— ГЕОХИМИЯ —

УДК 550.93:552.321(234.851)

U-Pb-BO3PACT ГРАНИТОИДОВ НАРОДИНСКОГО МАССИВА (ПРИПОЛЯРНЫЙ УРАЛ)

© 2004 г. А. А. Соболева, Н. М. Кудряшов, Н. С. Дорохов

Представлено академиком Н.П. Юшкиным 22.03.2004 г.

Поступило 01.04.2004 г.

Характерной особенностью Центрально-Уральской мегазоны Приполярного Урала является широкое развитие доордовикских гранитоидов, не прослеживающихся южнее – на Среднем и Южном Урале, что связано, по-видимому, с особенностями геологического развития региона. На протяжении всей истории исследования гранитоидов их возраст и геодинамическая обстановка формирования оставались дискуссионным вопросом. В последнее время в литературе они рассматриваются в качестве протоуральских коллизионных [2, 5 и др.] либо рифтогенных [3 и др.] образований.

Гранитоиды Приполярного Урала относились ранее к двум комплексам – позднепротерозойскокембрийскому сальнерско-маньхамбовскому и среднепалеозойскому кожимскому [7]. В настоящее время намечается тенденция объединения всех гранитоидов в сальнерско-маньхамбовский комплекс, геологический возраст которого определяется как поздний рифей–кембрий.

По вещественным особенностям гранитоиды отвечают А- и І-типам [4]. В поясе гранитоидов севера Урала присутствуют интрузии, сложенные гранитоидами А- или І-типа, а также несколько сложно построенных массивов, включающих оба типа. Определение соотношений в пространстве и во времени интрузий, сложенных гранитоидами этих двух типов, является актуальной задачей. Л.В. Махлаев [4] предположил, что гранитоиды А- и І-типов формировались одновременно, а их различия связаны с выплавлением из разного по составу субстрата. При постановке исследований нами было сделано предположение о том, что гранитоиды А- и І-типов формировались не только по разному субстрату, но и образовались в раз-

Институт геологии Коми научного центра Уральского отделения Российской Академии наук, Сыктывкар

Геологический институт

Кольского научного центра

Российской Академии наук,

Апатиты Мурманской обл.

ных геодинамических обстановках и, возможно, не одновременно. Вопрос возрастных соотношений рассматриваемых типов гранитов остается открытым, поскольку не наблюдаются их геологические контакты в сложно построенных массивах. Изотопные данные по разным системам (преимущественно K–Ar), полная сводка которых представлена в [1], не позволяют выяснить последовательность формирования массивов А- и I-типов.

Для восполнения данного пробела нами в качестве модельного выбран Народинский массив Приполярного Урала. Это сложно построенная, достаточно крупная интрузия, имеющая площадь около 140 км². Ее северная часть представлена лейкократовыми средне-крупнозернистыми, иногда порфировидными, гранитами, сложенными (об. %) кварцем (40), щелочным полевым шпатом (30–40), плагиоклазом состава An_{10–25} (15–20), биотитом (2-3), мусковитом (5-7). Среди акцессорных минералов обычны циркон и апатит, рудных магнетит и гематит. В составе южной части массива среди гранитоидов наиболее распространенными породами являются кварцевые диориты, состоящие (об. %) из соссюритизированного плагиоклаза (40–50), кварца (5–10), роговой обманки (20) и биотита (10). Гранодиориты сложены плагиоклазом состава An₂₀₋₂₅, частично соссюритизированным (40-45), кварцем (25-30), роговой обманкой (10-15) и биотитом (10-15). Биотитовые граниты содержат кварц (40), щелочной полевой шпат (25–30), плагиоклаз An₁₀ (20–25), биотит (10-15). В плагиогранитах отмечается плагиоклаз An₁₀₋₂₀ (40), кварц (35), щелочной полевой шпат (5–10) и биотит (10). Акцессорные минералы гранитоидов южной части представлены титанитом, цирконом и апатитом, в биотитовых гранитах встречается турмалин. Среди рудных отмечаются гематит и пирит, в гранодиоритах встречается халькопирит.

