= геохимия =

УДК 550.4:553.3:551.481.2

ГЕОХИМИЯ КОНКРЕЦИЙ ИЗ ДОННЫХ ОТЛОЖЕНИЙ ИСКУССТВЕННОГО ПРУДА

© 2004 г. Б. Л. Щербов, В. Д. Страховенко

Представлено академиком А.Э. Конторовичем 10.03.2004 г.

Поступило 24.03.2004 г.

Среди десятков озер, стариц и прудов, обследованных нами в Алтайском крае и прилегающих к нему территориях, только донные отложения искусственного пруда у с. Порожнее (центральная часть Алтайского края) содержат конкреции железо-марганцевого состава. В обширнейшей литературе по Fe–Mn-конкрециям нет сообщений об образовании подобных стяжений в искусственных водоемах, поэтому кажется, что приводимые ниже сведения могут вызвать определенный интерес у специалистов, занимающихся проблемами литологии и геохимии.

Пруд построен в середине 30-х годов XX в. и неоднократно понижал свой уровень в результате прорыва дамбы. Объект расположен в лесостепной зоне с абсолютными отметками от 219 до 266 м. Водосборная площадь составляет около 10–15 км². Питание пруда обеспечивается небольшим количеством мочажин и временными потоками, пересыхающими в засушливые периоды. Следует полагать, что существуют и подводные источники, поскольку из пруда вытекает небольшой ручей с непостоянным расходом воды. В образцах почв, донных отложений и грунтовых вод, отобранных в районе пруда, атомной абсорбцией изучен химический состав. Анализы выполнены в Аналитическом центре ОИГГМ СО РАН.

Почвенный покров района с. Порожнее представлен степными черноземами с различной степенью развития дернового горизонта. Почвообразующими породами служат лёссовидные суглинки. И почвы, и суглинки бурно вскипают при воздействии 10%-ным раствором HCl.

Как свидетельствует А.П. Виноградов, "...от Атлантического океана до Манчжурии...железомарганцевые конкреции были обнаружены не только в ортштейновых горизонтах почв, но и в черноземах, бурых лесных и других почвах..." [1, с. 138–139]. Ни в одном из многих сотен почвенных разрезов, изученных нами в Алтайском крае, Новосибирской, Кемеровской, Иркутской областях и в Республике Тыва, подобных образований не встречено. Не обнаружены они и в районе с. Порожнее, однако здесь нередко встречаются пятна, пленки, линзы и натеки гидроксидов Мп в бортах рытвин, образованных временными потоками.

По сравнению с кларковыми значениями для почв мира почвенный покров района заметно обогащен Na, K, Ca и Mg, но в целом по геохимическим параметрам схож с почвами лесостепной зоны Западной Сибири.

Почвообразующие суглинки изученной площади количественным составом породообразующих и редких элементов ближе всего находятся к лёссовым отложениям Канзаса (США) и геохимическому составу земной коры [2].

Величина pH вод района колеблется от 8.0 до 9.7. Пониженными значениями (8.0–8.2) характеризуются воды мочажин в нижних частях обрывистых оврагов и рытвин, а также колодцев в с. Порожнее (7.8–8.0), уровень воды в которых находится на глубине 5–7 м. Повышенные значения установлены в водах пруда, пересыхающих ручьев и мочажин, имеющих удлиненный водоток (8.8–9.7). Содержание элементов в водах района колеблется в широких пределах, которые в целом обеднены Fe, Pb, Zn, Cu, Ni в сравнении со средними значениями для грунтовых вод Западной Сибири [3], но обогащены Mg, Ca, Ba, Co, Cr и Mo (табл. 1).

Донные отложения пруда опробованы через каждые 3 см на глубину до 30 см. В интервале 0–9 см осадок представлен жидким карбонатно-глинистым илом, не содержащим конкреций и бурно вскипающим под воздействием 10%-й HCl. Влажность осадка 32%, плотность высушенного материала 1.33 г/см³. Ниже 9 см донные отложения приобретают агломератовую структуру с конкрециями различного состава, которые распределены по вертикальному профилю неравномерно. Влажность осадка в этой части составляет 25%, плотность воздушно-сухой массы 1.76 г/см.

