=== ГЕОЛОГИЯ =

УДК [551.72+550.93](571.54)

ВЕНДСКИЙ (590 ± 5 МЛН. ЛЕТ) ВОЗРАСТ ПАДРИНСКОЙ СЕРИИ БАЙКАЛО-МУЙСКОГО СКЛАДЧАТОГО ПОЯСА: U-Pb-ДАННЫЕ ПО ЦИРКОНУ

© 2004 г. Е. Ю. Рыцк, А. Ф. Макеев, член-корреспондент РАН В. А. Глебовицкий, А. М. Федосеенко

Поступило 18.03.2004 г.

Метаморфизованные и сложно деформированные позднерифейские образования Байкало-Муйского складчатого пояса (БМСП), включающие фрагменты офиолитов дискуссионного происхождения, с угловым несогласием и местами базальными конгломератами в основании, перекрыты терригенно-карбонатным комплексом наложенных впадин. Согласно традиционным представлениям [4, 5 и др.], карбонатные толщи, венчающие разрез этого комплекса, надежно охарактеризованы раннекембрийской фауной, а подстилающие их немые терригенные толщи нижней части разреза имеют вендский (<650 млн. лет) возраст. Однако результаты геохронологических исследований последних лет указывают на формирование глубинных метаморфических и мантийных магматических комплексов БМСП в период 0.65-0.6 млрд. лет, соответствующий раннему венду [3 и др.]. Для разрешения этого противоречия и определения верхнего возрастного ограничения проявления складчатых деформаций и метаморфизма в БМСП изучены кислые вулканиты падринской серии.

Падринская серия выделена Л.И. Салопом [4] и представлена серыми, лилово-серыми и лиловыми альбитизированными кварцевыми порфирами, туфолавами и лавобрекчиями риолитов, туфами риолитов, туфопесчаниками и туфоконгломератами с небольшими телами диабазов и порфиритов. В тектоническом плане падринская серия представляет постскладчатый, не метаморфизованный континентальный вулканический комплекс, локализованный в наложенном рифтогенном грабене, который пересекает структуры БМСП в среднем течении Витима (рис. 1). Вулканиты падринской серии залегают с размывом на позднерифейских вулканитах каралонской серии и плагиогранитах таллаинского комплекса и перекрываются падроканской толщей обломочных пород мамаканской серии венда–раннего кембрия.

Ранее для риолитов падринской серии Rb–Srметодом получена оценка возраста 496 ± 5 млн. лет (⁸⁷Sr/⁸⁶Sr = 0.7084) [1], которая противоречит отмеченным выше геологическим соотношениям с терригенно-карбонатной толщей мамаканской серии венда–раннего кембрия.

Для изотопного датирования нами отобрана проба брекчированных риолитов в устье р. Малая Падора при ее впадении в Витим (см. рис. 1). Выбор участка опробования определялся тем, что риолиты именно из этого обнажения ранее были изучены Rb–Sr-методом [1]. Риолиты сложены тонкозернистым агрегатом кварца, альбита и серицита с порфировыми вкрапленниками кварца и плагиоклаза. Флюидальная текстура подчеркивается тонкими прожилками кварца. Риолиты характеризуются умеренной и варьирующей суммар-

№ п.п.	Фракция, мкм	Масса, мг	U, мкг/г	Рb, мкг/г	$\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}$	$\frac{{}^{206}\text{Pb}}{{}^{207}\text{Pb}}$	$\frac{\frac{206}{Pb}}{\frac{208}{Pb}}$	$\frac{{}^{206}\text{Pb}}{{}^{238}\text{U}}$	$\frac{{}^{207}\text{Pb}}{{}^{235}\text{U}}$	$T\left(\frac{207}{206}\text{Pb}\right)$	Rho
1	<85	0.98	262.3	35.8	230.4	7.8597	2.5937	0.0958	0.7869	588.3 ± 3.8	0.8
2	85-100	0.86	234.1	26.6	969.1	13.3223	3.8062	0.0971	0.8057	610.8 ± 2.9	0.72
3	>100	0.96	247.7	28.1	751.1	12.6535	3.7599	0.0962	0.7935	597.4 ± 1.7	0.83

Таблица 1. Изотопы свинца и урана в цирконах риолитов падринской серии (проба 1/02)

