— ГЕОХИМИЯ =

УДК 550.4

Аr–Ar-ИЗОТОПНЫЙ ВОЗРАСТ ЛАМПРОИТОВЫХ ДАЕК ЧУЙСКОГО КОМПЛЕКСА, ГОРНЫЙ АЛТАЙ

© 2004 г. В. В. Врублевский, И. Ф. Гертнер, член-корреспондент РАН Г. В. Поляков, А. Э. Изох, В. И. Крупчатников, А. В. Травин, Н. Н. Войтенко

Поступило 06.07.2004 г.

Продукты пермско-триасового внутриплитного рифтогенного магматизма имеют широкое распространение на территории Евразии [1]. В азиатской части континента к ним, в частности, относятся траппы Сибирского кратона, Западно-Сибирской плиты и сопряженного с ней Кузнецкого прогиба, провинции Мейшань на платформе Янцзы. Как показали проведенные нами геохронологические исследования, в пределах складчатых структур Горного Алтая одним из проявлений этого магматизма следует считать формирование чуйского субвулканического комплекса калиевых щелочных базальтоидов, в составе которого преобладают дайки слюдяных лампрофиров (минетт) [2, 3]. Их сравнительно крупные скопления образуют несколько обособленных ареалов в юго-восточной части региона (рис. 1). Несмотря на петрографическое сходство и пространственную сопряженность дайковых тел, полученные ранее К-Аг-изотопные датировки пород варьируют в широком временном диапазоне (150-290 млн. лет) и не позволяют однозначно судить о возрастном рубеже становления комплекса. В пограничной зоне с Монгольским Алтаем на водоразделе рек Саржематы и Баян-Чаган, а также в верховьях р. Жумалы (саржематинский и жумалинский ареалы соответственно) наряду с лампрофирами нами обнаружено несколько даек ультракалиевых основных пород, которые по своим минералого-геохимическим особенностям сопоставимы с флогопитовыми лампроитами [4]. Приведенные в сообщении результаты Ar-Arизотопного датирования свидетельствуют об их внедрении в раннем-среднем триасе.

Локализация выявленных лампроитовых даек контролируется крупными разломами на южном продолжении Чаган-Бургазинской субмеридиональ-

Томский государственный университет Объединенный институт геологии, геофизики

Российской Академии наук, Новосибирск

ной тектонической зоны, участвующей в строении Алтае-Монгольского террейна. В стратиграфическом разрезе последнего совмещены флишоидные толщи горно-алтайской серии кембрийско-ордовикского возраста, силурийские карбонатно-терригенные отложения, а также девонские вулканогенные образования с калиевой геохимической спецификой (трахиандезиты, кварцевые латиты, калиевые дациты, трахириолиты и их туфы). В жумалинском ареале с лампроитами пространственно сопряжены девонские гипабиссальные интрузии калиевых гранодиоритов, кварцевых сиенитов и лейкогранитов, а также гранитоиды мезозойского(?) возраста. Размеры лампроитовых тел не превышают 5-7 м по мощности и первые десятки метров по протяженности.

Рис. 1. Схема областей распространения пород чуйского комплекса [4]. *1* – границы тектонических блоков; 2 – граница зоны распространения пород чуйского комплекса; *3* – ареалы преимущественного развития лампрофиров: курайский (1), южно-чуйский (2), саржематинский (3), ташантинский (4), жумалинский (5), юстыдский (6), бугузинский (7).

и минералогии Сибирского отделения

ФГУ "Территориальный фонд информации МПР России по Республике Алтай", Горно-Алтайск

