— ГЕОХИМИЯ —

УДК 550.4:551.782.2(571.651)

ГЕОХИМИЧЕСКИЕ ПРИЗНАКИ СВЯЗИ ИМПАКТИТОВ И ПОЗДНЕКАЙНОЗОЙСКИХ ВУЛКАНИТОВ ВПАДИНЫ ЭЛЬГЫГЫТГЫН (ЧУКОТКА)

© 2004 г. В. Ф. Белый

Представлено академиком А.А. Маракушевым 04.03.2004 г.

Поступило 09.03.2004 г.

Повышенные содержания элементов группы железа в импактитах впадины Эльгыгытгын по сравнению с исходными для них меловыми вулканитами Охотско-Чукотского вулканогенного пояса (ОЧВП) рассматривались в качестве одного из важных аргументов метеоритного происхождения как импактных расплавов, так и самой впадины. Существует мнение, что в результате обогащения метеоритным Ni импактных расплавов Ni/Cr-отношения в них будут существенно отличаться от наблюдаемых в исходных породах. Величина этого отношения использовалась и в попытках определить состав предполагаемого метеорита [1–3].

Более полный материал по геологии и составу импактитов и вулканитов впадины Эльгыгытгын [4, 5], полученный нами при полевых работах 1991 и 1993 гг., дает возможность рассмотреть поведение Ni, Cr и Co в реальных геологических телах (стратиграфических единицах, дайках) ОЧВП, в разных видах импактных пород из разных местонахождений и в выявленных впервые позднекайнозойских вулканитах.

В элювиально-делювиальных развалах (рис. 1, точки 1, 3, 410, 103) и во вскрытых канавами коренных выходах (рис. 1, т. 1) установлена последовательность образования главных видов импактных пород: импактированный игнимбрит-пемза (вспученный игнимбрит)-шлак (сильно пузыристое стекло плавления)-массивное стекло. Характерная черта импактных пород оз. Эльгыгытгын и его окрестностей – отсутствие зювитов.

Большая часть местонахождений импактитов установлена вокруг озера, близ границы горных склонов и днища впадины Эльгыгытгын-1. Но одно из наиболее интересных элювиально-делювиальных местонахождений импактитов находится вне впадины – т. 103 (рис. 1). По распространению импактитов в нижнеплиоценовых отложениях (см. рис. 1, тт. 107, 108, 119, 10) предполагается, что в долине р. Энмываам (район т. 107), в зоне разломов западного ограничения Мечекрыннэтской вулканоструктуры, находился еще один источник импактитов [4, 6]. В этих же работах показано, что процесс импактогенеза развивался длительно, в течение раннего плиоцена (5-3.5 млн. лет), что позже было подтверждено данными определения Ar-Ar-возраста массивных стекол и шлаков, взятых из разных местонахождений: 4.38 млн. лет – т. 6; 4.10 млн. лет – т. 103; 3.74–3.58 млн. лет – т. 1; 3.72–3.47 млн. лет – т. 410; 3.57 млн. лет – т. 107; 3.38 млн. лет – т. 3 [7]. На основании этих данных следует вывод, что импактогенез в рассматриваемом районе имеет эндогенную, а не метеоритную природу и каждое элювиально-делювиальное местонахождение импактитов является результатом деятельности местного (локального) очага. Выполненный анализ распределения элементов группы железа является дополнительным аргументом эндогенной природы импактогенеза впалины Эльгыгытгын.

В шлаках и стеклах, помимо обломков импактированных игнимбритов, пемз и принадлежащих им минералов, присутствуют ксенолиты горных пород, не известных среди позднемезозойских вулканитов не только впадины Эльгыгытгын, но и ОЧВП в целом – это глинистые сланцы, известняки (т. 1), андезинит (т. 410) и своеобразные вулканиты бонинит-базальт-андезитового ряда размером от нескольких до 50 см. Ксеногенные вулканические породы, а также слой пирокластики (40-50 см, т. 107) сильно пузыристого клинопироксенового магнезиального гиалобазальта в верхней части импактитовых тефровых отложений [4, 6] свидетельствуют о проявлениях в позднем кайнозое в районе впадины Эльгыгытгын вулканической деятельности, которая началась несколько ранее импактогенеза (К-Аг-возраст андезитовых ксенолитов из т. 3: 5.8 ± 0.5 и 8.2 ± 0.5 млн. лет) и развивалась параллельно с ним до конца раннего плиоцена.