Объединенный институт геологии, геофизики и минералогии

Сибирского отделения Российской Академии наук, Новосибирск

ГЕОХИМИЯ КОНКРЕЦИЙ ИЗ ДОННЫХ ОТЛОЖЕНИЙ

Таблица 1. Химический состав суглинков, почв, грунтовых и прудовых вод района с. Порожнее

n Fe Mn Ca Mg Ba Sr Pb Zn Cu Ni Co	Cr Mo	Sb	V								
Грунтовые и прудовые воды района, мкг/л (Fe, Ca, Mg – мг/л)											
15 0.375 58 69.2 74.3 50 He onp. 3.7 27 3 5.3 3	3.5 3.9	14.6	-								
Грунтовые воды Западной Сибири [3], мкг/л (Fe, Ca, Mg – мг/л)											
- 0.58 58 65 54 23 - 4.3 52 9.8 8.1 0.9	1.9 0.7	1.9	-								
Почвы района, мг/кг (Fe, Ca, Mg – %)											
15 2.4 656 1.76 0.87 458 267 16.4 64.4 23.4 33.2 12.2	57.5 3.4	0.66	63.4								
Почвы лесостепной зоны Западной Сибири [3], мг/кг (Fe, Ca, Mg – %)											
- - 773 - - 420 185 19.1 78.4 25.5 35.7 9.2	92.3 –	-	68.2								
Суглинки района, мг/кг (Fe, Ca, Mg – %)											
13 2.54 570 3.05 0.89 610 261 13.4 56.8 20.8 31.2 12.5	57.5 3.6	0.75	64.7								
Лёссовидные суглинки Западной Сибири [4], мг/кг (Fe, Ca, Mg - %)											
- - 598 - - 139 13.3 72 36 43 14.4	73 1.45	-	76								

Рентгеноструктурным анализом в донных отложениях пруда установлен (по степени убывания) кварц, слюда, плагиоклаз, кальцит, КПШ, оксиды Fe. Присутствует значительное количество рентгеноаморфной компоненты, скорее всего представленной гидроксидами Fe и Mn. Линии d = 2.4 Å и d = 2.95 Å принадлежат соответственно анкериту и вернадиту. Последний из них обнаружен в различных местах Индийского океана, где он выступает в роли основного рудообразующего минерала наряду с псиломеланом [5].

В верхней части донных отложений карбонатная часть, способная растворяться в HCl (кальцит), составила 16–17%, а в осадках с агломератовой структурой она колеблется от 20% в интервалах с Fe–Mn-конкрециями до 25% – в обедненных ими.

Конкреции представлены двумя резко различающимися по составу видами. Первый из них имеет железисто-карбонатный состав, другой – железо-марганцевый иди марганцево-железистый. Карбонатные стяжения характеризуются неправильной формой (рис. 1, нижний ряд справа), небольшими (1–3 мм) размерами и иногда приуроче-

Рис. 1. Морфология конкреций различного состава.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 5 2004

