= геохимия =

УДК 538.113+548.0:535

РАЗРУШЕНИЕ АЗОТНЫХ *В*1-ЦЕНТРОВ ПРИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ПРИРОДНЫХ АЛМАЗОВ ТИПА 1aB И ПОВЕДЕНИЕ ОБРАЗУЮЩИХСЯ ПРИ ЭТОМ ДЕФЕКТОВ ПРИ *Р*,*T*-ОБРАБОТКЕ

© 2004 г. В. А. Надолинный, О. П. Юрьева, А. П. Елисеев, Н. П. Похиленко, А. А. Чепуров

Представлено академиком Н.В. Соболевым 03.07.2004 г.

Поступило 05.07.2004 г.

Несмотря на то что большинство природных алмазов содержит дислокации, в настоящее время практически отсутствует информация о взаимодействии между дислокациями и азотными центрами. Центр W7 [1–4], имеющий структуру двух атомов азота, разделенных двумя атомами углерода, является единственным доказательством взаимодействия дислокаций с А-центрами в коричневых алмазах типа 1аА. В природных 1аВ-алмазах основными азотными дефектами являются В1-центры, состоящие из четырех атомов азота в первой координационной сфере вакансии. Однако информация о каком-либо взаимодействии дислокаций с азотными В1-центрами отсутствует. Ранее мы показали [5], что в 1аВ-алмазах со следами пластической деформации ЭПР-спектр Р2центра представляет собой широкую одиночную линию, обусловленную неразрешенной сверхтонкой структурой (СТС).

В настоящем сообщении представлен детальный анализ спектров ЭПР и люминесценции природных алмазов типа 1aB со следами пластической деформации и влияние *P*,*T*-обработки на трансформацию азотных дефектов в этих кристаллах. Результатом этих исследований явилось доказательство разрушения азотных дефектов в процессе пластической деформации и движения дислокаций.

Исследованные образцы типа 1aB были представлены тремя кристаллами из трубки Удачная и 60 кристаллами из крупного месторождения нового генетического типа Снэп-Лейк, открытого в

Институт неорганической химии

Институт минералогии и петрографии

90-е годы в провинции Слэйв, Канада [6]. Образцы не содержали включений и имели окраску от зеленоватой до коричневой. Кристаллы с В1- и В2-центрами были предварительно отобраны по ИК-спектрам и уширенным спектрам N3-центра в ЭПР и ФЛ. Среди канадских алмазов доля таких кристаллов составляла ~30%. Спектры ЭПР получены на спектрометре E109 фирмы "Varian" в Х-диапазоне частот при температуре 300 и 77 К. Для регистрации и накопления спектров было использовано новое программное обеспечение, адаптированное к WinEPR и Symfonia программам. ИК-спектры получены с помощью FTIR-спектрометра фирмы "Bruker". Спектры фотолюминесценции (ФЛ) снимались при 77 К на спектрометре $Д\Phi C$ -24, снабженном ртутной лампой с набором соответствующих светофильтров для возбуждения ФЛ. Кристаллы отжигались с помощью аппаратуры высокого давления типа разрезная сфера при 1850–2000°С в течение 12 ч при стабилизирующем давлении 7 ГПа. На рис. 1 приведен типичный ИК-спектр исследованных 1аВ-алмазов. Пик 1130 см⁻¹, соответствующий проявлению донорного азота, не был обнаружен при разложении ИК-спектров. В кристалле № 6 из трубки Удачная и в канадском образце SL 00/106 доминировали ИК-полосы 1175 и 1360 см⁻¹ с небольшой примесью азота в виде А-центров (30-50 ррт). Разложение ИК-спектров этих кристаллов показывает небольшое несоответствие в интенсивности полосы 1332 см⁻¹ от В1-центров. Последние ИК-исследования показали, что азот в состоянии N+ также дает вклад в поглощение при 1332 см⁻¹ [7].

