УДК 548.736.6

= ГЕОХИМИЯ =

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КАПУСТИНИТА Na_{5.5}Mn_{0.25}Zr[Si₆O₁₆(OH)₂] – НОВОГО МИНЕРАЛА ГРУППЫ ЛОВОЗЕРИТА

© 2004 г. Н. А. Ямнова, Ю. К. Егоров-Тисменко, И. В. Пеков, Л. В. Щеголькова

Представлено академиком В.С. Урусовым 27.01.2004 г.

Поступило 02.02.2004 г.

Открытый более шестидесяти лет назад в Ловозерском щелочном массиве на Кольском полуострове Na,Zr-силикат ловозерит стал родоначальником большой группы структурно родственных минералов. К настоящему времени изучены кристаллические структуры более полутора десятков природных и синтетических ловозеритоподобных соединений с общей кристаллохимической формулой $A_3B_3C_2MSi_6O_9O_{9-x}(OH)_x$ и видообразующими компонентами: M = Zr, Ti, Fe³⁺; C = Ca, Mn, \Box ; A, $B = \text{Na}, \square; 0 \le x \le 6$ [1–6]. Основу структурного типа ловозерита составляют шестичленные кремнекислородные кольца, связанные изолированными М- и С-октаэдрами в каркас, пустоты которого заполнены преимущественно крупными катионами Na и в некоторых случаях молекулами H₂O. В качестве основной строительной единицы в структурах всех ловозеритоподобных соединений можно выделить псевдокубическую "протоячейку" (блок) с параметром $a \approx 7.5$ Å и общей формулой $A_3B_3C_2MSi_6O_{18}$, в которой катионы занимают строго определенные позиции (рис. 1). Разнообразие минеральных видов в группе ловозерита обусловлено различием как способов сочетания отдельных блоков между собой, так и заполнением катионных позиций внутри блока.

Новый минерал ловозеритовой группы капустинит¹ [7] обнаружен в ультращелочных пегматитах Ловозерского массива. В пегматитовом теле "Палитра" капустинит образует изометричные кристаллы и зерна до 4 см в поперечнике, прозрачные или полупрозрачные, густого темновишневого цвета, со стеклянным блеском, без спайности. Эмпирическая формула, рассчитанная по данным электронно-зондового микроанализа:

 $Na_{5.38}Y_{0.01}Ce_{0.01}Nd_{0.01}U_{0.01}Ca_{0.02}Mn_{0.23}Fe_{0.03}Ti_{0.05}Zr_{0.91}Si_6O_{15.91}(OH)_{2.12},$

упрощенная – $Na_{5.5}Mn_{0.25}ZrSi_6O_{16}(OH)_2$ (Z = 2).

Экспериментальный материал для рентгеноструктурного исследования капустинита получен на автоматическом монокристальном дифрактометре $P\bar{1}$ "SYNTEX". Основные кристаллографические данные, характеристики эксперимента и уточнения структуры приведены в табл. 1. Закономерные погасания отражений с индексами *hkl*, не удовлетворяющих условию h + k = 2n, указали на базоцентрированную решетку Бравэ и соответственно на три возможные пространственные группы (пр. гр.): C2/m, Cm и C2. Все последующие расчеты выполнены с использованием комплекса программ AREN [8]. Поскольку состав, симметрия и параметры элементарных ячеек капустинита и недавно открытого авторами настоящей работы представителя ловозеритовой группы минерала литвинскита (Na, H₂O, □)₃ (□, Na, Mn²⁺)Zr[Si₆O₁₂(OH)₃(OH, O)₃] (a = 10.589(7), b == 10.217(8), c = 7.355(5) Å, $\beta = 92.91(5)^{\circ}$, V == 794.6(9) Å³, Z = 2, пр. гр. *Ст*) [4, 9] оказались близки, при решении структуры капустинита на первом этапе были использованы координаты базисных атомов литвинскита из [4]. Модель структуры уточнена методом наименьших квадратов (МНК) в рамках пр. гр. Ст. Анализ полученной модели капустинита показал, что расположение всех атомов, включая и катионы С-позиций, подчиняется центру инверсии, в отличие от литвинскита, в структуре которого С-позиция является единственной, нарушающей центросимметричность структуры. Дальнейшее уточнение модели проводилось в рамках пр. гр. С2/т. Распределение катионов по независимым кристаллографическим позициям установлено уточнением факторов занятости дан-