Компонент	1 (Kp-6)	2 (Kp-7)	3 (Kp-13)	4 (Kp-21)	5 (K-X)	6 (K 1/2)	7 (K-3)
SiO ₂	46.87	48.28	53.68	50.61	48.23	49.41	49.75
TiO ₂	1.33	1.74	1.36	1.37	1.17	1.31	1.32
Al_2O_3	9.32	9.41	10.50	11.07	9.82	9.52	9.85
Fe ₂ O ₃	7.02	5.95	6.43	7.99	8.93	8.91	9.03
MnO	0.12	0.10	0.08	0.16	0.16	0.16	0.15
MgO	11.02	7.63	8.24	8.88	15.10	12.80	12.31
CaO	4.51	7.09	4.80	6.46	5.30	6.69	6.36
Na ₂ O	0.55	0.30	0.30	1.54	0.75	0.30	0.76
K ₂ O	7.44	9.13	4.79	7.05	5.73	6.49	6.57
P_2O_5	1.44	2.06	1.39	1.39	1.38	1.77	1.56
LOI	9.98	7.46	7.54	3.22	3.17	2.12	1.95
Сумма	99.60	99.15	99.11	99.74	99.74	99.48	99.61
Cs	30	12	10	18	55	27	27
Rb	467	357	219	331	335	320	314
Ba	1996	2900	1100	2100	4817	6187	5912
Sr	1099	1610	426	970	576	778	744
Nb	13.7	8.3	6	1.4	19.6	20	18
Та	0.62	1.5	1.05	0.83	1	1.04	0.84
Zr	401	824	514	426	390	359	337
Hf	9	29	16	12	10	9	8
Y	29	36	26	42	32	34	33
Th	89	64	66	94	44	54	45
U	8.7	4.8	5.2	6.5	9.4	7.5	6.3
Σ tr	571	762	459	521	428	518	467

Таблица 1. Представительные химические составы лампроитов чуйского комплекса

Примечание. 1–4 – составы пород саржематинского, 5–7 – жумалинского дайковых ареалов, в скобках – № обр. Содержание оксидов (мас. %) и редких элементов (г/т) определены в Аналитическом центре ОИГГМ СО РАН, Институте геохимии СО РАН (Иркутск) Н.М. Глуховой, Ю.Л. Колмогоровым, В.А. Ковалевой методами РФА, ИННА, ICP-MS.

Лампроиты обладают порфировым строением, обусловленным наличием фенокристов флогопита (до 30-35% от объема породы) размером 2-7 мм, погруженных в тонкозернистую основную массу. Ее состав определяется наличием калиевого полевого шпата, нередко в форме веерообразных индивидов, псевдолейцита(?), биотита, диопсида, хромшпинелида и ильменита. Кроме этого отмечается присутствие карбонатных псевдоморфоз размером до 5 мм, развитых по оливину. Флогопит из порфировых выделений (MgO 23-25 мас. %) относится к низкоглиноземистой разновидности (Al₂O₃ 11–12 мас. %) с концентрациями TiO₂ до 2– 3 мас. %. По сравнению с ним биотит (MgO 11; FeO_{обш} 18 мас. %) из основной массы породы содержит до 5 мас. % TiO₂. Калиевый полевой шпат характеризуется повышенной железистостью (FeO_{обш} до 1.8 мас. %), что обычно отмечается для пород лампроитовой серии [5, 6]. Хромшпинелид по своему составу соответствует высокомагнезиальному Ті-Аl-содержащему хромиту $(Cr_2O_3 57; MgO 10-13; TiO_2 1, 2; Al_2O_3 3-5 \text{ mac. }\%).$

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 4 2004

Спорадически встречающийся ильменит относится к железистой (FeO_{общ} до 44.5 мас. %) разновидности.

По уровню кремнекислотности (SiO₂ ~ 44.7-53.7 мас. %) и магнезиальности (mg = 69-77) изученные породы сопоставимы с основными лампроитами, отличаясь незначительным (~1.1-1.7 мас. %) содержанием TiO₂ (табл. 1). Наряду с повышенной агпаитностью ($K_a \sim 0.8 - 1.1$), они характеризуются высокими значениями K₂O/Na₂O (~3.7-30.4) и свойственным для пород лампроитовой серии соотношением CaO и Al₂O₃ [4]. Вместе с тем составы даек из рассматриваемых ареалов заметно отличаются по содержаниям некоторых LIL- и HFSэлементов, что предполагает разную глубину магмогенерации или степень коровой контаминации мантийных расплавов. По сравнению с саржематинским ареалом породы верховьев р. Жумалы обогащены Ва, Сѕ и Nb, но уступают по уровню накопления Zr, Hf, Th при близких средних концентрациях РЗЭ, Rb, Sr, Ta, Y и U (табл. 1).

