—— ГЕОЛОГИЯ —

УДК 552.48

СИМПЛЕКТИТОВЫЕ ВЫСОКОБАРИЧЕСКИЕ ГРАНАТ-КЛИНОПИРОКСЕН-МАРГАРИТ-МУСКОВИТ-КЛИНОЦОИЗИТОВЫЕ АМФИБОЛИТЫ ДАХОВСКОГО ВЫСТУПА (СЕВЕРНЫЙ КАВКАЗ): ГЕНЕЗИС И СОСТАВ РЕАКЦИОННЫХ СТРУКТУР

© 2004 г. Член-корреспондент РАН С. П. Кориковский, М. Л. Сомин, С. Г. Корсаков

Поступило 19.04.2004 г.

Сведения о петрологии метаморфитов Даховского выступа кристаллического фундамента зоны Передового хребта Северного Кавказа до последнего времени были противоречивыми. Эти породы относились то к низко-среднетемпературным образованиям неопределенного барического типа [1], то к высокотемпературным низкого давления [2]. Результаты нашего исследования симплектитовых гранатовых амфиболитов, обнаруженных среди пород этого выступа, позволяют считать, что все метаморфиты массива относятся к высокобарической серии. В обнажениях нижних частей каньонов рек Белая и Сюк видно, что гранатовые амфиболиты представлены согласными прослоями толщиной от дециметров до первых метров среди безгранатовых эпидот-и клинопироксенсодержащих амфиболитов, роговообманковых сланцев, слюдяных микрогнейсов (иногда с реликтами порфировых структур), двуполевошпатовых биотит-роговообманковых гнейсов, редких мусковит-кварцевых сланцев и идентичны им по степени метаморфизма.

Гранатовые амфиболиты имеют необычный состав. На 20–60% они состоят из микро- и криптокристаллических симплектитов клинопироксен±роговообманково-олигоклазового состава. Кроме них и граната присутствуют небольшие порфиробласты или округлые скопления роговой обманки, клиноцоизита, Са-клинопироксена, основного плагиоклаза, мусковита, маргарита и кварца*. Традиционно

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии наук, Москва Объединенный институт физики Земли им. О.Ю. Шмидта Российской Академии наук, Москва ФГУГП "Кавказгеолсъемка", Ессентуки Ставропольского края [3, 4] Срх±Hbl–Pl-симплектиты в метабазитах трактуются как продукт декомпрессионного распада ранних омфацитов, а сами симплектитсодержащие метабазиты – как перекристаллизованные эклогиты. Однако в изученных нами породах реликты омфацита не обнаружены. Срх–Hbl–Plсимплектиты в них – доминирующие, но не единственные реакционные структуры, и их микрозондовое изучение позволяет выявить сложную проградно-ретроградную метаморфическую историю пород.

Реликтовые минералы досимплектитовой стадии формируют ранний равновесный парагенезис $Grt + Hbl^1 + Czo^1 + Ca-Cpx^1 + Ms + Mrg +$ + Pl¹ + Qtz±Spl, отражающий условия высокобарической эпидот-амфиболитовой фации. Судя по нему, породы имели специфический состав, обогащенный Al, Ca и K, что, вероятно, может указывать на их первично-осадочную природу. Зерна граната размером до 8 мм, как фрагментированные, так и целые, сохраняют ярко выраженную проградную зональность с резким повышением содержания пиропа от 15-18% в центре до 33-36% в краевой зоне, при одновременном уменьшении примеси спессартина и гроссуляра (табл. 1). Призматические (рис. 1) выделения Са-амфиболов (Hbl¹) по составу соответствуют Мд-горнбленду [4] с умеренным содержанием Na, Al и Fe (табл. 1). Близкие по размеру зерна клиноцоизита (Czo¹) (рис. 1) содержат не более 5 мас. % Fe₂O₃. Округлые зерна первичного, очень основного Pl¹ имеют зональное строение – битовнитовую внутреннюю часть (80-87% Ап) и более кислую узкую внешнюю кайму (20-47% An). В редких реликтах Саклинопироксена (Cpx¹) примесь жадеита не превышает 0.5-2.5%, но омфациты среди них отсутствуют полностью. Белая К-слюда представлена мусковитом с небольшим содержанием фенгитовой молекулы (Si 3.0-3.2 форм. ед., (Mg + Fe) 0.08-0.40) и иногда с примесью ВаО (до 2.9 мас. %); его чешуйки образуют округлые скопления - либо мономинеральные, либо в срастании с мельчайшими зернами высокожелезистой шпинели со