Исследованные 1аВ-алмазы обладали сильным голубым или белесо-голубым свечением. Их спектры Φ Л характеризовались интенсивной системой N3 (см. рис. 2а), однако пиковая интенсивность бесфононной линии (БФЛ) 415.2 нм оказалась значительно заниженной по сравнению с интенсивностью фононной полосы. Это отличает приведенную систему от известной в литературе,

Сибирского отделения Российской Академии наук, Новосибирск

Сибирского отделения Российской Академии наук, Новосибирск

и самопоглощение в БФЛ является маловероятным. Наблюдаемая четкая колебательная структура указывает на постоянство структуры дефекта и определяет ее симметрию. N3-система в этих кристаллах сопровождается группой слабых узких БФЛ 407.8, 409.0 и 411.1 нм, среди которых наиболее интенсивной является линия 409.0 нм. Линии 415 и 409 нм в этих кристаллах чувствительны к возбуждению красным светом при 77 K, и их интенсивность возрастает более чем на 10%.

При комнатной температуре спектры ЭПР изученных кристаллов состоят только из широкой линии с g = 2.0031 и $\Delta H_{1/2} = 11.5$ Гс (см. рис. 3а). Фотовозбуждение алмазов осуществлялось непосредственно в резонаторе ЭПР-спектрометра при 77 и 300 К. При комнатной температуре освещение кристаллов не влияло на Р2 ЭПР-спектра. Охлаждение образца до 77 К приводит к исчезновению широкой Р2-линии. Возбуждение светом с $\lambda < 380$ нм при 77 К восстанавливает широкую *P*2линию и приводит к появлению дополнительного *P*1 ЭПР-спектра и узкой одиночной линии с g == 2.0027 и $\Delta H_{1/2}$ = 1 Гс. Ширина линии *P*1-центра составляла величину $\Delta H_{1/2} = 2.5$ Гс. Оценка содержания P1-центров в кристалле SL00/106 дает величину 6 ppm, что нетипично для 1aB-алмазов.

На рис. 4 приведена динамика фотовозбуждения центра P2. При освещении кристалла УФ происходит увеличение интенсивности P2 ЭПРспектра (рис. 4, δ) и в темновых условиях после этого можно видеть ее медленный спад (рис. 4, z). Свет с $\lambda > 400$ нм при 77 К уменьшает P2-спектр до уровня, наблюдаемого в кристалле после охлаждения (рис. 4, z). При этих условиях P1-спектр исчезает, а узкая линия восстанавливается до интенсивности, которую она имела в темноте после охлаждения кристалла. Все наблюдаемые изменения в спектрах ЭПР обратимы при последующих возбуждениях УФ и красным светом.

Р,*Т*-отжиг изученных алмазов выполнялся в две стадии: 1) при 7 ГПа и 1850°С в течение 12 ч. и 2) при 7 ГПа и 2000°С в течение 12 ч. На первой стадии отжига отмечалось снижение эффекта фотовозбуждения на спектр ЭПР и появление слабого *P*1-спектра при комнатной температуре в отсутствие возбуждения. Второй отжиг приводит к исчезновению широкой *P*2-линии в спектрах ЭПР и одновременно к наблюдению интенсивного *P*1-центра и центра *P*2 с разрешенной СТС (рис. 36). Ширина отдельных линий для обоих центров составляла 0.46 Гс.

В спектрах ФЛ вторая стадия отжига вызывает некоторый спад в интенсивности голубой полосы в целом и заметное возрастание пиковой интенсивности БФЛ 415 нм со снятием эффекта ее уширения (рис. 26). Одновременно наблюдается уменьшение интенсивности линии 409.0 нм и появление довольно интенсивной *H*3-системы (рис. 26).

Рис. 1. ИК-спектры природного алмаза типа 1аВ. а – до *Р*,*T*-обработки, б – после *Р*,*T*-обработки при 2000°С и 7 ГПа в течение 12 ч.

Последняя, вероятно, ответственна за зеленоватую окраску отожженного кристалла.

