердого раствора (Ni_zFe_{1-z})_{3±δ}S₂. В конце слитка находилась смесь фаз, образовавшаяся при закалке остаточного расплава.

Известно, что ширина области гомогенности mss по сере уменьшается при снижении температуры [15]. В результате обусловленного этим частичного распада твердого раствора в монокристаллической матрице mss присутствовали пластинчатые включения тенита (образец I) или пентландита (обр. II–IV). Для измерения химического состава mss, непосредственно выделяющегося из расплава, использовали расфокусированный зонд, позволяющий усреднять состав негомогенного образца [14]. Контроль материального баланса данных химического анализа выполнялся с точностью 2%.

Состав расплава в произвольный момент кристаллизации определяли по уравнениям материального баланса компонентов [13]. По этим дан-

Рис. 1. Изменение коэффициента распределения родия в процессе кристаллизации для образца V. Темные квадраты относятся к равновесию между mss и расплавом, светлые – между hzss и расплавом.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

ным были рассчитаны значения коэффициентов распределения родия и макрокомпонентов. Изменение k_{Rh} при направленной кристаллизации обр. V показано на рис. 1. В качестве координаты процесса использована доля закристаллизовавшегося расплава g. Функция $k_{\rm Rh}(g)$ претерпевает разрыв в точке фазовой реакции, связанной с окончанием кристаллизации mss и началом выделения hzss из расплава. Ниже мы будем обсуждать поведение родия только при кристаллизации mss. Результаты экспериментов даны в табл. 2. Там же приведены наши данные для образцов, отожженных при 900°С (для *x*_{Rh} = 0.0045). Из-за изменения состава расплава при кристаллизации каждый эксперимент позволял построить зависимость $k_{\rm Rh}(x_{\rm Ni}, x_{\rm S})$ вдоль пути кристаллизации, который отображался в виде кривой на поверхности ликвидуса в поле первичной кристаллизации mss. Такие зависимости для Ni и Fe для всех слитков описываются прямолинейными отрезками (рис. 2). Это обстоятельство позволяет, по нашему мнению, экс-

Рис. 2. Зависимости $k_{\rm Rh}$ от содержания никеля (а) и железа (б) в расплаве вдоль путей кристаллизации образцов III (светлые треугольники), IV (темные треугольники), V (светлые квадраты), VI (темные квадраты).

СИНЯКОВА и др.

g	Состав mss, ат. %				Коэффициенты распределения элементов между mss и расплавом							
	S	Fe	Ni	Rh	S	Fe	Ni	Rh				
Образец І												
0.13	49.95	48.55	1.50	H.o.	1.129	1.171	0.106	< 0.01				
0.22	49.66	48.66	1.68	H.o.	1.138	1.196	0.108	< 0.01				
0.31	49.60	48.48	1.82	H.o.	1.155	1.220	0.105	< 0.01				
0.43	49.35	48.75	1.90	H.o.	1.186	1.288	0.092	< 0.01				
0.48	49.78	48.36	1.86	H.o.	1.218	1.308	0.084	< 0.01				
Образец И												
0.03	50.26	43.42	6.30	0.02	1.176	1.558	0.217	0.196				
0.07	50.23	42.86	6.88	0.03	1.182	1.571	0.230	0.286				
0.14	50.36	42.84	6.75	0.05	1.206	1.644	0.211	0.454				
Образец Ш												
0.02	50.28	36.01	13.53	0.18	1.078	1.367	0.504	0.898				
0.05	50.28	36.02	13.49	0.21	1.082	1.385	0.494	1.044				
0.12	50.99	35.62	13.18	0.21	1.105	1.407	0.465	1.047				
0.19	51.08	35.41	13.31	0.20	1.117	1.450	0.449	0.998				
0.26	50.71	35.41	13.70	0.18	1.121	1.516	0.439	0.889				
0.37	51.04	34.88	13.90	0.18	1.154	1.639	0.405	0.872				
			Ċ	бразец Г	V	I		I				
0.16	50.98	23.89	24.75	0.38	1.102	1.451	0.675	2.260				
0.27	51.08	23.22	25.41	0.29	1.122	1.509	0.661	1.921				
0.39	51.06	22.42	26.32	0.20	1.149	1.591	0.646	1.471				
0.44	51.02	22.12	26.68	0.18	1.164	1.664	0.634	1.301				
			· (Ббразец V	7	ı		ı				
0.04	49.99	13.19	36.15	0.67	1.043	1.378	0.861	3.701				
0.10	49.98	13.08	36.38	0.56	1.041	1.405	0.861	3.561				
0.20	50.08	12.82	36.67	0.43	1.054	1.441	0.853	3.539				
0.33	50.19	12.38	37.18	0.25	1.069	1.514	0.842	2.547				
0.49	50.16	11.92	37.81	0.11	1.089	1.685	0.821	1.204				
0.57	50.26	11.20	38.46	0.08	1.111	1.772	0.810	0.890				
			C)бразец V	Ί							
0.14	50.59	0	48.96	0.45	1.049	—	0.956	2.833				
0.29	50.32	0	49.43	0.25	1.057	_	0.955	1.926				
0.43	50.79	0	49.10	0.11	1.086	—	0.937	0.838				
0.53	50.0	0	49.89	0.03	1.088	—	0.942	0.206				
№ обр.			Нa	ши данны	ы е, отжиг 90	00°C						
48-6	50.22	23.34	25.84	0.60	1.09	1.46	0.69	2.13				
48-13	49.85	37.03	12.63	0.49	1.14	1.85	0.35	1.38				
48-18	49.84	42.24	7.78	0.14	1.14	1.61	0.26	0.40				
48-23	49.69	48.15	2.13	0.03	1.18	1.27	0.11	0.03				
ХП-4	49.77	45.92	4.16	0.15	1.16	1.52	0.16	0.21				
ХП-5	50.07	44.40	5.34	0.19	1.15	1.57	0.20	0.24				
ХП-6	50.23	43.19	6.39	0.19	1.13	1.63	0.22	0.47				
A-78	50.63	38.25	10.97	0.15	1.13	1.62	0.35	0.68				
A-80	50.28	41.81	7.82	0.09	1.13	1.65	0.26	0.47				
A-82	50.11	45.89	3.98	0.02	1.15	1.41	0.23	0.17				
A-86	50.26	47.17	2.55	0.02	1.11	1.40	0.11	0.06				