^{*} Приняты следующие обозначения минералов: Ab – альбит, An – анортит, Btw – битовнит, Chl – хлорит, Cpx – клинопироксен, Czo – клиноцоизит, Grt – гранат, Hbl – роговая обманка, Jb – жадеит, Mag – магнетит, Mrg – маргарит, Ms – мусковит, Olg – олигоклаз, Pl – плагиоклаз, Prp – пироп, Qtz – кварц, Rt – рутил, Spl – шпинель, Zs – цоизит.

	Обр. 670/17				Обр. 670/20				
Компонент	G	rt —→	$(Hbl^3 + Pl$	$(Hbl^3 + Pl^3)$		$(Hbl^1 + Czo^1)$ —		\rightarrow (Cpx ² + Pl ²)	
	центр	край	келифит		крупные зерна		симплектит		
SiO ₂	38.19	39.59	40.59	51.19	50.21	39.77	53.95	62.44	
TiO ₂	0.12	-	-	-	0.23	0.10	-	-	
Al_2O_3	21.19	22.15	17.85	30.48	8.98	29.79	0.53	23.02	
FeO	24.05	20.28	14.97	0.37	7.06	4.24*	5.13	0.14	
MnO	2.76	0.27	0.26	-	0.14	_	0.06	-	
MgO	4.80	10.13	10.22	-	17.98	0.50	15.36	-	
CaO	8.75	7.46	11.11	14.25	11.98	23.78	23.82	5.57	
Na ₂ O	-	-	2.53	3.64	1.45	-	0.42	8.36	
K ₂ O	-	-	0.22	-	0.15	0.04	-	0.02	
ZnO									
Cr ₂ O ₃									
Сумма	99.86	99.88	97.75	99.93	98.18	98.22	99.27	99.55	
$Fe/(Mg + Fe^{2+})$	0.74	0.53	0.38		0.11		0.15		
Sps, %	6.0	0.6							
Prp	18.3	37.5							
Grs	24.1	19.8							
An, %				68.4				26.9	
Jd, %							1.9		
	 Обр. 670/20						Обр. 670/27		
Компонент	$Czo^1 \longrightarrow An^2 \longrightarrow Olg^2$			$Mrg^1 \longrightarrow Zs^2 \longrightarrow Olg^2$			Ms^1 + Spl^1		
	зерно двойная кайм		я кайма	зерно	зерно двойная кайма		симплектит		
SiO ₂	39.48	41.72	61.34	33.65	39.32	62.42	44.33	-	
TiO ₂	0.30	-	-	-	-	-	0.11	-	
Al_2O_3	27.99	32.02	24.15	47.10	31.24	23.96	37.51	58.42	
FeO	5.97*	0.38	0.19	0.19	1.91*	0.10	1.77	34.05	
MnO	-	-	-	0.07	0.04	-	-	-	
MgO	0.16	-	-	0.07	0.06	-	0.48	5.66	
CaO	24.12	24.85	6.04	9.88	25.16	5.47	0.44	0.06	
Na ₂ O	-	0.71	8.11	1.85	-	7.87	0.42	-	
K ₂ O	0.01	0.08	0.10	0.56	-	0.06	10.23	-	
ZnO								0.36	
Cr ₂ O ₃								0.41	
Сумма	98.03	99.76	99.93	93.37	97.73	99.88	95.29	98.96	
$Fe/(Mg + Fe^{2+})$			1	L				0.77	
10/(118 110)								0.77	
Sps, %								0.77	
Sps, % Prp								0.77	
Sps, % Prp Grs								0.77	
Sps, % Prp Grs An, %		94.7	29.0			27.6		0.77	

Таблица 1. Представительные составы некоторых первичных и вторичных минералов из симплектитовых Grt–Hbl–Cpx–Pl–Ms–Mrg–Qtz-амфиболитов Даховского выступа, мас. %

* Все железо, как Fe₂O₃.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 5 2004

Рис. 1. Кристаллы первичного клиноцоизита и роговой обманки среди Cpx^2 –Hbl²–Pl²-симплектитов. Видны секущие Olg-прожилки в роговой обманке, связанные с симплектитами, и двойная Pl (An \rightarrow Olg)-кайма вокруг Czo. Фото в отраженных электронах.