Северо-Восточный комплексный научно-исследовательский институт Дальневосточного отделения Российской Академии наук, Магадан

Рис. 1. Структурное положение впадины Эльгыгыттын (на врезке – положение оз. Эльгыгыттын в ОЧВП, показанном крапом). I – граница внешней и внутренней зон ОЧВП (вершины треугольников обращены в сторону внутренней зоны); 2 – наиболее крупные разломы: a – ограничивающие меловые вулкано-тектонические структуры (штрихи направлены в сторону опущенного крыла), δ – то же, выраженные резким уступом в современном рельефе; 3 – оз. Эльгыгыттын (и впадина Эльгыгыттын-2); 4 – граница впадины Эльгыгыттын-1 (бергштрихами выделены) участки скальных обрывов); 5 – зона склоновых обрушений; 6 – Мечекрыннэтская вулканоструктура; 7 – водоразделов; 9, 10 – местонахождения импактитов и их номера: 9 – элювиально-делювиальные и коренные, 10 – в нижнеплиоценовых отложениях речных террас. Буквами обозначено: Ч – Мало-Чаунский, У – Верхне-Угаткинский грабены; О – горст гор Останцовых.

Угловатый обломок пузыристого клинопироксенового бонинита (5 × 5 см), заключенный в черном импактном стекле, обнаружен в т. 103. Сильно пузыристые афировые гиалобазальты (шлаки) в виде "капель" (5 × 2.5 см) и более мелких неправильной формы включений в импактном шлаке риолитового состава встречены в т. 1. Это сонахождение базальтового шлака и импактного риолитового шлака сходно с описанными Е.Н. Гриб [8] вулканическими бомбами контрастного (базальт-риолитового) состава в продуктах извержений Карымского вулкана 2–3 января 1996 г. Многочисленные обломки – включения угловатой и изометричной формы клинопироксенплагиоклазовых андезитов и гиалоандезитов обнаружены в тт. 3 и 410. Некоторые ксенолиты представляют собой кластолавы (автомагматические брекчии): фрагменты лавы с пилотакситовой структурой заключены в лаву с гиалопилитовой структурой, а затем те и другие секутся сложно ветвящимися жилками гиалоандезита с мельчайшими кристаллитами плагиоклаза и пироксена.

По химическому составу, диапазону колебаний главных петрогенных оксидов, между импак-

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 2 2004

тированными игнимбритами, пемзами и шлаками, с одной стороны, и вулканитами раннемеловой игнимбритовой формации и эргываамской свиты ОЧВП – с другой, устанавливается практически полное соответствие, но отсутствуют аналоги андезитобазальтов коэквуньской свиты [4]. В массивных стеклах плавления колебание содержаний петрогенных оксидов имеет более узкий диапазон, чем в импактных пемзах и шлаках, что свидетельствует о смешивании ("гомогенизации") расплавов на заключительной стадии развития импактогенеза. Стекла характеризуются также и самыми низкими потерями при прокаливании.

В отличие от импактитов ксенолиты позднекайнозойских вулканитов по химическому составу существенно отличаются от близких по содержанию SiO₂ вулканитов ОЧВП. Бонинит и базальты характеризуются высоким содержанием MgO и K₂O, Cr и Ni при пониженном CaO и Na₂O. В целом эти же тенденции химизма прослеживаются и в ксенолитах андезитового состава [4]. В ксенолитах основная масса сложена черным резко гетерогенным по составу стеклом, что является важным дополнительным их отличием от меловых вулканитов.

Отношения Ni/Cr в хондритах L-типа составляют 3.26–3.94 [9]. В верхней континентальной коре и в континентальной коре в целом они оцениваются 0.55 и 0.57 соответственно, а в андезитах островных дуг – 0.43 [10]; в вулканитах основного состава в верхней части континентальной земной коры Ni/Cr-отношения составляют 0, 56, а кислого – 0.94 [11].

В табл. 1 приведены содержания Ni, Cr и Co в разных видах и геохимических группах и местонахождениях импактитов, в позднекайнозойских и меловых вулканитах, распространенных в районе оз. Эльгыгытгын. В подавляющем большинстве Ni/Cr-отношения в меловых и позднекайнозойских вулканитах и в импактитах меньше или колеблются около 1, т.е. такие, как в породах земной коры. Но в базальтах Мечекрыннэтской вулканоструктуры (верхняя энмываамская подсвита) Ni/Cr-отношение составляет 1.67, в базальтах нижней энмываамской подсвиты на р. Энмываам 2.1 и в трех отдельных потоках достигает 2.89, т.е. приближается к хондритовому. В трех главных группах пород наиболее сильно колеблются содержания Ni, а наименее – Со. При этом диапазоны колебаний Ni, Cr и Co увеличиваются в порядке: импактиты-ксенолиты (и тефра) позднекайнозойских вулканитов-меловые вулканиты.