Эле- мент	Основная масса					Конкреции						
	ПР-1	ПР-2	ПР-4	ПР-5	ПР-9	x	ПР-6	ПР-3	ПР-7	ПР-8	ПР-10	x
Fe	2.16	1.96	1.8	3.56	2.96	2.5	6.67	8.57	8.57	9.14	7.29	8.0
Κ	1.54	1.38	1.38	1.43	1.38	1.4	0.82	1.18	0.92	0.92	0.86	0.94
Na	1.13	0.9	1.22	0.99	0.99	1.05	0.63	0.87	0.69	0.72	0.69	0.72
Ca	6.57	10.9	4.67	5.62	6.29	6.8	14.9	2.19	3.33	4.67	3.71	3.47
Mg	1.03	1.06	1.64	1.19	1.44	1.27	1.14	0.97	0.94	1.06	0.89	0.96
Mn	0.12	0.15	0.104	0.65	0.67	0.34	1.41	7.96	11.84	8.47	8.67	9.2
Ba	0.035	0.027	0.037	0.077	0.077	0.051	0.109	0.564	0.696	0.748	0.704	0.678
Pb	21	19	11	21	32	20.8	17	37	21	39	28	31.3
Zn	68	58	61	71	81	67.8	95	68	125	108	88	96.8
Cu	22	17	15	22	22	19.6	239	54	128	30	46	64.5
Ni	41	48	36	49	50	44.8	83	197	204	153	14	173.8
Co	10	7.4	7.6	38	31	18.8	57	179	226	214	188	202
Cr	134	78	128	149	137	125	149	134	146	125	122	135
Sb	0.5	1.0	1.7	1.4	1.5	1.2	1.5	2.3	2.8	3.3	2.0	2.6
Cd	0.18	0.14	0.15	0.22	0.18	0.17	0.19	0.7	1.0	1.0	0.95	0.91
Mo	3.0	4.0	2	4	6	3.8	12	41	43	32	24	35
V	75	69	69	100	70	76.6	112	344	262	258	218	270
Sr	585	539	692	508	681	601	785	1039	1460	1194	1206	1225
Li	20	26	18	24	23	22.2	16	23	16	17	15	17.4
Mn/Fe	0.06	0.08	0.06	0.18	0.23	0.12	0.21	0.93	1.38	0.93	1.19	1.11

Таблица 2. Химический состав донных отложений и конкреций пруда с. Порожнее

Примечание. ПР-1 – донные отложения с глубины 3–6 см; ПР-2 – донные отложения, обогащенные карбонатами (3–6 см); ПР-3 – Fe–Mn-конкреции (9–12 см); ПР-4 – основная масса (гл. 9–12 см); ПР-5 – основная масса (гл. 15–18 см); ПР-6 – Са–Fе-конкреции (гл. 15–18 см); ПР-7 – Fe–Mn-конкреции (гл. 15–18 см); ПР-8 – Fe–Mn-конкреции (гл. 18–21 см); ПР-9 – основная масса (гл. 21–24 см); ПР-10 – Fe–Mn-конкреции (гл. 21–24 см). Fe, K, Na, Ca, Mg, Mn, Ba – %, остальные – мг/кг.

ны к обломками раковин моллюсков. В их составе доминирует кальций и в больших количествах присутствуют минералы суглинков. Максимальные размеры Fe–Mn-конкреций достигают 25 мм. Преимущественно марганцевые стяжения имеют сферическую форму с зональным строением (рис. 1, верхний ряд), железистые представляют собой сростки желваков (рис. 1, нижний ряд). Рентгеноструктурный анализ фиксирует и в тех, и в других присутствие терригенных минералов – свидетельство захвата конкрециями материала твердого стока.

Процессы формирования донных отложений в водоеме сопровождались обеднением их основной массы (по сравнению с суглинками) К, Na и Ва, но заметным обогащением Mn, Ca, Co, Mg, Sr, Cr, V, Ni, Pb, однако количество Fe, Mo и Cu осталось почти на том же уровне, что и в суглинках (табл. 1 и 2).

По сравнению с основной массой Fe–Ca-конкреции обеднены K, Na, Pb и Mg, но обогащены всеми другими элементами, а содержание Cu в них является самым высоким среди всех конкреций (239 мг/кг). В Fe–Mn-образованиях концентрация элементов относительно их уровня в основной массе увеличилась от 1.5–4 (Pb, Zn, V, Cu, Ni, Fe) до 10–13 (Mo, Co, Ba) и даже 27 (Mn) раз.