слегка повышенным содержанием ZnO (табл. 1). Округлые агрегаты дают и чешуйки маргарита, содержащего до 2 мас. % Na₂O (табл. 1). Содержание кварца колеблется от 0 до 15–20%. Мелкие призмы рутила всегда обрамлены каймами сфена.

Реакционные структуры, окружающие минералы ранней стадии, необычайно разнообразны; часть из них связана с ростом температуры, часть - с ретроградными процессами при эксгумации. Самыми ранними и широко распространенными являются Cpx²–Hbl²–Pl²-симплектиты, из-за своей мельчайшей зернистости имеющие под микроскопом черно-серый, почти изотропный вид, так что слагающие их минералы (размером от 2 до 20 мкм) различимы только при сильнейшем увеличении. Тройные симплектиты сложены авгитом с 1-3% Jd (Cpx²), зеленой роговой обманкой (Hbl²) серии Мд-горнбленд [5] и олигоклаз-андезином с 25-35% An (Pl²) (табл. 1). Соотношения между вростками Cpx² и Hbl² в симплектитах как равновесные, так и с признаками частичного замещения $Cpx^2 \rightarrow Hbl^2$. $Cpx^2-Hbl^2-Pl^2$ -симплектиты не имеют реакционных отношений с Grt, Cpx¹, Ms и Mrg, но обнаруживают признаки резорбции и разъедания порфиробластов Czo¹ и Hbl^{1} (рис. 1), причем последние рассекаются также тончайшими прожилками олигоклаза, ответвляющегося от окружающего симплектита. Это означает, что образование Cpx²-Hbl²-Pl²-симплектитов было связано не с распадом омфацита, а с приводящей к аналогичному результату проградной реакцией $Hbl^1 + Czo^1 + Qtz \rightarrow Cpx^2(\pm Hbl^2) +$ $+ Pl^{2}(Olg) + Grt (его проградная кайма) + H_{2}O, спо$ собствующей общему увеличению количества Срх и Pl в породе за счет двух водосодержащих минералов – Hbl^1 и Czo^1 , а также разрастанию проградной зональности в гранате и формированию парагенезиса Grt + Cpx^2 (поскольку гранаты с окружающим симплектитовым матриксом были явно равновесны). Подобные симплектитообразующие реакции на пике метаморфизма уже были описаны в литературе [6]. В данном случае пиковый характер процесса подтверждается тем, что и более крупный реликтовый Cpx¹ в этих породах, и новообразованный Срх² из симплектитов по содержанию Jd-молекулы (1-3%) абсолютно идентичны клинопироксенам из среднезернистых, равновесных, нематогранобластовых Срх-Hbl-Czo-Pl окружающих амфиболитов. Это говорит в пользу возникновения Cpx²–Hbl²–Pl²-симплектитов в условиях Р-Т-максимума метаморфизма всей толщи в ходе ее проградной эволюции.

Большинство порфиробластов клиноцоизита окружено концентрическими двойными плагиоклазовыми каймами; внутренняя состоит из анортита (табл. 1) или битовнита, внешняя – из олигоклаза с постепенным повышением содержания Ав к периферии каймы. Видимо, их формирование было близко по времени к симплектитообразующей реакции, подтверждая, в свою очередь, общее уменьшение стабильности Сго на проградном этапе. Сходные по морфологии двойные концентрические структуры окаймляют и скопления маргарита: они состоят из внутренней цоизитовой и внешней – олигоклазовой каймы (табл. 1). Они также отражают процессы проградной дегидратации, но, очевидно, развивались более длительно - сначала маргарит частично замещался цоизитом, а затем цоизитовая кайма замещалась олигоклазовой, по-видимому, одновременно с плагиоклазовыми каймами вокруг порфиробластического клиноцоизита.