Анализ распредения Fe_2O_3 , MgO, Ni, Cr и Co показывает:

 а) в меловых вулканитах (рис. 2) содержание Fe₂O₃ всегда выше MgO, меловые базальты принадлежат к низко- и умеренномагнезиальному типу. Кайнозойские базальтоиды, напротив, являются магнезиальными и высокомагнезиальными. Ксенолиты андезитов по содержанию и соотношению MgO и Fe_2O_3 близки к меловым вулканитам. Импактиты в большинстве своем наследуют черты меловых игнимбритов;

б) по содержаниям Ni и Cr вулканиты четко делятся на две группы (см. рис. 2). К первой относятся меловые породы игнимбритовых формаций и двупироксеновые андезитобазальты коэквуньской свиты, характеризующиеся низкими содержаниями Ni и Cr при постоянном преобладании Cr над Ni. К второй группе – меловые оливиновые и оливинсодержащие лавы энмываамской свиты, дайка оливиновых керсантитов и позднекайнозойские базальтоиды, отличающиеся резким повышением содержания этих элементов. По Ni между меловыми и позднекайнозойскими базальтоидами существенных различий нет. Но в оливиновых и оливинсодержащих низко- и умеренномагнезиальных меловых лавах Ni/Cr-отношения обычно больше 1, а в клинопироксеновых магнезиальных и высокомагнезиальных позднекайнозойских базальтоидах меньше 1 (табл. 1, рис. 3). Следовательно, величина накопления Ni в расплаве, вероятно, зависела прежде всего от условий, благоприятных для кристаллизации оливина и в меньшей мере от общего содержания MgO. Ксенолиты андезитового состава занимают промежуточное положение между рассмотренными двумя группами пород. Выявленное разделение вулканических пород по содержанию в них Ni и Cr совершенно не прослеживается в распределении Со: во всех вулканитах кислого и среднего составов и в подавляющей части импактитов содержание Со выше, чем Ni и Cr, а в базальтоидах – ниже;

в) в импактитах в трети приведенных выборок (табл. 1, рис. 2) содержания Ni и Cr повышены против средних значений их в породах меловых игнимбритовых формаций. По содержанию Со различия между импактитами и меловыми игнимбритами нет. В трех случаях (см. табл. 1, рис. 3) Ni/Cr-отношение в импактитах больше 1. Это массивные стекла т. 103, шлаки умеренно кислого состава т. 1 и массивные стекла из террасовых отложений тт. 107, 108, 119, т. е. тех объектов, где в сонахождении с импактитами установлены поздекайнозойские базальтоиды, хотя в самих базальтоидах Ni/Cr-отношение меньше 1. Еще более выразительно эта особенность распределения Ni и Cr проявлена в отдельных образцах импактитов с максимальными содержаниями Ni. Так, в местонахождении 103, где обнаружен ксенолит бонинита с самыми высокими содержаниями Ni 200.7 и Cr 247.0, в импактированном игнимбрите содержания Ni 14.5 (Ni/Cr = 1.64), в пемзе - Ni 23.9 (Ni/Cr = 3.98), в массивном стекле Ni 57.6 (Ni/Cr = = 2.77). В террасовых отложениях, где обнаружен слой базальтовой тефры (т. 107, Ni 75.26, Cr 156.6), в обломке массивного риолитового стекла