На примере тихоокеанских конкреций выделены следующие их типы в зависимости от величины марганцевого модуля (Mn/Fe); железистые < 0.25, марганцево-железистые 0.24-1.0, железисто-марганцевые 1-4 и марганцевые >4 [6]. В нашем случае конкреции из интервалов 9-12 и 18-21 см должны быть отнесены к марганцево-железистому типу, с глубины 15-18 и 21-24 см - к железисто-марганцевому. На пути элементов от почвообразующих пород водосбора до конкреций среднее значение модуля изменялось по схеме: лёссовидные суглинки-0.02 - почвы-0.03 - грунтовые воды – 0.29 – прудовая вода–0.12 – основная масса донных отложений-0.12 - Ca-Fe-конкреции-0.21 - Fe-Мп-конкреции-0.93. Внутри каждой из выборок величина модуля варьирует в весьма широком ранге, иногда превышая в отдельных значениях средние показатели соседнего по миграционной схеме объекта.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 5 2004

Рис. 2. Образование конкреций и замещение древесных листьев Мп соединениями в береговых отложениях.

Скорость осадконакопления в водоеме, посчитанная на основе анализа распределения ¹³⁷Cs в профиле донных отложений, составляет около 5 мм/год, что несколько выше, чем это отмечается для равнинных озер Алтайского края (4.3 мм/год) [7]. Исходя из этого и учитывая максимальные размеры Fe–Mn-конкреций (до 25 мм), можно оценить скорость их роста не ниже, чем 1.7–1.8 мм/год. Однако, вероятно, она может быть и выше, в пользу чего свидетельствуют находки конкреций (рис. 2, справа) и марганцовистых псевдоморфоз (рис. 2, нижняя часть левого образца) по листьям деревьев, обнаруженные выше уровня воды в береговых образованиях, которые заливались, по-видимому, только во время весенних паводков или в дождливые сезоны.

Обсуждение результатов. Уникальность изученного объекта, связанная с образованием конкреций различного состава, обязана геогидрохимической обстановке площади. Щелочная среда грунтовых вод способствовала активной миграции Са, Мп, Мg, Ва, Со и Мо, проявляющих склонность к подвижности в таких условиях [8], и даже инертный Сг имеет высокую концентрацию, особенно в водах мочажин.

В природных системах с восстановительной и щелочной средой пути миграции Mn и Fe расходятся: подвижность Fe в них ограничена (pH выпадения Fe(OH)₂ равен 5.5), а Mn активно мигрирует (pH выпадения Mn(OH)₂ равен 8.5), однако в условиях карбонатного процесса они выпадают вместе [9]. Образовавшиеся в таких условиях конкреции обычно обеднены Fe, что и отмечается в стяжениях изученного пруда: концентрация Fe в них значительно ниже, чем, например, в конкрециях пресного о. Байкал (до 42%) [10].

Основной микроэлементный состав изученных конкреций качественно совпадает с составом Fe-Mn-сферических образований морей и океанов, однако концентрация главных рудных элементов Ni, Co, Cu, Zn, Mo, Pb и V в стяжениях Мирового океана несравненно выше, чем в описываемом водоеме.

В проанализированных конкрециях по коэффициенту концентрирования (отношение $C_{\text{конкр}}/C_{\text{осн.масса}}$) элементы выстраиваются в следующий ряд: Mn(27) > Ba(13.4) > Co(10.7) > Mo(9.2) > Ni(3.9) > V(3.5) > Cu(3.3) > Fe(3.2) > Sr(2.0) > Pb(1.5) > Zn(1.4) > Cr(1.1). Из приведенной последовательности видно, что основные металлы океанических конкреций Ni, Cr, Cu, Zn и Pb [11] в нашем примере занимают место среди умеренно или слабо концентрирующихся элементов, а Ba, Co и Mo энергично накапливаются.