Граниты северной части массива (табл. 1) имеют нормальную или слегка повышенную щелочность и относятся к К-Na-типу. По химическому составу они сопоставимы с гранитами А-типа. Состав гранитоидов южной части массива изменяется в широких пределах – от кварцевых диоритов

Компо-		I-т	ип		А-тип	Компо-		I-т	ип		А-тип
нент	1 (n = 9)	2(n=6)	3(n = 1)	4(n = 3)	5(n = 13)	нент	1 (n = 9)	2(n=6)	3(n = 1)	4(n = 3)	5(n = 13)
SiO ₂	58.47	66.42	68.98	72.89	74.67	As	5.41	4.22	2.34	1.96	10.58
TiO ₂	1.10	0.61	0.60	0.52	0.35	Sb	0.28	0.31	0.88	0.24	0.27
Al_2O_3	16.56	15.78	14.45	13.39	12.82	Se	1.16	0.71	0.65	1.57	2.26
Fe ₂ O ₃	2.37	1.66	1.96	1.33	1.07	Hf	4.4	3.8	5.7	4.4	4.5
FeO	4.44	2.12	2.02	1.51	0.93	Th	7	9	16	15	20
MnO	0.12	0.06	0.06	0.03	0.02	U	1.1	1.5	0.7	2.4	3.3
MgO	3.51	1.59	1.28	0.40	0.64	Та	1.07	0.79	0.25	1.11	1.96
CaO	5.54	3.59	2.53	1.23	0.63	Ba	671	556	1055	480	560
Na ₂ O	3.50	4.15	4.04	3.78	3.60	Zn	78	60	40	35	68
K ₂ O	1.98	1.75	2.54	3.92	4.43	Zr	150	165	210	185	96
P_2O_5	0.26	0.15	0.13	0.05	0.03	Y	22	23	40	45	72
H_2O^-	0.21	0.28	0.16	0.38	0.16	Nb	11	<10	20	20	25
CO_2	0.10	0.43	0.34	0.05	0.29	La	24.7	22.2	47.3	37.3	34.1
V	113	93	31	135	6	Ce	45.9	39.3	80.0	66.6	69.8
Cr	46	71	27	19	13	Pr*	5.06	4.22	7.88	6.78	8.34
Ni	100	141	23	17	14	Nd	19.2	15.5	27.3	24.1	34.7
Cu	11.5	10.0	4.1	4.6	5.0	Sm	4.78	3.68	6.09	5.54	9.42
Pb	8.1	7.7	7.8	8.6	7.8	Eu	1.61	1.20	1.19	1.10	0.95
Be	3.0	2.7	6	2	3.4	Gd*	5.50	4.48	6.33	6.55	12.02
Ga	47	27	23	32	15	Tb	0.80	0.65	0.89	0.95	1.86
F	584	345	370	270	396	Dy*	4.41	3.70	4.87	5.29	11.02
Rb	83	80	75	92	180	Ho*	0.94	0.77	1.02	1.16	2.43
Sr	273	280	240	150	64	Er*	2.46	2.03	2.54	3.005	6.90
Cs	3.1	1.5	2.2	1.5	3.3	Tm*	0.35	0.29	0.35	0.435	1.03
Co	21.8	10.5	9.9	5.0	2.1	Yb	1.71	1.45	1.72	2.085	5.62
Sc	19.4	8.9	11.0	6.1	14.0	Lu	0.28	0.23	0.26	0.35	0.96

Таблица 1. Средние составы гранитоидов Народинского массива

Примечание. 1 – кварцевые диориты; 2 – гранодиориты; 3 – плагиограниты; 4 – биотитовые граниты; 5 – граниты. В скобках указано число проб. Содержание породообразующих элементов (мас. %) определено методами классического химического и рентгенофлуоресцентного анализа в ИГ Коми НЦ УрО РАН. Элементы-примеси (г/т) определены методом ИНАА в ГЕОХИ РАН, а также следующими методами анализа: количественным спектральным (V, Cr, Ni, Pb, Be, Ga, F) и атомно-абсорбционным (Rb, Sr) в ИГ Коми НЦ УрО РАН; рентгенорадиометрическим (Zr, Y, Nb, Rb, Sr) в ГЕОХИ РАН. Звездочкой отмечено – концентрация элемента определена методом эстраполяции.

