—— ГЕОХИМИЯ —

УДК 553.411

ПЕРВАЯ НАХОДКА СУРЬМЯНИСТОГО ПАРКЕРИТА НА СЕВЕРО-ВОСТОКЕ РОССИИ

© 2004 г. Н. А. Горячев, Г. Н. Гамянин, Н. В. Заякина, С. К. Попова, В. А. Сидоров

Представлено академиком В.И. Гончаровым 26.05.2004 г.

Поступило 16.07.2004 г.

В мире известно всего несколько находок паркерита. Большинство из них обнаружено в сульфидных медно-никелевых месторождениях Сёдбери [1], Инсизва [2], Лангис [3], Октябрьское [4], Аллареченское [5], несущих также и висмутовую минерализацию. Известна также находка паркерита в мигматитах среди метаморфических пород на Украине [6], а также в Ni–Co–Bi–(Ag) месторождении Цинкванд в Австрии [7].

На Северо-Востоке России паркерит обнаружен в рудах малосульфидного золото-редкометалльно-кварцевого месторождения Тэутэджак, расположенного в Тенькинском районе Магаданской области. Рудное поле месторождения территориально приурочено к перивулканической зоне Охотско-Чукотского вулканогенного пояса. Оно сложено осадочными породами верхнего триаса, прорванными многочисленными силло- и штокообразными телами и дайками диорит-порфиритов позднеюрско-раннемелового возраста, раннемеловыми гранитами Омчанского массива (на юге и юго-западе), сопутствующими им дайками гранодиорит-порфиров, а также дайками позднемеловых гранит-порфиров, риолитов и миндалекаменных базальтов. Осадочные породы представлены тонкослоистыми алевролитами, песчанистыми алевролитами, в меньшей степени – песчаниками карнийского и норийского ярусов. Породы слабо дислоцированы, залегают субгоризонтально или моноклинально с преимущественным падением на северо-запад под углами 10°-15°. В пределах рудного поля преобладают разломы северо-восточного (40°-50°) и (более молодые) северо-западного (320°-330°) простираний.

Северо-Восточный комплексный

научно-исследовательский институт

Граниты Омчанского массива располагаются на юге и юго-востоке рудного поля. Северный контакт массива пологий, падение на север и северо-восток под углом до 15°, под основные рудные зоны. Основная часть массива сложена неравномерно раскристаллизованными лейкократовыми биотитовыми гранитами, прорванными дайками мелкозернистых гранитов, гранодиорит-порфиров и гранит-порфиров.

Гидротермальные изменения (пирротинизация, хлоритизация, эпидотизация, турмалинизация) и рудная минерализация наложены на роговики, силлы и дайки диорит-порфиритов и раннемеловых гранодиорит-порфиров. В центральной части Тэутэджакского рудного поля разведано три протяженных и мощных (до 350-400 м) зоны штокверкового прожилкования. Преобладающими являются прожилки сульфидного (хлорит-сульфидного) состава с пирротином, молибденитом, арсенопиритом мощностью 0.1-0.2 мм и более редкие хлорит-турмалин-кварцевые, крайне невыдержанные по простиранию, мощностью 0.5-5 см (в единичных случаях 10–30 см) с арсенопиритом, минералами висмута и золотом. Золото очень мелкое, обычно свободное, реже в срастаниях с теллуридами и сульфотеллуридами висмута, самородным висмутом, арсенопиритом. Подавляющее большинство прожилков имеет субмеридиональное направление $(350^{\circ}-10^{\circ})$, совпадающее с ориентировкой самих зон. Внутренние части зон метасоматически наиболее проработаны (эпидотизация и турмалинизация), и в них отмечается наибольшая интенсивность прожилкования (20-50 прожилков на метр). Во внешней части зон метасоматические преобразования (окварцевание, хлоритизация) выражены слабее с редким (1-5 прожилков на метр) штокверковым прожилкованием Вмещающие оруденение диоритовые порфириты подвержены интенсивному кварц-серицитовому изменению, и к ним приурочены максимальные содержания золота. Для мусковит-турмалиновых метасоматитов калий-аргоновым методом установлена дата в 104 млн лет.

Характерной особенностью данного месторождения является малосульфидность руд (не более 2%), кларковые содержания никеля в магма-

Дальневосточного отделения Российской Академии наук, Магадан

Институт геологии алмаза и благородных металлов Сибирского отделения Российской Академии наук, Якутск

Рис. 1. Паркерит (1) среди минералов висмута (2). Растровое изображение и в характеристическом излучении.