После второй стадии отжига весьма существенные изменения наблюдаются в ИК-спектрах (рис. 1б): интенсивности всех оптических систем уменьшаются в два-три раза.

Обсуждение результатов. Алмазы типа 1аВ содержат примесный азот преимущественно в В1- и Р2-формах. Эти центры представляют собой высокую степень агрегирования азота в алмазе. Высокое содержание Р1-центров в исследованных нами кристаллах является необычным фактом для алмазов этого типа, как и то, что все Р1-центры находятся в ионизованном состоянии N⁺. Полученное соотношение между центрами *P*1, *A* и *B*1 не согласуется с кинетикой трансформации азотных дефектов. Образование Р1-центров в алмазах этого типа предполагает возможность разрушения сложных азотных дефектов. Диссоциация азотных комплексов при отжиге выше 2300°С является хорошо установленным экспериментальным фактом, однако наблюдаемые нами эффекты происходят в области температур отжига 1850-2000°С. Мы полагаем, что

Рис. 2. Фотолюминесценция природного алмаза типа 1аВ. а – до *Р*,*Т*-обработки, б – после *Р*,*T*-обработки при 2000°С и 7 ГПа в течение 12 часов.

возможным механизмом разрушения сложных азотных дефектов может быть пластическая деформация алмазов. Во время пластической деформации, как это хорошо известно для центра W7 в 1аА-алмазах [1-4], один из атомов азота в структуре В1-центра оказывается сдвинутым при скольжении углеродных слоев в плоскости {111} и в направлении [110]. Наблюдаемые Р1- и Р2центры разделены достаточно большим расстоянием. Возможно в дополнение к смещению Р1- и Р2-центры, локализованные на противоположных сторонах плоскости скольжения, при высокой температуре могут также диффундировать друг от друга по направлению градиентов напряжения в противоположные стороны от плоскости скольжения. Другими словами, в этих условиях центры Р1 и Р2 не рекомбинируют обратно в В1-центры. Этот механизм может объяснить высокое содержание P2-центров в природных 1aB-алмазах. Появление азота в зарядовом состоянии N⁺ в этих кристаллах обусловлено близким расположением дислокаций, чьи оборванные связи (OC) в ядре являются акцепторами электронов. Наблюдаемое исчезновение широкой P2 ЭПР-линии при 77 К связано с процессом переноса заряда между P2-центрами и OC в ядре дислокации в предположении, что уровни энергии для одного из двух центров изменяются. Поскольку структура и симметрия P2-центра являются неизменными, о чем свидетельствует отсутствие изменений в оптическом спектре N3, такой эффект может быть обусловлен изменением положения энергетического уровня дислокации.

В нашем случае это означает, что при понижении температуры имеет место перенос электронов с *P2*-центров на ОС дислокаций с образовани-

Рис. 3. Спектры ЭПР алмаза типа 1аВ при 300 К. а – до *Р*,*Т*-обработки, б – после *Р*,*T*-обработки при 2000°С и 7 ГПа в течение 12 ч.

ем диамагнитных (Р2)⁺ и (ОС)⁻-состояний. При низкой температуре УФ-свет возбуждает электроны с (ОС)- в зону проводимости с последующим захватом на электронные ловушки N⁺ и (P2)⁺. Это позволяет наблюдать Р1- и Р2-центры в ЭПР-спектрах. Освещение красным светом освобождает электронные ловушки, возвращая электроны на уровни ОС, а Р1- и Р2-центры вновь возвращаются в диамагнитные N⁺- и (P2)⁺-состояния. То, что эти эффекты отсутствуют после отжига дислокаций, подтверждает эту модель. Удаление дислокаций из кристалла позволяет наблюдать эти два центра при комнатной температуре без дополнительного возбуждения. Ширины ЭПР-линий Р1 и Р2 в исследованных кристаллах свидетельствуют о том, что наблюдаемое уширение обусловлено

тре ФЛ. Предполагается, что большая часть наблюдаемых *P*2-центров локализована вблизи ядра дислокации, а уширение линий в оптических и ЭПР-спектрах обусловлено искажением решетки вблизи дислокаций. Система ФЛ 409 нм принадлежит заряженному состоянию центра *P*2, а возрастание интенсивности полос ФЛ 415 и 409 нм при освещении красным светом соответствует процессу удаления электрона с *P*1-центра и его захвату центром (*P*2)⁺.