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

Рис. 1. Схема геологического строения района стратотипа падринской серии. а – географическое местоположение района (заштрихован). б – схема геологического строения междуречья Витим–Талая–Падора–В. Орлов. 1 – четвертичные отложения долины Витима; 2 – средне-позднекарбоновые гранитоиды; 3 – раннепалеозойские интрузивные комплексы (бирамьинский, "малоякорный"); 4-6 – венд-раннекембрийские образования: 4 – терригенная падроканская свита мамаканской серии, 5, 6 – "витимский" (падоринский) интрузивный комплекс: 5 – гранит-порфиры, 6 – диориты; 7-10 – вендские образования: 7 – падринская серия, 8 – габброиды (a) и ультрабазиты (b) заоблачного комплекса, 9, 10 – таллаинский комплекс: 9 – диориты и плагиограниты, 10 – габбро; 11-13 – позднерифейские образования серия Байкало-Патомского пояса; 14 – разрывные нарушения (a) и Сюльбанский надвиг (b); 15 – местоположение точки отбора пробы риолитов падринской серии. 8 – схема геологического строения участка опробования. 1 – четвертичные отложения долины Витима; 2 – песчаники падроканской свиты; 3 – гранит-порфиры, 6 – 4-7 – падринская серия, 5 – риолиты, 5 – риолиты, 6 – лавобрекчии риолитов, 7 – базальты, 8 – местоположение точки отбора пробы риолитов.

ной щелочностью (от 6.87 до 8.56%) с преобладанием К над Na. На дискриминационных геохимических диаграммах точки составов риолитов располагаются в полях внутриплитных образований. Повышенные концентрации бария (более 3000 ppm), очевидно, связаны с наложенными эпигенетическими процессами.

Выделение циркона из пробы 1/02 производилось по стандартной методике с использованием тяжелых жидкостей. Циркон представлен мелкими (от 80 до 150 мкм) однородными, идиоморфными и субидиоморфными зернами розового и бледно-розового цвета, короткопризматического облика ($K_{yg} = 1.5-1.7$), с большим количеством включений гидроксидов железа. Облик кристаллов, фрагменты тонкой зональности и высокое двупреломление указывают на магматическую природу циркона. Химическое разложение цирконов и выделение U и Pb выполнялось по модифицированной методике Т.Е. Кроу [6]. Изотопный анализ выполнен на многоколлекторном масс-спектрометре "Finnigan MAT-261". Обработка экспериментальных данных проводилась по программам PbDAT и ISOPLOT.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 4 2004

Рис. 2. Диаграмма с конкордией для риолитов падринской серии. *1–3* соответствуют порядковым номерам табл. 1.

Для изотопного исследования были использованы три навески наиболее прозрачных кристаллов циркона, отобранные из размерных фракций (табл. 1). Результаты исследования представлены в табл. 1 и на рис. 2. Как видно на рис. 2, две экспериментальные точки являются практически конкордантными со значениями возраста (207 Pb/ 206 Pb) 588.3 ± 3.8 и 597.4 ± 1.7 млн. лет, а третья – в незначительной степени дискордантной. Нижнее пересечение дискордии, проведенной через все три точки, отвечает значению возраста 589.8 ± 5.4 млн. лет (СКВО = 0.061). В итоге оценка возраста петротипических риолитов падринской серии принимается 590 ± 5 млн. лет и отвечает в современной геохронологической шкале середине венда.

Полученная с высокой точностью геохронологическая оценка возраста падринской серии является верхним ограничением возраста позднебайкальского этапа складчатых деформаций и метаморфизма и представляет важный событийный рубеж, фиксирующий начало постколлизионного или орогенного этапа развития БМСП. С учетом геологической кратковременности формирования постколлизионных континентальных вулканических комплексов, установленной на примере акитканской серии Байкальской складчатой области [2], возраст терригенно-карбонатного комплекса наложенных впадин БМСП следует ограничить поздним вендом-ранним кембрием (<590 ± ±5 млн. лет). Наконец, в результате настоящего исследования можно считать доказанным проявление в эволюции БМСП двух этапов постколлизионного континентального кислого вулканизма на рубеже 720 млн. лет (жанокский комплекс Южно-Муйского хребта) и 590 млн. лет (падринский комплекс Средневитимской горной страны).

Работа выполнена при финансовой поддержке РФФИ (грант 01–05–65267).

СПИСОК ЛИТЕРАТУРЫ

- Булдыгеров В.В., Срывцев Н.А., Исаков Ю.А. // Геология и геофизика. 1995. Т. 36. № 1. С. 31–38.
- 2. Ларин А.М., Сальникова Е.Б., Котов А.Б. и др. // ДАН. 2003. Т. 392. № 4. С. 506–511.
- 3. Рыцк Е.Ю., Амелин Ю.В., Ризванова Н.Г. и др. // Геол. корреляция и стратиграфия. 2001. Т. 9. № 4. С. 3–15.
- Салоп Л.И. Геология Байкальской горной области. ти. М.: Недра, 1964. Т. 1. 516 с.
- 5. *Хоментовский В.В.* // Геология и геофизика. 1996. Т. 37. № 8. С. 43–56.
- Krogh T.E. // Geochim. et cosmochim. acta. 1973. V. 37. P. 485–494.