до гранитов. Эти породы относятся к нормальному петрохимическому ряду и характеризуются Na- и K-Na-типами щелочности. По химическому составу эти образования наиболее близки к гранитоидам I-типа. Особенности распределения в породах элементов-примесей подчеркивают установленные по породообразующим элементам их различия. Граниты северной части обогащены по сравнению с близкими по содержанию SiO₂ гранитами южной части HREE, Th, Nb, Ta, Rb и обеднены Sr, P, Ti.

Для изотопного U–Pb-датирования были выделены цирконы из кварцевых диоритов, гранодиоритов и биотитовых гранитов южной части массива (І-тип), а также из гранитов северной части массива (А-тип). Цирконы из гранитоидов І-типа представлены прозрачными, с желтоватым оттенком, удлиненными кристаллами гиацинтового типа, с коэффициентом удлинения 4–5 в кварцевых диоритах и 2–3 в гранитах. Кристаллы циркона из гранитов А-типа имеют светло-коричневатый цвет с включениями посторонних минеральных фаз, коэффициент удлинения 2–3.

Химическое разложение цирконов и выделение U и Pb по методике T.E. Кроу [9], а также определение изотопного состава U и Pb на масс-спектрометрах МИ-1201Т и "Finnigan MAT-262" (RPQ) осуществлялось в ГИ КНЦ РАН. Ошибка

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 3 2004

Рис. 1. U-Pb-диаграммы с конкордией для цирконов из гранитоидов Народинского массива. I-тип – кварцевый диорит (а), гранодиорит (б), биотитовый гранит (в); А-тип – гранит (г). Номера точек соответствуют номерам в табл. 2.

определения U/Pb-отношений составила 0.5% для МАТ-262 и 0.7% для МИ-1201Т, значения массфракционирования – 0.12 \pm 0.04 а.е.м. для МАТ-262 и 0.18 \pm 0.06 а.е.м. для МИ-1201-Т, холостое загрязнение не превышало 0.1–0.2 нг для Pb и 0.05 нг для U. Экспериментальные данные (табл. 2) обработаны по программе ISOPLOT [10].

Наиболее ранними гранитоидами массива являются кварцевые диориты. Их возраст по трем размерным фракциям циркона по верхнему пересечению с конкордией равен 548 ± 6 млн. лет (рис. 1а). U–Pb-возраст циркона из гранодиорита составляет 544 ± 3 млн. лет (рис. 1б). Дискордия по цирконам из гранитов I-типа дает значение возраста 515 ± 8 млн. лет (рис. 1в). Граниты A-типа оказались близкими по возрасту к гранитам I-типа. Их возраст составляет 518 ± 10 млн. лет (рис. 1г). Нижние пересечения дискордий с конкордией на всех диаграммах отвечают современным потерям свинца.

Полученные результаты датирования позволяют наметить вероятную последовательность формирования гранитоидов I- и А-типов. Образование первых происходило на протяжении всего времени становления массива в гомодромной последовательности: кварцевые диориты → гранодиориты → граниты, а гранитов, сопоставимых с А-типом, – лишь на заключительном этапе, одновременно с биотитовыми гранитами I-типа. Вре-

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 3 2004

менной интервал формирования гранитоидов составил около 33 млн. лет.

Таким образом, впервые для Приполярного Урала была сделана попытка определения длительности эволюции крупного многофазного гранитоидного массива. Время жизни очагов гранитной магмы большого объема составляет 10⁶–10⁷ млн. лет [8]. Длительность эволюции Народинского массива близка к этим оценкам. Согласованность полученных результатов с наблюдаемой последовательностью образования пород массива и близость возрастов к конкордантным могут свидетельствовать в пользу того, что изотопные данные достаточно приближены к реальным геологическим событиям.

Длительное формирование гомодромной серии гранитоидов І-типа Народинского массива свидетельствует о продолжительной эволюции магматического очага. Геодинамическая интерпретация геохимических данных свидетельствует о том, что выплавление известково-щелочной гранитной магмы происходило в надсубдукционной обстановке, т.е. магматический очаг существовал в условиях общего сжатия. Граниты А-типа сопоставимы по составу с внутриплитными образованиями, образующимися в обстановке растяжения.