тических породах, метасоматитах и фоновые в рудах. Рудная минерализация представлена преимущественно леллингит-арсенопиритовой ассоциацией с редко встречающимся никельсодержащим кобальтином и ассоциацией сульфотеллуридов висмута с самородными золотом и висмутом. Следует подчеркнуть, что эта особенность – присутствие собственных минералов никеля или существенно никеленосных арсенидов и сульфоарсенидов при фоновом содержании Ni в рудах – свойственна многим малосульфидным золото-редкометалльным месторождениям северо-востока России [9]. В месторождении Тэутэджак паркерит наблюдается в ассоциации с сульфотеллуридами и теллуридами висмута, а также самородным висмутом в участках, насыщенных скоплениями мелких кристаллов Ni-кобальтина. Последние в этих случаях повсеместно корродированы и замещены минералами висмута. Замещение происходило либо по зонам роста кобальтина, либо развивалось центробежно, начиная с центральных частей кристалла. Местами отмечено полное псевдоморфное замещение кристаллов Ni-кобальтина полиминеральной смесью. Приуроченности паркерита к никеленосным минералам, как это имеет место на месторождениях Сёдбери и Лангис [3], на месторождении Тэутэджак не установлено. Паркерит располагается здесь среди висмутсодержащих минералов, являет-

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 4 2004

ся наиболее ранним (это подчеркивается и во всех публикациях по данному минералу в других месторождениях), обычно локализован среди их выделений и располагается в мелких друзовых пус-

Рис. 2. Спектры отражения паркерита месторождения Тэутэджак. *R*₁ – положение минимального, *R*₂ – максимального отражения.

№ п/п	Минерал	п	Bi	Sb	Ni	Co	Fe	As	Те	S	Сумма
1	Паркерит		62.5		26.1					10.0	98.6
2	Паркерит		60.1		30.3					9.1	99.5
3	Паркерит		63.6		26.8					9.2	99.6
4	Паркерит		60.5	2.2	26.3					9.6	99.6*
5	Паркерит	6	59.32	2.28	28.09					10.03	99.72
6	Ni-кобальтин	5	9.38		19.62		5.71	48.68		16.96	100.35
7	Жозеит В	7	75.16						20.25	3.07	98.48
8	Хедлейит	3	78.34						20.40		98.74

Таблица 1. Состав паркерита (мас. %) и сопутствующих минералов месторождения Тэутэджак

Примечание. Месторождения: 1 – Аллареченское [5]; 2 – Langis, Ontario [3]; 3 – Sudbury, Ontario [1]; 4 – Цинкванд [7] (*присутствует Pb–1%); 5–8 – Тэутэджак, данные авторов.

House			[1]			 гл		[4]				
паши данные			[1]		[6]			[4]				
Ι	6	l/n	Ι		d/n	I	(d/n	Ι		d/n	
			4		5.8							
90	90 4.01		7		4.01	8	4	.03	9		3.98	
			1		3.29							
100	00 2.854		10		2.85	10	2	.879	10		2.852	
			1		2.56	1	2	.545				
10	2.359		9		2.33	6	2	.363			2.329	
30	2.29		4		2.28	6	2	.3			2.382	
			0.:	5	2.15							
			0.:	5	2.12							
20	1.	996	5		2.02	5	2	.011			2.017	
			5		1.984							
			0.5		1.897							
5	5 1.793		6		1.802	3	1.	.81			1.798	
			2		1.782							
			0.5		1.723							
5	1.	638	7		1.645	5	1	.664	4		1.642	
			0.5		1.611							
			4		1.431	6	1	.432			1.43	
			5		1.415							
			0.5		1.385							
			3		1.345							
			5		1.211	3	1	.213	1		1.216	
Параметры ячейки												
Пара- метр		На дан	Наши данные		[3]	[1]		[7	[7]		[4]	
a _o		4.0	.065		4.009	4.03		4.02		4.03		
$b_{\rm o}$		5.5	5.543		5.541	5.53		5.6		5.53		
Co		5.756		5.749		5.73		5.68		5.7		

Таблица 2. Рентгеноструктурные данные паркерита

тотах или межзерновых пространствах среди кварца совместно с жозеитом В, хедлеитом и самородным висмутом (рис. 1).