В процессе миграции элементов от суглинков и почв к донным отложениям геохимические связи Са, Fe и Mn (основных конкрециеобразователей) претерпевают значительные изменения. Ни в почвах, ни в суглинках Mn не обнаруживает значимой связи ни с одним из элементов и только в водах с ним коррелирует Cu, Zn, Cr, Mo, Fe, а в осадках – Cu, Ni, Fe и Ca. В суглинках с Fe связаны только V, Pb и Zn, в почвах – Cr. В водах корреляционная схема Fe усложняется и с ним ассоциируется Mn, Cu, Zn, Ni, Mo и Cr. В донных отложениях корреляция пары Fe–Mn усиливается и сидерофильные свойства проявляет Ba, связанный в водах только с Ca; с Fe тесно связываются все элементы с высокой величиной коэффициента кон-

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 5 2004

центрации за исключением Mo. Из связанных с Ca в суглинках Zn, V, Sr и Mg почвенные процессы оставляют только Mg и Sr, в водах с ним ассоциирует лишь Ba, а в донных отложениях – Mg, Mn, Ni и Cu.

Механизмы переноса и осаждения конкрециеобразующих элементов разнообразны: это и коллоидная форма миграции Fe и Mn [12], и истинные растворы [13]. По-видимому, в нашем случае следует признать совместную роль этих механизмов, как это показано для конкреций Ладожского озера со слоистостью типа ритмов Лизеганга [14]. Однако и отводимая бактериям огромная роль в образовании озерных конкреций [15] не может быть отвергнута: зеленоватый цвет водоема свидетельствует о наличии в нем микрофлоры.

Авторы выражают искреннюю признательность Э.П. Солотчиной за определение фазового состава донных отложений, О.Г. Галковой и Л.Д. Ивановой за выполнение атомно-абсорбционного анализа почв, вод и осадков пруда.

Работа выполнена при поддержке интеграционного проекта СО РАН № 124.

СПИСОК ЛИТЕРАТУРЫ

- 1. Виноградов А.П. Геохимия редких и рассеянных химических элементов в почвах. М.: Изд-во АН СССР, 1957. 238 с.
- Taylor S.R., McLennan S.M., McCulloch M.T. // Geochim. et cosmochim. acta. 1983. V. 47. P. 1897– 1905.

- Экогеохимия Западной Сибири / Под ред. Г.В. Полякова. Новосибирск, НИЦ ОИГГМ СО РАН, 1996. 248 с.
- 4. *Ильин В.Б.* Тяжелые металлы в системе почварастение. Новосибирск, Наука, 1991. 148 с.
- 5. Безруков П.Л., Андрющенко П.Ф. // Изв. АН СССР. Сер. геол. 1972. № 9. С. 3–20.
- Скорнякова Н.С. Химический состав железо-марганцевых конкреций Тихого океана. М.: Наука, 1976. С. 168–169.
- Михайлов Н.Н. Ядерные испытания, окружающая среда и здоровье населения Алтайского края. Барнаул: Изд-во Алт. гос. ун-та, 1993. Т. 2. Кн. 2. С. 28– 44.
- 8. Перельман А.И. Геохимия. М.: Высш. шк., 1989. 528 с.
- 9. Тугаринов А.И. Общая геохимия. М.: Атомиздат, 1973. 288 с.
- Страхов Н.М., Бродская Н.Г., Князева Л.И. и др. Образование осадков в современных водоемах. М.: Изд-во АН СССР, 1954. 791 с.
- 11. Батурин Г.Н. Геохимия железо-марганцевых конкреций океана. М.: Наука, 1986. 328 с.
- 12. Перельман А.И. Геохимия ландшафта. М.: Высш. шк., 1975. 119 с.
- 13. *Веригина К.В. //* Тр. Почв. ин-та АН СССР. 1950. Т. 34. С. 190–201.
- 14. Семенович Н.И. Донные отложения Ладожского озера. М.; Л.: Наука, 1966. 124 с.
- Дубинина Г.А., Дерюгина З.П. // Журн. общ. биологии. 1969. Т. 30. № 5. С. 602–610.