напряжением решетки вблизи ядра дислокации.

С этим же связано поведение Б Φ Л 415 нм в спек-

Все полученные здесь экспериментальные данные подтверждают гипотезу разрушения *В*1-центров при пластической деформации. Весьма интересно, что изученные 1аВ-кристаллы не

Рис. 4. Динамика изменения интенсивности *P2* ЭПР-спектра в алмазе типа 1аВ при 77 К. *а* – в темновых условиях, *б* – при УФ-фотовозбуждении, *в* – темновые условия после УФ-возбуждения, *г* – при фотовозбуждении красным светом.

имеют коричневой окраски. Очевидно, коричневая окраска является неотъемлемой характеристикой 1аА-алмазов со следами пластической деформации. Поскольку азотные центры являются донорами электронов, кажется вполне вероятным, что коричневый цвет обусловлен полосой переноса заряда от азотных центров на ОС в ядре дислокации. В 1аА-алмазах уровень энергии A-центра располагается выше, чем для ОС, и перенос электрона происходит с A-центров и его производных на ОС. В 1аВ-алмазах энергетические уровни для P2- и B1-центров расположены в центре запрещенной зоны, как и уровни для OC [8], и цвет 1аВ-кристаллов зависит от содержания P1- и A-центров.

Полученные результаты позволяют сделать следующие выводы. Пластическая деформация в алмазах типа 1aB разрушает B1-формы агрегированного азота, создавая P1- и P2-центры. Центры, образованные в непосредственной близости к дислокации, находятся в ионизованном состоянии благодаря переносу заряда от азотных дефектов на оборванные связи в ядре дислокации. При отжиге 1aB-алмазов дислокации, продвигаясь по объему кристалла, продолжают разрушать сложные азотные дефекты (A, B1), создавая более простые азотные формы: P1-, P2- и H3-центры. Эти результаты могут объяснить неудачу многих экспериментов с помощью P,T-обработки изме-

нить цвет алмазов со следами пластической деформации. Полученные данные дают основание утверждать, что необычное соотношение интенсивностей бесфононных линий и колебательных полос и уширение БФЛ N3- и H3-центров связано с искажением решетки из-за близко расположенных дислокаций.

Работа выполнена при поддержке РФФИ (грант 02–05–65283) и интеграционного проекта № 42 СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Щербакова М.Я., Соболев Е.В., Надолинный В.А., Аксенов В.К. // ДАН. 1975. Т. 225. № 3. С. 566–569.
- Loubser J.H.N., van Wyk J.A. // Rep. Progr. Phys. 1978. V. 41. P. 237–242.
- 3. *Newton M.E., Baker J.M.* // J. Phys.: Condens Matter. 1991. № 3. C. 3591–3603.
- 4. *Newton M.E., Baker J.M.* // J. Phys.: Condens Matter. 1991. № 3. C. 3604–3616.
- Щербакова М.Я., Соболев Е.В., Надолинный В.А. // ЖСХ. 1978. Т. 19. № 2. С. 305–312.
- 6. Похиленко Н.П., Соболев Н.В., Черный Е.Д. и др. // ДАН. 2000. Т. 372. № 3. С. 356–359.
- Lawson S.C., Fisher D., Hunt D.C., Newton M.E. // J. Phys.: Condens Matter. 1998. № 10. P. 6171–6179.
- Blumenau A.T., Heggie M.I., Fall C.J. et al. // Phys. Rev. B. 2002. V. 65. P. 205205–205213.