Другие типы реакционных структур формируются позднее Cpx²-Hbl²-Pl²-симплектитов и Pl-кайм вокруг Сго и Mrg и имеют не проградную, а ретроградную направленность. Это прежде всего роговообманково(±магнетит)-плагиоклазовые келифиты с глобулярной структурой, окружающие все зерна граната в их контактах с Cpx²-Hbl²-Pl²-симплектитами (рис. 2). Келифиты сложены сростками высокоглиноземистого (до 19 мас. % Al₂O₃) Са-амфибола паргаситового или чермакитового ряда [5] и основного плагиоклаза с содержанием Ап 60-87% (табл. 1), с цепочечными выделениями магнетита на периферии келифитовой каймы. Поскольку Hbl³–Pl³±Mag-келифиты появляются только в контактах граната с Cpx²-Hbl²-Pl²-симплектитами, очевидно, что они - следствие реак-

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 5 2004

ции граната с симплектитовым пироксеном при участии водно-щелочного окисленного флюида: $Grt + Cpx^2 + Na_2O + H_2O + O_2 \rightarrow Pl^3(60-87\% An) +$ + Hbl³ + Mag \pm Qtz. В результате реакции, помимо образования келифитов, происходит резорбция внешней проградно-зональной части граната и замещение прилегающих вростков Cpx² в симплектите Са-амфиболом, т. е. обратное расширение стабильности Са-амфибола (Hbl³), что свидетельствует о начале ретроградной эксгумации с привносом H₂O, Na₂O и O₂. При дальнейшем снижении температуры начинается и усиливается фрагментация зерен граната в целом с замещением его густой сетью трещин, заполненных Hbl³-Pl³–Chl–Mag-агрегатом со значительным количеством хлорита, при равновесных соотношениях всех четырех фаз. Роговая обманка в этих "прожилках" в гранате представлена паргаситом или чермакитом, состав плагиоклаза меняется от андезина до битовнита (36-80% An), хлорит имеет железистость 40-50%, магнетит дает сыпь мелких включений. Эти жилки могут сливаться в почти полную псевдоморфозу по гранату, в уцелевших фрагментах которого тем не менее полностью сохраняются признаки проградной зональности. В контактах с кварцем внешние зоны кристаллов граната иногда замещаются двойной хлорит-битовнитовой оторочкой, состоящей из внутренней мономинеральной битовнитовой каймы (82–84% Ап) и внешней (в контакте с кварцем) мономинеральной хлоритовой каймы с небольшой примесью паргасита.

Признаки более или менее явного привноса Na отмечаются на всех стадиях образования реакционных структур: это – замещение An-кайм вокруг Сzо более кислым плагиоклазом, a Zs-кайм вокруг Mrg – олигоклазом; появление Olg-прожилков, секущих порфиробласты Hbl¹; окружение гранатов Hbl–Pl- и Chl–Btw-келифитами и разъедание его центральных частей сетью Hbl–Pl– Chl–Mag-прожилков. Все эти реакции расширяют устойчивость Na-содержащих минералов – плагиоклаза и роговой обманки.

Наиболее низкотемпературные реакционные процессы выражаются в замещении Срх- и Hblвростков в симплектитах актинолитом и в спорадическом замещении всех генераций клиноцоизита пумпеллиитом.

Таким образом, в симплектитсодержащих амфиболитах фиксируются признаки как проградного процесса, так и ретроградной эксгумации. Первый зафиксирован в формировании резкой проградной зональности в гранатах из ранней ассоциации с Са-Срх, Hbl, Czo, Ms, Mrg и Ca-Pl, далее – в образовании Срх²–Hbl²–Pl²-симплектитов, зональных плагиоклазовых кайм вокруг клиноцоизита и цоизит-плагиоклазовых кайм вокруг маргарита, отражающих ограничение стабильно-

Рис. 2. Роговообманково-плагиоклазовая келифитовая кайма вокруг проградно-зонального граната в контакте с Cpx^2 –Hbl²–Pl²-симплектитом. На периферии келифита видны скопления зерен магнетита (белые). Фото в отраженных электронах.