Рис. 2. Распределение гидромагматофильных элементов в лампроитах. *1*, *2* – лампроиты саржематинского (*1*) и жумалинского (*2*) ареалов; *3* – средний состав флогопитовых лампроитов провинции Мурчия-Альмерия, Юго-Восточная Испания [6, 7]. Содержания элементов нормированы по составу базальтов океанических островов (OIB) [8].

В целом по характеру распределения большинства редких элементов ультракалиевые породы Горного Алтая обладают значительным геохимическим сходством с флогопитовыми лампроитами Юго-Восточной Испании (рис. 2). По-видимому, они также представляют собой продукты магматизма, развитие которого происходило в сложной геодинамической обстановке окраинно-континентального типа с участием крупноамплитудных сдвигов. В этих условиях его проявление могло контролироваться смешением вещества разноуровневых мантийных источников с преобладанием материала, характерного для производных внутриплитной магматической активности. О вероятном участии обогащенной мантии в формировании изученных пород свидетельствует поведение ряда микроэлементов, сопоставимое с параметрами модельного источника OIB (рис. 2).

Для определения времени внедрения лампроитов проведен Аг–Аг-изотопный анализ фракций (0.25–0.5 мм) породообразующего флогопита, отобранного из двух сближенных даек (обр. К-1/2, К-3 и К-Х) в левобережье р. Жумалы в 8 км к северу от ее истоков, и дайкового тела (обр. К-6) в среднем течении р. Саржематы. Минеральные фракции были запакованы в АІ-фольгу и запаяны после предварительной откачки в кварцевых ампулах с последующим облучением в кадмированном канале исследовательского BBP-К-реактора Томского политехнического университета. Нейтронный поток калиброван по стандартному биотиту MCA-11 с градиентом не более 0.5% в размере образца. Выделение аргона проводилось в кварцевом реакторе с печью внешнего прогрева. Холостой опыт по ⁴⁰Ar при 1200°C в течение 40 мин не превышал $5 \cdot 10^{-11}$ г. После очистки выделенного аргона с использованием Ti- и ZrAl SAES-геттеров его изотопный состав измерялся на масс-спектрометре "Noble gas 5400" фирмы "Микромасс" (Англия).

Полученные возрастные спектры флогопита из лампроитовых даек жумалинского ареала характеризуются хорошо выраженными плато с рассчитанными значениями $T = 244.0 \pm 0.8$, 244.4 ± 0.8 и 245.7 ± 0.7 млн. лет, соответствующими высокой доле выделенного ³⁹Ar (рис. 3). Наблюдаемый диапазон датировок сопоставим с ранним триасом и очень незначительно отличается по времени от основных событий (250 ± 3 млн. лет) траппового магматизма, который проявился в результате воздействия на литосферу Северной Азии суперплюма на рубеже палеозоя-мезозоя [9-12]. Тем не менее с учетом определенной нами Ar-Ar-изотопной даты (236.5±3.8 млн. лет) по флогопиту из дайки лампроитов в саржематинском ареале (рис. 3) отмечается явное "омоложение" возраста пород чуйского комплекса по сравнению с производными главной фазы плюмовой активности. Похожая тенденция уста-

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 4 2004

Рис. 3. Возрастные ⁴⁰Ar/³⁹Ar-спектры флогопита из лампроитовых даек чуйского комплекса.

навливается для лампроитов (230–225 млн. лет), а также малых интрузий сиенитов и щелочных гранитов А-типа (249–233 млн. лет) Таймыра, предположительно сформировавшихся под влиянием Северо-Азиатского суперплюма в пермско-триасовое время [13, 14]. Их геохимические характеристики свидетельствуют о гибридной природе исходных расплавов в результате смешения вещества континентальной коры, деплетированной и неистощенной мантии.