Московский государственный университет им. М.В. Ломоносова

 $^{^1 {\}rm Утвержден}$ КНМНМ ММА 2 июня 2003 г.

Рис. 1. Схема расположения катионов в псевдокубической "протоячейке": *М* – в вершинах ячейки, *A* – центрах ребер, *B* – граней, *C* и Si – центрах соответственно двух (расположенных на одной из осей 3-го порядка, сохраняющейся в "протоячейке") и шести октантов.

ных позиций при фиксированных В_{изо} с последующим подбором смешанных кривых атомного рассеяния (*f*-кривых) и учетом данных химического анализа, величин эффективных ионных радиусов катионов и тепловых поправок атомов, а также средних значений расстояний катион-кислород. По аналогии с распределением катионов в структуре литвинскита было предположено, что М-позиция в структуре капустинита заполнена практически целиком атомами Zr, а C-позиция – атомами Мп (при условии ~12% их содержания). После уточнения тепловых параметров ($B_{\mu_{30}}$) данных позиций оказалось, что значение В_{изо} для М-позиции завышено (~3 Å²), а для С-позиции – аномально низко (~0.03 Å²). Величины $B_{\mu_{30}}$ нормализовались после подбора смешанных *f*-кривых, отвечающих статистическому заполнению M-позиции (~70%) катионами Zr с небольшой примесью Ti и C-позиции (~25%) оставшейся частью катионов Zr и Mn. Кроме того, установлено смешанное заполнение катионами Na с небольшим количеством REE двух независимых A-позиций (при уточнении использовалась "усредненная" f-кривая Nd) и статистическое – катионами Na (~ на 80%) двух B-позиций, вакантных в структуре литвинскита.

Минимальные заключительные значения факторов достоверности после уточнения модели МНК в изотропном ($R_{hkl} = 0.110$) и анизотропном ($R_{hkl} = 0.075$) приближениях соответствуют приведенным в табл. 2 распределению катионов и развернутой кристаллохимической формуле:

$$(Na_{0.97}REE_{0.03})_3(Na_{0.80}\Box_{0.20})_3(Zr_{0.13}Mn_{0.12}\Box_{0.75})_2(Zr_{0.65}Ti_{0.05}\Box_{0.30})Si_6O_6[O_4(O,OH)_2][O_2(O_{0.75}OH_{0.25})_4]_2(O_{0.75}OH_{0.25})_4]_2(O_{0.75}OH_{0.25})_4]_2(O_{0.75}OH_{0.25})_4(O_{0.75}OH_{0.25})$$

 $(Z = 2, \rho_{выч} = 2.81 г/см^3)$. Четырьмя круглыми скобками в формуле последовательно обозначено содержимое позиций *A*, *B*, *C* и *M*, квадратными – анионы кислорода, частично замещенные на (OH)группы и связанные с *M*- и *C*-октаэдрами (первая скобка) и *C*-октаэдрами (вторая скобка). Приведенная формула находится в хорошем соответствии с результатами определения химического состава минерала. Разделение анионной части на O^{2–} и (OH)[–] проведено на основе расчета локального баланса валентных усилий с учетом расстояний катион-анион и статистического заполнения катионных позиций по [10].