Факт совмещения во времени наиболее кислых разновидностей гранитоидов І-типа и гранитов А-типа, предположительно формировавшихся в разных условиях, находит объяснение в модели син-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nº oбp.	Размер фракции,	Habec-	Содеру	жание, г/г		Изот	опные отно	шения		Rho	Bo3p	аст, млн. лет	±2σ
K a B I (C F I (T T III) K a B I (C F I (T T III) 27-001 $125 + 100$ 142 284 320 2660 0.0639333 0.19641 0.08167724 0.6601126 0.75 5147720 55334 27-002 $-100 + 75$ 795 333 364 1030 0.0720144 0.0869445 0.1865411 0.081677241 0.6611426 0.77 510.0 ± 1.0 5147720 5333 $27-002$ -100 7.3 494 545 0.0720144 0.0869445 0.189441 0.08232 ± 16 0.6609 ± 18 0.75 5021 ± 1.0 51624 ± 1.5 5443 $28-002$ -100 7.3 494 545 0.1943 ± 1 0.08210 ± 22 0.6609 ± 18 0.93 5067 ± 1.6 5164 ± 1.5 5443 $28-002$ -100 7.3 494 534 1370 0.06688 ± 3 0.1993 ± 141 0.6001 ± 9 0.93 5067 ± 1.6 5164 ± 1.5 5147 ± 2.0 5434 $58-00$	ı	MKM	Kd, MI	Pb	n	²⁰⁶ Pb/ ²⁰⁴ Pb*	²⁰⁷ Pb/ ²⁰⁶ Pb*	²⁰⁸ Pb/ ²⁰⁶ Pb*	²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U		²⁰⁶ Pb/ ²³⁸ U	²⁰⁷ Pb/ ²³⁵ U	²⁰⁷ Pb/ ²⁰⁶ Pb
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							Кварцев	ый диор	ит (І-тип)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27-00/1	-125 + 100	14.2	28.4	320	2660	0.06393 ± 3	0.1906 ± 1	0.08167 ± 24	0.6601 ± 26	0.75	506.1 ± 1.5	514.7 ± 2.0	553 ± 6
$27-003$ -75 134 38.2 430 1247 006904 ± 5 0.1865 ± 1 0.08100 ± 16 $0.653\pm 1\pm 10$ 510.4 ± 1.5 $548=1$ $88-001$ ± 100 7.3 494 543 1370 0.0668 ± 3 0.193 ± 1 0.08210 ± 2 0.6609 ± 18 0.92 515.2 ± 2.1 $544=5$ $88-002$ $-100+75$ 3.75 481 534 1850 0.0668 ± 3 0.193 ± 1 0.08210 ± 2 0.609 ± 18 0.92 515.2 ± 2.1 $545=5$ $88-002$ 100 492 538 1850 0.0668 ± 2 0.193 ± 1 0.601 ± 2 0.0819 ± 2 0.091 ± 2 512.2 $512=5$ $512=2$ 51	27-00/2	-100 + 75	7.95	33.3	364	1050	0.07201 ± 4	0.1964 ± 1	0.08232 ± 16	0.6625 ± 20	0.77	510.0 ± 1.0	516.2 ± 1.5	544 ± 4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	27-00/3	-75	13.4	38.2	430	1247	0.06994 ± 5	0.1865 ± 1	0.08100 ± 16	0.6531 ± 19	0.75	502.1 ± 1.0	510.4 ± 1.5	548±5
		-	_	-	_	-	Гранс	одиорит	(І-тип)	-	_	_	-	
	58-00/1	+100	7.3	49.4	545	1370	0.06881 ± 2	0.1943 ± 1	0.08210 ± 22	0.6609 ± 18	0.93	508.7 ± 2.0	515.2 ± 2.1	544 ± 4
58-00/3 -75 10.6 49.0 558 2280 0.06456 ± 2 0.1795 ± 1 0.08135 ± 24 0.6544 ± 26 0.90 504.2 ± 1.5 511.2 ± 2.0 543 $33-00/1$ $+100$ 6.0 92.0 958 915 0.07340 ± 5 0.2286 ± 2 0.08392 ± 17 0.6668 ± 20 0.70 519.5 ± 1.0 518.8 ± 1.5 516.4 $33-00/2$ $-100+75$ 4.3 88.5 1009 1520 0.06701 ± 7 0.2160 ± 2 0.07849 ± 24 0.668 ± 20 0.70 519.5 ± 1.0 518.8 ± 1.5 516.4 $33-00/2$ $-100+75$ 4.3 88.5 1009 1520 0.06701 ± 7 0.2160 ± 2 0.07340 ± 26 0.6494 ± 32 0.78 487.1 ± 1.5 491.8 ± 3.0 515.4 $33-00/2$ -75 13.9 101.9 1126 0.06658 ± 7.7 0.2067 ± 42 0.0784 ± 32 0.48 487.1 ± 1.5 491.8 ± 3.0 515.4 $104-00/1$ $+75$ 2.1 100.1 88.3 845	58-00/2	-100 + 75	3.75	48.1	534	1850	0.06608 ± 3	0.1989 ± 1	0.08198 ± 41	0.6601 ± 39	0.97	507.9 ± 2.5	514.7 ± 3.1	545 土 4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	58-00/3	-75	10.6	49.0	558	2280	0.06456 ± 2	0.1795 ± 1	0.08135 ± 24	0.6544 ± 26	0.00	504.2 ± 1.5	511.2 ± 2.0	543 ± 4