Среди висмутовых минералов паркерит выделяется прежде всего более высоким рельефом и слабым розовато-коричневато-сероватым цветовым оттенком. Он образует как обособленные мелкие (0.01–0.1 мм) округлые выделения с намечающимися шестигранными формами, так и полизернистые агрегаты (до 3 мм), сложенные зернами той же размерности. Форма зерен в агрегате иногда близка к изометричной, а местами это ориентированно-удлиненные зерна. Отмечаемая в литературе сильная анизотропия в поляризованном свете проявляется не всегда, что зависит, видимо, от оптических сечений минерала. В наиболее сильно анизотропных зернах отмечается слабый цветовой эффект от светло-серого в положении просветления до коричневато-розоватого в положении погасания. В наиболее анизотропных зернах отчетливо заметно двуотражение. Полисинтетическое двойникование в зернах отмечается не всегда, но часто. На рис. 2 приведены данные по отражению, полученные на зернах с наибольшей анизотропией и сильным двуотражением. Данные по интенсивности отражения паркерита, приводимые другими исследователями, также лежат в области значений, полученных нами для сильно двуотражающих зерен. Определение микротвердости, как и отражения, проводилось в лаборатории световой и электронной микроскопии ВИМС (аналитик Д.К.Щербачев) на зернах с различными оптическими характеристиками. При нагрузке 50 г в зернах со слабой анизотропией значения микротвердости составляют 70–79 кг/мм² и несколько выше значений, отмеченных в работе [4], а при нагрузке 20 г она лежит в интервале 115-138 кг/мм² и близка к значениям, показанным в [3, 5]. Состав паркерита и сопутствующих ему минералов дан в табл. 1.

ДОКЛАДЫ АКАДЕМИИ НАУК том 399 № 4 2004

Из данных табл. 1 видно, что состав паркерита достаточно стабилен. В паркерите из месторождения Тэутэджак обнаружена сурьма. По содержанию последней он сопоставим с паркеритом из месторождения Цинкванд [7]. Ранний никелистый кобальтин, являющийся источником никеля для паркерита при его замещении висмутовыми минералами, и более поздний комплекс висмутовых минералов сурьмы не содержат.

Рентгеноструктурные исследования паркерита из описанного месторождения (табл. 2) показывают сходство данных характеристик с приведенными в литературе. Незначительные расхождения связаны, по всей вероятности, с наличием, согласно данным, полученным по синтезированному образцу [8], сближенных линий, которые могут расшифровываться как одна, но широкая линия. Расчет параметров элементарной ячейки паркерита месторождения Тэутэджак, выполненный по типу орторомбической, согласно [1], показал близкие значения параметров c_0 и b_0 и несколько большую величину a_0 по сравнению с паркеритом из месторождений Сёдбери, Лангис, Октябрьское, как содержащим свинец, так и без такового. Как ни странно, более существенны расхождения по расчетным параметрам элементарной ячейки изученного нами Sb-паркерита с аналогичным паркеритом из Цинкванда [7]. В [8] параметры ячейки паркерита рассчитаны по моноклинному варианту. Малое число линий по нашим образцам не позволяет провести подобный расчет.

СПИСОК ЛИТЕРАТУРЫ

- 1. Michener C.E., Peacock M.A. // Amer. Miner. 1943. V. 28. № 6. P. 343–355.
- Cormack A.M. // Trans. and Proc. Gel. Soc. S. Afr. 1948. V. 50. P. 17–22.
- Petruk W., Harris D.C., Stewart J.M. // Cand. Miner. 1969. V. 9. Pt 5. P. 597–616.
- 4. Пономаренко А.И., Коваленкер В.А., Тронева Н.В. Новые данные о минералах, М.: Наука. 1987. В. 34. С. 108–114.
- 5. Яковлев Ю.Н., Дубакина Л.С., Быков В.П. // ДАН. 1972. Т. 203. № 6. С. 1382–1385.
- Соловйова Ф.І. // Доп. АН УССР. 1963. № 1. С. 95– 97.
- Paar W.N., Chen T.T. // Tschermaks miner. und petrogr. Mitt. 1979. Bd. 26. S. 59–67.
- Brower W.S., Parker H.S., Roth R.S. // Amer. Miner. 1974. V. 59. № 3/4. P. 296–301.
- 9. *Гамянин Г.Н., Лыхина Л.И.* // Зап. ВМО. 2000. № 5. С. 43–50.