Основой структур представителей группы ловозерита (кроме петарасита) является смешанный каркас $\{MSi_6O_6(O_{6-x}OH_x)(O_{6-y}OH_y)\}$ (где $0 \le y \le 6, x \le 0.5$), состоящий из гофрированных шестичленных колец ловозеритового типа, образованных Si-тетраэдрами, и изолированных *M*-октаэдров (рис. 2a). Шесть атомов кислорода из восемнадцати каждого кольца являются мостиковыми Si-O-Si, еще шесть $(O_{6-x}OH_x)$ связаны с *M*-и *C*-октаэдрами, а шесть оставшихся "висячих"

капустинита	
Таблица 1. Основные эксперим	иентальные данные для

Характеристика	Значение		
Симметрия	Моноклинная		
Пространственная группа	C2/m		
Параметры элементарной	a = 10.69(1) Å		
хченки	b = 10.31(1) Å		
	c = 7.407(9) Å		
	$\beta = 92.4(1)^{\circ}$		
	$V = 816(2) \text{ Å}^3$		
Число формульных единиц (Z)	2		
$ ho_{\rm выч},$ г/см ³	2.81		
μ, мм ⁻¹	1.67		
Линейные размеры кристалла	$0.150 \times 0.200 \times 0.200$ мм		
Автоматический монокрис- тальный дифрактометр	SYNTEX $P\bar{1}$		
Тип излучения	MoK_{α}		
Монохроматор	Графит		
Метод сканирования	2θ:θ		
Минимальное, максимальное $\sin\theta/\lambda$	0.067, 0.993		
Скорость сканирования	4–24 град/мин		
Интервалы сканирования	$0 \le h \le 13$		
	$-20 \le k \le 17$		
	$-14 \le l \le 13$		
Количество зарегистрирован- ных отражений с $l > 1.96 \sigma(l)$	1253		
Количество независимых отражений	839		
Комплекс вычислительных программ	AREN		
Фактор достоверности R_{hkl} :			
изотропное приближение	0.110		
анизотропное приближение	0.075		

 $(O_{6-y}OH_y)$ – только с *C*-октаэдрами. При этом отношение O/OH зависит от валентности *M*- и *C*-катионов и степени заполнения сочлененных между собой по общей грани *M*- и *C*-октаэдров. В полостях каркаса зафиксированы четыре типа позиций крупных катионов: *A*(1), *A*(2), *B*(1) и *B*(2).

Отличие капустинита структур Na_{5.5}Mn_{0.25}ZrSi₆O₁₆(OH)₂ и литвинскита Na₂(□, Na, $Mn)ZrSi_6O_{12}(OH,O)_6$ заключается в заполнении катионных позиций: М-октаэдры (пределы расстояний *М*–О 2.05–2.10 Å, среднее 2.08 Å) в капустините заселены лишь на 70%, а в литвинските – полностью. В центросимметричной структуре капустинита (пр. гр. C2/m) две связанные центром инверсии С-позиции (пределы расстояний С-О 2.25–2.58 Å, среднее 2.08 Å) принадлежат одной правильной системе точек (4i) и заселены (~ на 25%) атомами Zr и Mn (Zr \geq Mn), а в ацентричной структуре литвинскита эти же С-позиции относятся к разным правильным системам точек, и заселенность лишь одной из них (~ на 35%) Na и Mn при вакантности другой объясняет отсутствие центра инверсии и, следовательно, понижение симметрии по сравнению с капустинитом до пр. гр. Ст (рис. 2б). В структуре капустинита наблюдается почти полное заселение внекаркасных позиций: суммарное содержание Na и примесных REE составляет 5.4 атомных единицы из 6 возможных: А-позиции заняты целиком, В-позиции – заполнены статистически ~ на 80% атомами Na и на 20% вакантны. Это второе отличие капустинита от литвинскита, у которого позиция А(1) заселена Na на 80%, A(2) занята Na и H₂O, а позиции B вакантны (рис. 2б).