33-00/1 +100 6.0 92.0 958 915 0.07340±5 0.2286±2 0.08392±17 0.6668±20 0.70 519.5±1.0 518.8±1.5 516.4 33-00/2 -100+75 4.3 88.5 1009 1520 0.06701±7 0.2160±2 0.07849±24 0.6228±43 0.48 487.1±1.5 491.8±3.0 512.4 33-00/3 -75 13.9 101.9 1126 1750 0.06582±7 0.2067±4 0.08176±25 0.6494±32 0.47 506.6±1.5 508.1±2.5 515.4 33-00/1 +75 13.9 101.9 1126 1750 0.06582±7 0.2067±4 0.08176±25 0.6494±32 0.47 506.6±1.5 508.1±2.5 515.4 104-00/1 +75 2.1 100.1 896 264 0.11230±22 0.3550±7 0.08224±33 0.6534±45 0.57 509.5±2.0 510.5±3.6 515.4 104-00/2 +100 2.05 833 845 0.34049±7 0.2470±2 0.08379±17 0.6578±40 0.49 493.7±1.5 497.5±5.0 519.4±3.1 519.4±3.1 519.4±3.1 519.		-	_	-	_	-	Γр	анит (І-с	гип)	_	_	_	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33-00/1	+100	6.0	92.0	958	915	0.07340 ± 5	0.2286 ± 2	0.08392 ± 17	0.6668 ± 20	0.70	519.5 ± 1.0	518.8 ± 1.5	516 ± 6
33-00/3 -75 [13.9 [101.9] [1126] [1750 [0.06582±7] [0.2067±4] [0.08176±25] [0.6494±32] [0.47] [506.6±1.5] [508.1±2.5] [515±36] [515±36] [515±36] [104-00/1] +75 [2.1] [100.1] [896] [264] [0.11230±22] [0.3550±7] [0.08224±33] [0.6534±45] [0.57] [509.5±2.0] [510.5±3.6] [515±36] [104-00/2] +100 [2.05] [83.3] [845] [341] [0.09989±39] [0.2627±8] [0.07960±24] [0.6534±45] [0.6578±40] [0.44] [493.7±1.5] [497.5±5.0] [515±36] [515±36] [104-00/3] [100+75] [2.5] [90.1] [913] [634] [0.08049±7] [0.2470±2] [0.08379±17] [0.6678±40] [0.49] [518.7±1.0] [519.4±3.1] [522±36] [0.49] [2.5] [2	33-00/2	-100 + 75	4.3	88.5	1009	1520	0.06701 ± 7	0.2160 ± 2	0.07849 ± 24	0.6228 ± 43	0.48	487.1 ± 1.5	491.8 ± 3.0	512 ± 17
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	33-00/3	-75	13.9	101.9	1126	1750	0.06582 ± 7	0.2067 ± 4	0.08176 ± 25	0.6494 ± 32	0.47	506.6 ± 1.5	508.1 ± 2.5	515±11
104-00/1 +75 2.1 100.1 896 264 0.11230±22 0.3550±7 0.08224±33 0.6534±45 0.57 509.5±2.0 510.5±3.6 515±3.6 104-00/2 +100 2.05 83.3 845 341 0.09989±39 0.2627±8 0.07960±24 0.6322±63 0.44 493.7±1.5 497.5±5.0 515±3.6 515±3.6 104-00/3 -100+75 2.5 90.1 913 634 0.08049±7 0.2470±2 0.08379±17 0.6678±40 0.49 518.7±1.0 519.4±3.1 522±3.6		-		-	_		Γр	анит (А-	тип)	-		-		
104-00/2 +100 2.05 83.3 845 341 0.09989±39 0.2627±8 0.07960±24 0.6322±63 0.44 493.7±1.5 497.5±5.0 515± 104-00/3 -100+75 2.5 90.1 913 634 0.08049±7 0.2470±2 0.08379±17 0.6678±40 0.49 518.7±1.0 519.4±3.1 522±	104-00/1	+75	2.1	100.1	896	264	0.11230 ± 22	0.3550 ± 7	0.08224 ± 33	0.6534 ± 45	0.57	509.5 ± 2.0	510.5 ± 3.6	515 ± 15
$104-00/3 - 100 + 75 \\ 2.5 \\ 90.1 \\ 913 \\ 634 \\ 0.08049 \pm 7 \\ 0.08049 \pm 7 \\ 0.2470 \pm 2 \\ 0.2470 \pm 2 \\ 0.08379 \pm 17 \\ 0.6678 \pm 40 \\ 0.49 \\ 518.7 \pm 1.0 \\ 519.4 \pm 3.1 \\ 522 \pm 3$	104-00/2	+100	2.05	83.3	845	341	0.09989 ± 39	0.2627 ± 8	0.07960 ± 24	0.6322 ± 63	0.44	493.7 ± 1.5	497.5 ± 5.0	515 ± 29
	104-00/3	-100 + 75	2.5	90.1	913	634	0.08049 ± 7	0.2470 ± 2	0.08379 ± 17	0.6678 ± 40	0.49	518.7 ± 1.0	519.4 ± 3.1	522 ± 13