сти Hbl, Сzo и Mrg, и расширение устойчивости Срх и Pl. На последующей стадии ретроградной эксгумации парагенезис Grt + Срх распадается с образованием Hbl³–Pl³±Mag-келифитов, а гранат как таковой частично замещается Hbl–Pl–Chl– Mag- и Chl–Btw-агрегатом.

Реконструкция РТ-параметров проградной и ретроградной стадий для симплектитовых амфиболитов чрезвычайно затруднена из-за тотального развития реакционных структур. Вследствие этого гранат не встречается в прямых контактах с первичными порфиробластами Cpx^1 , Hbl^1 и $P1^1$ и отделен от них келифитовыми каймами и симплектитами. Для Grt-Cpx- и Grt-Hbl-термометрии были использованы составы внешних проградных краевых зон Grt и близко расположенных (но прямо не контактирующих) зерен Cpx^1 и Hbl¹. Полученные таким образом приблизительные оценки температуры по Grt-Срх-термометру Крога Равна [7] составляют 620-660°С, а по Grt-Hbl-термометру Л.Л. Перчука [8] – 630–670°С. С учетом первичного парагенезиса амфиболитов, в котором еще стабильны Ms, Czo(Zs) и Mrg, максимальные оценки пика метаморфизма в 620-660°С кажутся разумными, хотя и несколько завышенными. Оценка пикового давления при данной температуре по Grt-Cpx-Pl-Qtz-барометру [9] дает величины 8-9.5 кбар, что соответствует высокобарической эпидот-амфиболитовой или амфиболитовой фации. Стабильность весьма магнезиальных гранатов (до 36% Ргр в краевой зоне) подтверждает высокобарический тип метаморфизма, но крайне низкая примесь Jd (не более 3%) в первичных клинопироксенах говорит о том, что параметры эклогитовой фации на ранней стадии эволюции симплектитсодержащих амфиболитов не достигались.

Высокобарический характер метаморфитов Даховского выступа сближает их с эклогитсодержащим блыбским метаморфическим комплексом южной части Передового хребта [2, 10]. Но максимальные параметры давления для пород выступа более низкие, чем для блыбского комплекса, во всяком случае для той его части, которая представлена кианитовыми эклогитами, где давление могло достигать 16 кбар [10]. Остальные части разреза этого комплекса также несут явные признаки относительно высоких давлений при метаморфизме [1], однако точные оценки здесь не сделаны. В целом даховские и блыбские метаморфиты вместе с приуроченными к ним ультрабазитами маркируют широкую зону древней (допозднепалеозойской) субдукции, с функционированием которой могли быть связаны многие события на доальпийском этапе эволюции Большого Кавказа.

Работа выполнена при поддержке РФФИ (гранты 02–05–64146 и 02–05–64081) и Программы INTAS, Project 01–242.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шенгелиа Д.М. Петрология палеозойских гранитоидов Северного Кавказа. Тбилиси: Мецниереба, 1972. 248 с.
- Шенгелиа Д.М., Кориковский С.П., Чичинадзе Г.Л. и др. Петрология метаморфических комплексов Большого Кавказа. М.: Наука, 1991. 232 с.
- Joanny V., van Roemund H., Lardeaux J.M. // Geol. Rdsch. 1991. Bd. 80. S. 303–320.
- O'Brien P. // J. Metamorph. Geol. 1993. V. 11. P. 241– 260.
- Leake B.E., Wooley A.R., Arps C.E.S. et al. // Eur. J. Miner. 1997. V. 9. P. 623–651.
- Korikovsky S.P., Hovorka D. // Petrology. 2001. V. 9. P. 119–141.
- Krogh Ravna E. // J. Metamorph. Geol. 2000. V. 18. P. 211–219.
- 8. Perchuk L.L. // Geochem. Intern. 1989. V. 12. P. 1-11.
- Eckert J.O., Newton R.C., Kleppa O.J. // Amer. Miner. 1991. V. 76. P. 148–160.
- Perchuk A.L., Philippot P. // J. Metamorph. Geol. 1997.
 V. 15. P. 299–310.