В капустините впервые для ловозеритоподобных соединений, не только природных, но и синтетических, зафиксирована дефектность каркаса, выраженная в существенной (30%) вакантности М-октаэдра и сопровождающаяся вхождением высоковалентного Zr⁴⁺ в сравнительно крупный С-октаэдр вместе с Мп²⁺. Такое распределение катионов, скорее всего, связано с высокотемпературными (по нашим оценкам, не ниже 400°С, исходя из минерального парагенезиса) условиями кристаллизации капустинита непосредственно из пегматитового расплава, в отличие от других членов группы ловозерита, чаще всего имеющих вторичную природу и более низкие температуры образования. Структурная неупорядоченность капустинита нашла отражение и в наименьшей среди всех членов группы ловозерита величине двупреломления света, а также наихудшей разрешенности полос в ИК-спектре [7].

В отличие от других высоконатриевых членов группы ловозерита – цирсиналита $Na_6CaZrSi_6O_{18}$ и казаковита $Na_6MnTiSi_6O_{18}$, легко гидролизующихся во влажном воздухе, капустинит устойчив в атмосферных условиях и даже, как показывают

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

(б)

Рис. 2. Проекции структур капустинита (а) и литвинскита (б) на плоскость *ху*. Малыми черными кружками обозначены анионы кислорода, частично замещенные на ОН-группы.

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

Атом	Кратность позиции	Заполнение позиции	x/a	y/b	z/c	$B_{_{ m ЭKB}}, { m \AA}^2$
<i>A</i> (1)	2	0.96Na + 0.04Nd	0	0	0.5	2.8(2)
A(2)	4	0.97Na + 0.03Nd	0.25	0.25	0	2.3(2)
<i>B</i> (1)	2	0.75Na	0	0.5	0	2.4(3)
<i>B</i> (2)	4	0.82Na	0.25	0.25	0.5	2.5(2)
С	4	0.13Zr + 0.12Mn	0.2508(6)	0	0.7471(8)	1.1(1)
М	2	0.65Zr + 0.05Ti	0	0	0	1.10(6)
Si (1)	8	Si	0.4911(3)	0.2259(3)	0.2829(3)	1.30(5)
Si(2)	4	Si	0.2853(4)	0	0.2664(6)	1.32(7)
O(1)	4	O, OH	0.814(2)	0	0.921(2)	2.9(2)
O(2)	4	0	0.785(2)	0	0.557(2)	2.3(2)
O(3)	8	0	0.624(1)	0.1234(9)	0.756(2)	2.7(2)
O(4)	8	0	0.052(1)	0.139(1)	0.808(1)	2.5(2)
O(5)	8	O, OH	0.616(1)	0.168(2)	0.213(2)	3.1(2)
O(6)	4	0	0	0.249(1)	0.5	2.6(2)

Таблица 2. Координаты базисных атомов и индивидуальные тепловые параметры в структуре капустинита

наши опыты [7], в воде при комнатной температуре. Эта стабильность имеет кристаллохимическое объяснение – вхождение гидроксильных групп (OH)⁻ вместо ионов О²⁻ в "висячие" вершины Si-тетраэдров разорванного каркаса. В работе [3] объясняется неустойчивость ловозеритоподобной структуры вхождением в данные позиции только ионов кислорода с образованием на них избытка отрицательного заряда. Стабильность на воздухе структуры капустинита, содержащего практически такое же количество Na, как и неустойчивые цирсиналит и казаковит, связана с тем, что два иона кислорода (в расчете на Si₆) замещены ОН-группами. Н.М. Черницова с соавторами [1] на основе расчета локального баланса валентностей показали, что минимальное количество протонов, необходимое для стабилизации ловозеритоподобной структуры, должно равняться именно двум на формулу, что и подтверждается отношением О : OH ~ ~ 16:2 в структуре капустинита.

Отметим, что дополнительную устойчивость капустиниту может придавать альтернативное заполнение катионами M- и C-октаэдров (C-октаэдры заселены на ~25%, а степень вакантности имеющих с ними общую грань M-октаэдров ~30%). Это снимает кулоновское отталкивание между близко расположенными M- и C-катионами, неизбежное в кристаллах, где при полностью занятых M-позициях наблюдается и частичное заполнение C-октаэдров.