Таблица 2. Химический состав mss и рассчитанные коэффициенты распределения элементов между mss и расплавом

Примечание. Н.о. – не обнаружено, т.е. содержание родия в mss ниже предела обнаружения микрорентгеноспектральным анализом (<0.02 ат. %).

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

Рис. 3. Поле первичной кристаллизации mss в системе Fe–Ni–S с изолиниями коэффициентов распределения Rh. Точки I–VI соответствуют составам исходных образцов, AB – котектическая линия L \rightarrow mss + tn(γ -Fe, Ni твердый раствор), BCDEFG – моновариантная линия L + mss \rightarrow hzss. Линия HKLMNO ограничивает часть поверхности ликвидуса, в которой выполнена экстраполяция экспериментальных данных для построения изолиний $k_{\rm Rh}$. Линии IB, IIC, IIID, IVE, VF, VIG показывают изменение составов расплавов при кристаллизации соответствующих образцов. Линии IH, IIK, IIIL, IVM, VN, VIO – экстраполированные участки траекторий изменения состава расплава при направленной кристаллизации. Цифрами обозначены изолинии $k_{\rm Rh}$.

траполировать результаты экспериментов в область больших концентраций серы (до x_s ~ 0.52).

Данные табл. 2 и работ [5, 9, 10] были использованы для аппроксимации зависимости $k_{Rh}(x_{Ni}, x_S)$ с применением стандартной программы Grapher Microsoft. Расчетные изолинии k_{Rh} также показаны на рисунке. Эта функция отражает изменение коэффициента распределения родия от состава расплава вдоль поверхности ликвидуса в области первичной кристаллизации mss.

Полученные результаты показывают сложный характер зависимости $k_{\rm Rh}$ от состава расплава. Видно, что родий может концентрироваться при кристаллизации как в расплаве ($k_{\rm Rh} < 1$), так и в mss ($k_{\rm Rh} > 1$). Граница между этими участками, отвечающая $k_{\rm Rh} = 1$, практически совпадает с прямолинейной траекторией изменения состава расплава для обр. III. В работе [14] показано, что разрез фазовой диаграммы вдоль этой траектории является квазибинарным, т.е. конноды лежат в плоскости этого разреза. Левее этой границы находится область поверхности ликвидуса, в которой родий концентрируется в расплаве, причем значение $k_{\rm Rh}$ резко падает по мере удаления от линии $k_{\rm Rh} = 1$. В области, лежащей правее этой линии, родий концентрируется в mss за исключением небольшого участка, примыкающего к Ni-S-границе концентрационного треугольника вблизи точки трехфазного равновесия между расплавом, NiS_{1-x} и $Ni_{3\pm x}S_2$. Видно, что k_{Rh} растет при увеличении содержания серы в расплаве для заданной величины Ni/(Ni + Fe), что согласуется с выводами работы [4].