№ п.п.	SiO ₂	Fe ₂ O ₃	MgO	Cr	Ni	Со	Ni/Cr	Ni/Co	f	Местонахождение
1(11)	72.57	2.60	0.47	2.97	1.44	7.04	0.48	0.20	74.4	
2(4)	62.90	5.73	2.00	9.07	3.61	20.95	0.40	0.17	59.0	
3(4)	56.16	8.29	4.16	16.95	5.45	51.32	0.32	0.11	50.7	
4(4)	71.85	2.56	0.46	3.60	1.35	6.55	0.38	0.20	74.4	
5(2)	53.18	9.53	6.00	52.38	31.90	80.72	0.61	0.40	44.6	
6(2)	49.95	8.91	6.57	93.78	136.17	74.85	1.45	1.82	39.9	
7(12)	53.07	9.90	3.61	28.99	45.65	63.05	1.57	0.72	58.2	
8(8)	51.86	9.34	5.06	38.32	80.64	40.45	2.10	1.99	48.1	
9(3)	51.12	9.30	5.44	49.71	140.81	47.26	2.83	2.98	46.2	
10(4)	72.99	2.02	0.51	3.93	2.52	7.96	0.64	0.32	66.8	Тт. 1, 103
11(4)	70.46	3.18	0.57	6.20	3.33	14.10	0.54	0.24	74.1	Тт. 1, 103
12(2)	65.68	4.26	1.45	6.97	3.56	8.31	0.51	0.43	59.6	T. 1.
13(5)	73.04	2.78	0.89	4.14	2.22	7.96	0.54	0.28	61.4	Тт. 6, 103, 107
14(4)	65.66	4.71	1.20	3.61	2.42	11.44	0.67	0.21	66.3	Тт. 1, 103, 107
15(1)	73.43	3.92	0.94	7.98	4.26	9.85	0.53	0.43	68.5	T. 107
16(5)	74.91	2.75	0.19	5.11	2.33	8.16	0.46	0.29	87.5	Тт. 6, 103
17(7)	69.25	3.67	0.97	5.80	3.97	9.46	0.68	0.42	65.7	T. 1
18(8)	69.92	3.04	0.72	3.97	2.18	8.74	0.55	0.25	69.1	T. 3
19(4)	70.20	3.02	0.75	2.98	2.90	8.10	0.97	0.36	67.9	T. 410
20(10)	65.71	4.57	1.39	7.22	7.44	17.96	1.03	0.41	62.0	T. 1
21(1)	70.52	3.08	0.90	13.33	8.33	7.43	0.62	1.12	63.9	T. 1
22(8)	69.96	3.14	0.88	6.02	3.98	7.29	0.66	0.55	63.9	Тт. 1, 2, 6, 103
23(5)	67.63	3.97	1.24	6.04	4.44	12.54	0.74	0.35	61.7	Тт. 1, 5
24(9)	69.81	3.52	1.34	13.17	23.34	12.88	1.77	1.81	57.1	T. 103
25(4)	70.96	3.59	1.10	6.94	9.42	10.36	1.36	0.91	62.5	Тт. 107, 108, 119
26(7)	60.84	70.6	3.31	13.85	16.20	28.42	1.17	0.57	51.5	Т. 3
27(3)	58.86	7.18	3.98	12.97	8.36	27.41	0.64	0.30	47.6	T. 410
28(2)	55.93	7.80	11.54	247.08	200.73	90.16	0.81	2.27	25.3	Обр. 103-34
29(1)	53.08	12.29	7.89	60.64	46.84	48.52	0.77	0.97	44.0	Обр. 1м-6
30(1)	51.47	9.80	10.00	156.60	75.26	41.60	0.48	1.81	33.0	Обр. 107-9, тефра

Таблица 1. Распределение Ni, Cr и Co в вулканитах и импактитах впадины Эльгыгытгын

Примечание. В табл. 1 и в тексте оксиды даны в мас. %, элементы – в г/т; все железо в форме Fe₂O₃. После порядкового номера в скобках указано число анализов; для выборок из 3 и более анализов вычислены средние геометрические содержания, из 2 – средние арифметические. *f* – железистость. 1–9 – меловые вулканиты (1–6 – породы, слагающие склоны впадины Эльгыгыттын): 1 – верхняя толща пыкарваамской свиты, 2 – вороньинская, 3 – коэквуньская, 4 – эргываамская свиты, 5 – дайки оливиновых базальтов энмываамской свиты, 6 – дайка оливинового керсантита, 7 – верхняя подсвита энмываамская свиты Мечекрыннэтской вулканоструктуры, 8 – нижняя энмываамская подсвита на р. Энмываам, 9 – то же, три потока с высоким содержанием Ni; 10–25 – импактиты: 10–12 – импактированные игнимбриты, 13–15 – пемзы, 16–21 – шлаки, 22–25 – массивные стекла; 26–30 – позднекайнозойские вулканиты: 26, 27 – ксенолиты андезитов, 28 – ксенолит бонинита, 29 – "капля" базальтового шлака, 30 – тефра базальта.