394

СОБОЛЕВА и др.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 3

3 2004

кинематического присдвигового магматизма [6], рассматривающей механизм внедрения магматических тел в транстенссионных зонах присдвигового растяжения. Такие локальные участки растяжения могли возникнуть при изменении направления схождения континентальных масс и возникновении косой коллизии на позднеколлизионном этапе формирования Протоуральского орогена. Предполагается, что в общем случае интрузии, сложенные гранитоидами А- и І-типов, должны быть разобщены в пространстве, и только в частных ситуациях гранитоиды разных типов могут совмещаться в сложно построенных массивах, используя тектонически ослабленные зоны. Именно такая закономерность и наблюдается в североуральском поясе.

Работа выполнена при финансовой поддержке РФФИ (гранты 00–05–64645 и 01–05–06176).

СПИСОК ЛИТЕРАТУРЫ

1. Андреичев В.Л. Изотопная геохронология доуралид Приполярного Урала. Сыктывкар, 1999. 48 с.

- Душин В.А. Магматизм и геодинамика палеоконтинентального сектора севера Урала. М.: Недра, 1997. 213 с.
- 3. Иванов С.Н. // ДАН. 1977. Т. 327. № 5. С. 1144–1147.
- Махлаев Л.В. Гранитоиды севера Центрально-Уральского поднятия (Полярный и Приполярный Урал). Екатеринбург: УрО РАН, 1996. 150 с.
- 5. Пучков В. Н. // Геотектоника. 1997. № 4. С. 30-45.
- 6. *Тевелев Ал.В., Тевелев Арк.В.* Тектоника, геодинамика и процессы магматизма и метаморфизма. М.: ГЕОС. 1999. С. 189–193.
- 7. Фишман М.В., Голдин Б.А. Гранитоиды центральной части Приполярного Урала. М.; Л.: Изд-во АН СССР, 1963. 107 с.
- Hildreth W. // J. Geophys. Res. 1981. V. 86. № B11. P. 10153–10192.
- Krogh T.E. // Geochim. et cosmochim. acta. 1973. V. 37. P. 485–494.
- 10. *Ludwig K.R.* ISOPLOT for MS-DOS. Vers. 2.50 // U.S. Geol. Surv. Open-File Rept. 88–557. 1991. 64 p.
- 11. *Stacey J.S., Kramers I.D.* // Earth and Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.