Предварительные Nd-Sr-изотопные данные, полученные нами по двум образцам лампроитов Горного Алтая ($\epsilon_{\text{Nd}_{240}} = -3.4...-2.6$; (⁸⁷Sr/⁸⁶Sr)₂₄₀ ~ 0.7089), также указывают на значительную долю корового компонента в выплавлявшейся базальтоидной магме. Приведенные геохимические параметры и расчетные модельные значения $T_{\rm DM}^{\rm Nd}$ (1206–1210 млн. лет) предполагают, что наряду с обогащенной литосферной мантией в зону теплового воздействия плюма и в процессы магмогенерации мог быть вовлечен материал континентальной коры среднерифейского возраста, сопоставимого с временем формирования докембрийского цоколя Алтайского микроконтинента [15]. По нашим пока неопубликованным данным, близкие модельные датировки исходного субстрата (1343-1371 млн. лет) имеют также позднетриасовые лампроиты Горного Таймыра, для которых характерны несколько бо́льшая обогащенность мантийного источника и, по-видимому, менее интенсивная коровая контаминация расплавов ($\varepsilon_{Nd_{230}} = -5.6...-5.3$; (⁸⁷Sr/⁸⁶Sr)₂₃₀ ~ 0.7062–0.7065).

Таким образом, установленный нами раннесреднетриасовый возраст лампроитовых даек чуйского комплекса Горного Алтая позволяет связывать их формирование с деятельностью суперплюма, который определял развитие пермско-триасового рифтогенного магматизма в пределах обширной территории Северной и Центральной Азии.

Исследования выполнены при финансовой поддержке РФФИ (гранты 04–05–64331, 03–05–65088), Министерства образования и науки РФ (грант Е 02–9.0–92), НП "Университеты России" (проект УР 09.01.042) и НШ–1573.2003.5.

СПИСОК ЛИТЕРАТУРЫ

- Nikishin A.M., Ziegler P.A., Abbott D. et al. // Tectonophysics. 2002. V. 351. P. 3–39.
- Оболенская Р.В. Мезозойский магматизм Алтае-Саянской складчатой области. Новосибирск: Издво ИГГ СО АН СССР, 1983. 47 с.
- Михалева Л.А. Мезозойская лампрофир-диабазовая формация юга Сибири. Новосибирск: Наука, 1989. 167 с.
- Врублевский В.В., Гертнер И.Ф., Крупчатников В.И. и др. В сб.: Материалы II Всероссийского петрографического совещания. Сыктывкар, 2000. Т. 1. С. 41–44.
- 5. Богатиков О.А., Рябчиков И.Д., Кононова В.А. и др. Лампроиты. М.: Наука, 1991. 300 с.
- Mitchell R.H., Bergman S.C. Petrology of Lamproites. N.Y.: Plenum Press. 1991. 447 p.
- Venturelli G., Capedri S., Battistini G. et al. // Lithos. 1984. V. 17. P. 37–54.
- 8. *Sun S.-S., McDonough W.F.* // Geol. Soc. London. Spec. Publ. 1989. № 42. P. 313–345.
- 9. Ярмолюк В.В., Коваленко В.И. В сб.: Геодинамика и эволюция Земли. Новосибирск: НИЦ ОИГГМ СО РАН, 1996. С. 77–81.
- 10. Ярмолюк В.В., Коваленко В.И., Кузьмин М.И. // Геотектоника. 2000. № 5. С. 3–29.
- 11. Добрецов Н.Л. // ДАН. 1997. Т. 354. № 4. С. 497– 500.
- 12. Добрецов Н.Л. // Геология и геофизика. 2003. № 12. С. 1243–1261.
- Романов А.П. В сб.: Российская Арктика: геологическая история, минерагения, геоэкология. СПб.: ВНИИОкеангеология, 2002. С. 291–299.
- 14. Vernikovsky V.A., Pease V.L., Vernikovskaya A.E. et al. // Lithos. 2003. V. 66. P. 23–36.
- 15. Коваленко В.И., Ярмолюк В.В., Ковач В.П. и др. // Геология и геофизика. 2003. № 12. С. 1280–1293.