(обр. 108-5) содержание Ni 18.9 (Ni/Cr = 1.59). В импактном шлаке риолитового состава, заключающем "капли" гиалобазальта (т. 1, Ni 46.84, Cr 60.64), содержание Ni 8.33 (Ni/Cr = 0.62), что более чем в два раза превышает содержания его в обнаруженных рядом аналогичных по составу обломках шлаков, а в шлаке дацитового состава в канаве K-1 Ni 26.2 (Ni/Cr = 3.03). Таким образом, степень обогащения импактитов (прежде всего стекол и шлаков) Ni тесно связана с величиной содержания Ni в позднекайнозойских базальтоидах. Обычно, параллельно с этим в импактитах увеличивается и содержание Cr, но в заметно меньших количествах, чем Ni, мигрировавшего, вероятно, более легко. Механизм обогащения Ni и Cr импактитов не ясен. Но о высокой

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 2 2004

Рис. 2. Распределение Fe₂O₃, MgO, Ni и Cr в вулканитах и импактитах. Выше разрыва диаграммы указаны содержания элементов (подчеркнутые трехзначные цифры); остальные цифры у знаков соответствуют порядковому номеру выборки в табл. 1. Линиями соединены вулканиты и импактиты из одних и тех же местонахождений.

способности Ni мигрировать в восстановительной обстановке говорят находки самородного Ni в газовых возгонах Большого трещинного Толбачинского извержения [12]. Следовательно, обогащение Ni импактитов Эльгыгытгына не может быть доказательством присутствия в них следов метеоритного вещества.

Образование импактитов впадины Эльгыгытгын вследствие взрывного высокобарного метаморфизма и плавления пород меловых игнимбритовых формаций можно считать в настоящее время общепризнанным. В районе оз. Эльгыгытгын вой формации ОЧВП не превышает 2000 м. Судя по особенностям петрографии и химическому составу импактированных игнимбритов и пемз, импактитообразование происходило на глубинах не более 1000 м.

суммарная мощность раннемеловой игнимбрито-

Расплавы позднекайнозойских базальтоидов, ассоциирующих с импактитами, могли образоваться при плавлении либо мантийных пород, либо высокомагнезиальных основных пород, закристаллизованных в периферическом или промежуточном

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 2 2004

Рис. 3. Диаграмма Ni/Cr, Ni/Co-*f* (железистость) вулканитов и импактитов (необходимые объяснения – на рис. 2).

магматическом очаге, функционировавшем в период излияния базальтов энмываамской свиты.

Итак, формирование впадины Эльгыгытгын сопровождалось разноглубинными эндогенными процессами: вулканизмом, очаги которого могли быть в мантии или в нижней коре, и близповерхностным импактогенезом. Предполагается, что высокий энергетический уровень импактогенеза могли обеспечить взрывы в потоках глубинных флюидов. Формирование очагов импактогенеза было следствием многоактной детонации, возможно, инициированной взаимодействием флюидов с атмосферным кислородом. Последовательность импактированный игнимбрит–пемза–шлак–массивное стекло отражает главные стадии развития очага. Так, стадия пемзы отвечает началу, а шлака – полному плавлению исходных пород и максимальной флюидизации импактного расплава. Стадия массивного стекла связана с потерей расплавом летучих, его "гомогенизацией" и сопровождалась общим снижением восстановленности флюида [13].

СПИСОК ЛИТЕРАТУРЫ

- 1. Гуров Е.П., Гурова Е.П. Геологическое строение и ударный метаморфизм вулканогенных пород метеоритного кратера Эльгыгытгын. Киев: ИГН АН УССР, 1981. 61 с.
- Импактиты / Под ред. А.А. Маракушева. М.: Издво МГУ, 1981. 204 с.
- 3. Капусткина И.Г., Колесов Г.М., Фельдман В.И. // ДАН. 1985. Т. 280. № 3. С. 755–759.
- 4. *Белый В.Ф.* // Петрология. 1998. Т. 6. № 1. С. 96– 110.
- Белый В.Ф., Белая Б.В. Поздняя стадия развития Охотско-Чукотского вулканогенного пояса. Магадан: СВКНИИ ДВО РАН, 1998. 108 с.
- 6. Белый В.Ф. // Геоморфология. 2001. № 1. С. 31-41.
- Layer P.W. // Meteoritics and Planet. Sci. 2000. V. 35. P. 591–599.
- Гриб Е.Н. // Вулканология и сейсмология. 1997. № 5. С. 71–96.
- 9. Дьяконова М.И., Харитонова В.Я., Явнель А.А. Химический состав метеоритов. М.: Наука, 1979. 68 с.
- 10. *Тейлор С.Р., Мак-Леннан С.М.* Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- 11. Григорьев Н.А. // Геохимия. 2003. № 7. С. 785–792.
- 12. Главатских С.Ф., Трубкин Н.В. // ДАН. 2003. Т. 389. № 2. С. 231–234.
- Фельдман В.И., Летников Ф.А. // Вестн. МГУ. Сер. 4. Геология. 1986. № 4. С. 40–49.