Большинство работ, посвященных изучению фракционирования малых количеств ЭПГ между моносульфидным твердым раствором и расплавом, относится к бедной никелем и медью части системы Fe–Ni–Cu–S. Можно предположить, что небольшие добавки меди к сульфидному железо-никелевому расплаву не должны сильно сказываться на величине $k_{\rm Rh}$. Действительно, некоторое сходство в поведении меди и никеля в сульфидных системах делает допустимым объединить эти элементы по схеме Fe-(Ni + Cu)-S и, пересчитав состав четверного расплава, провести сравнение данных по $k_{\rm Rh}$ в системах Fe–Ni–S и Fe–Ni–Cu–S. Для этого мы нанесли 30 точек из работ [6-8, 11] на показанную на рис. З карту изолиний $k_{\rm Rh}$. Почти все точки, в которых $k_{\rm Rh} > 1$, попали в область, расположенную правее квазибинарного разреза, а точки с $k_{\rm Rh}$ < 1 легли левее него. Исключение составили данные работы [11]. В ней измерены $k_{\rm Rh}$ для образцов, в которых содержание меди существенно выше, чем никеля. Несогласованность с результатами настоящей работы наблюдается для четырех образцов из шести.

Таким образом, результаты настоящей работы показали сложный характер поведения родия при кристаллизации mss из сульфидного железо-никелевого расплава. В области фазовой диаграммы вблизи квазибинарного разреза небольшое изменение состава расплава приводит к существенному изменению характера кристаллизационного фракционирования родия. Подобное явление резкой зависимости $k_{\rm Rh}$ от состава расплава в некоторой области фазовой диаграммы должно наблюдаться, по-видимому, и в системе Cu-Fe-Ni-S. Отметим, что в настоящей работе более детально изучена область составов, лежащая на рис. 3 правее квазибинарного разреза. Для надежного описания поведения родия в остальной части поля первичной кристаллизации mss необходимы дополнительные исследования.

Работа выполнена при финансовой поддержке проекта РФФИ (грант 01–05–64706).

СПИСОК ЛИТЕРАТУРЫ

- 1. Генкин А.Д., Дистлер В.В., Гладышев Г.Д. и др. Сульфидные медно-никелевые руды Норильских месторождений. М.: Наука, 1981. 234 с.
- 2. Налдретт А.Дж. В кн.: Генезис рудных месторождений. М.: Мир, 1984. Т. 2. С. 253–343.
- Naldrett A.J., Ebel D.S., Asif M. et al. // Europ. J. Miner. 1997. V. 9. P. 365–377.
- 4. *Barnes S.-J., Makovicky E., Makovicky M. et al.* // Can. J. Earth Sci. 1997. V. 34. P. 366–374.
- Fleet M.E., Stone W.E. // Geochim. et cosmochim. acta. 1991. V. 55. № 7. P. 245–253.
- Fleet M.E., Chryssoulis S.L., Stone W.E., Weisener C.G. // Contribs Mineral. and Petrol. 1993. V. 115. P. 36–44.
- Barnes S.-J., Makovicky E., Makovicky M. et al. // Edinburgh Miner. Mag. 1994. V. 58A. P. 51–52.

- 8. *Li C., Barnes S.-J., Makovicky E. et al.* // Geochim. et cosmochim. acta. 1996. V. 60. № 7. P. 1231–1238.
- 9. *Ebel D.S., Campbell A.J. //* Geol. Soc. Amer. Abstr. With Program. 1998. V. 30A. P. 318.
- Синякова Е.Ф., Косяков В.И., Колонин Г.Р. // Геология и геофизика. 2001. Т. 42. № 9. С. 1354–1369.
- 11. Ballhaus C., Tredoux M., Spaeth A. // J. Petrol. 2001. V. 42. № 10. P. 1911–1926.
- 12. *Good D.J., Crocket J.H.* // Econ. Geol. 1994. V. 89. P. 131–149.
- Косяков В.И. // Геология и геофизика. 1998. Т. 39. № 9. С. 1242–1253.
- 14. Косяков В.И., Синякова Е.Ф., Ненашев Б.Г. // ДАН. 2001. Т. 381. № 6. С. 814–817.
- 15. Naldrett A.J., Craig J.R., Kullerud G. // Econ. Geol. 1967. V. 62. № 6. P. 826–847.