В работе [7] капустинит рассматривается в качестве протоминерала, за счет которого в гидротермальных условиях формируется литвинскит в виде гомоосевых псевдоморфоз, подобно тому, как цирсиналит выступает протофазой для ловозерита $Na_2CaZrSi_6O_{14}(OH)_4 \cdot H_2O$, а казаковит – для тисиналита Na₃MnTiSi₆O₁₅(OH)₃. При переходе капустинита в литвинскит осуществляется не только частичный вынос Na, как при изменении цирсиналита и казаковита, но, видимо, и упорядочение M- и C-катионов: Zr концентрируется в M, а Mn – в более крупных С-октаэдрах (причем лишь в одном из них). Механизм процесса трансформации капустинита Na_{5.5}Mn_{0.25}ZrSi₆O₁₆(OH)₂ в литвинскит $Na_{2.6}Mn_{0.2}ZrSi_6O_{13}(OH)_5 \cdot 0.4H_2O$, согласно нашим структурным данным, таков:

Позиция

$$A(1)$$
 $A(2)$
 $B(1)$
 $B(2)$
 C'
 C''
 M
 $T_6(O, OH)_{18}$

 Капустинит
 Na
 Na2
 Na0.8 $\Box_{0.2}$
 Na1.6 $\Box_{0.4}$
 $\Box_{0.7}$ Zr_{0.15}Mn_{0.15}
 $\Box_{0.7}$ Zr_{0.15}Mn_{0.15}
 Zr_{0.7}\Box_{0.3}
 Si₆O₁₆(OH)₂

 Литвинскит
 Na0.8 $\Box_{0.2}$
 Na1.6(H₂O)_{0.4}
 \Box
 \Box_2
 $\Box_{0.6}$ Na0.2Mn_{0.2}
 \Box
 Zr
 Si₆O₁₃(OH)₅

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

ДОКЛАДЫ АКАДЕМИИ НАУК том 396 № 5 2004

Из этой схемы видно, что *B*-катионы выщелачиваются полностью, а *A*-катионы – лишь частично, как и при переходах цирсиналита в ловозерит [5] и казаковита в тисиналит [6].

СПИСОК ЛИТЕРАТУРЫ

- 1. Черницова Н.М., Пудовкина З.В., Воронков А.А. и др. // Зап. ВМО. 1975. № 1. С. 18–27.
- 2. Тамазян Р.А., Малиновский Ю.А. // Кристаллография. 1990. Т. 35. № 2. С. 398–405.
- 3. Пятенко Ю.А., Курова Т.А., Черницова Н.М. и др. Ниобий, тантал и цирконий в минералах. М.: ИМГРЭ, 1999. 213 с.

- Ямнова Н.А., Егоров-Тисменко Ю.К., Пеков И.В., Екименкова И.А. // Кристаллография. 2001. Т. 46. № 2. С. 230–233.
- 5. Ямнова Н.А., Егоров-Тисменко Ю.К., Пеков И.В. // Кристаллография. 2001. Т. 46. № 6. С. 1019–1023.
- Ямнова Н.А., Егоров-Тисменко Ю.К., Пеков И.В., Щеголькова Л.В. // Кристаллография. 2003. Т. 48. № 4. С. 602–607.
- 7. Пеков И.В., Чуканов Н.В., Ямнова Н.А. и др. // Зап. ВМО. 2003. № 6. С. 1–14.
- 8. *Андрианов В.И.* // Кристаллография. 1989. Т. 34. № 6. С. 1387–1391.
- 9. Пеков И.В., Екименкова И.А., Чуканов Н.В. и др. // Зап. ВМО. 2000. № 1. С. 45–53.
- Brese N.E., O'Keeffe M. // Acta crystallogr. B. 1991. V. 47. P. 192–197.