= ГЕОХИМИЯ =

УДК 550.42:552.313:551.71 (470.22)

ДРЕВНЕЙШИЕ АДАКИТЫ ФЕННОСКАНДИНАВСКОГО ЩИТА

© 2004 г. С. А. Светов, Х. Хухма, А. И. Светова, Т. Н. Назарова

Представлено академиком В.А. Коротеевым 15.03.2004 г.

Поступило 10.04.2004 г.

Адакиты – породы андезидацито-риолитового ряда – имеют трондьемитовые геохимические характеристики: повышенные концентрации Na₂O, Al₂O₃, Ba, Sr и высокие Sr/Y и (La/Yb)_n отношения [1, 2]. Уникальность данного класса пород состоит в том, что формирование их возможно только при субдукционном режиме [3]. Адакиты являются характерными составляющими фанерозойских породных комплексов активных континентальных окраин и островных дуг. Для архея находки адакитов единичны и по времени формирования относятся к уровню 2.7–2.8 млрд. лет.

В данной работе приведены результаты геохимического и изотопного (Sm–Nd) изучения адакитов, обнаруженных в составе древнейшей (3.05– 2.95 млрд. лет) на Фенноскандинавском щите базальт-андезит-дацит-риолитовой (БАДР) островодужной ассоциации верхнеархейского Ведлозерско-Сегозерского зеленокаменного пояса.

Ведлозерско-Сегозерский зеленокаменный пояс, включающий ряд локальных структур – Хаутаваарскую, Койкарскую, Паласельгинскую, Семченскую, Совдозерскую, Остерскую и другие, расположен в юго-восточной части Карельского кратона на западном обрамлении Водлозерского геоблока. Имеет протяженность в субмеридиональном направлении около 300 км при ширине 50–60 км.

Характерной особенностью пояса является развитие коматиит-базальтовых ассоциаций в интервале 3.05–2.95 млрд. лет, детально описанных в работах [4], и андезитовых и дацитовых вулканитов двух уровней – 3.05–2.95 [5] и 2.90–2.85 млрд. лет [6].

Для древней андезитовой ассоциации методами фациально-формационного анализа в пределах зеленокаменного пояса реконструирована цепь палеовулканических построек центрального типа (Няльмозеро–Игнойла–Хаутаваара–Чалка–Паласельга–Остер) [5], сформировавшихся в мелководных морских обстановках.

U–Рb-датирование (по циркону) Игнойльского субвулканического некка андезидацитов позволило

получить возраст 2995 ± 20 млн. лет [7], возраст лав андезитов составляет 2945 ± 19 млн. лет [8], субвулканических даек андезитов Паласельгинской структуры – 3000 ± 40 млн. лет и 3020 ± 10 млн. лет для субвулканического штока Остерской структуры [9].

Наиболее полно древняя БАДР-ассоциация сохранилась в Чалкинской палеовулканической зоне (северная часть Хаутаваарской структуры). В ее пределах реконструирована прижерловая зона Чалкинского палеовулкана. Она представлена несколькими некками, которые окаймлены глыбовыми агломератовыми туфами, принадлежащими к фации эксплозивных выбросов и агломератовых потоков. К ним также приурочены линзовидные пачки переслаивания потоков крупноподушечных лав, кластолав, комковатых, массивных, миндалекаменных лав с подушечными брекчиями, глыбовыми, агломератовыми и лапиллиевыми туфами и многочисленные дайки андезитового и дацитового составов. Общая мощность реконструированного разреза Чалкинского палеовулкана составляет 2.5 км.

Породы структуры метаморфизованы в условиях эпидот-амфиболитовой фации метаморфизма андалузит-силлиманитового типа, что позволило сохраниться первичным магматическим текстурам.

В прочих структурах зеленокаменного пояса разрезы древнейшей андезитовой ассоциации реликтно сохранились в Хаутаваарской, Игнойльской, Остерской, Няльмозерской вулканических структурах, где выявлены различные морфологические разновидности лав, пирокластитов и субвулканитов. В Паласельгинской структуре проявление андезитового вулканизма маркируется присутствием многочисленных дайковых тел.

Новый этап геохимических исследований позволил выделить среди пород островодужной БАДРсерии нормального известково-щелочного ряда субвулканическую и вулканическую фазы с адакитовыми характеристиками.

Геохимический анализ породных литотипов – определение петрогенных элементов выполнен в Институте геологии Карельского научного центра РАН (г. Петрозаводск). Редкие и редкоземельные элементы определены методом ISP-MS в аналитической лаборатории Института геологии и

Институт геологии Карельского научного центра Российской Академии наук, Петрозаводск

Рис. 1. Нормированная по примитивной мантии (ПМ) [11] спайдерграмма БАДР-адакитовой ассоциации Ведлозерско-Сегозерского зеленокаменного пояса. а – адакиты Чалкинской структуры, б – адакиты Игнойльской структуры, светлое поле – типовые составы БАДР-серии Ведлозерско-Сегозерского зеленокаменного пояса, штриховая линия – типовой состав адакита о. Кука [1].

геохимии Уральского отделения РАН (г. Екатеринбург), погрешность определения элементов <2%. Химическая подготовка проб для Sm–Ndизотопного анализа проводилась по методике Пелтонен и др. [10]. Измерения проводились на масс-спектрометре VG sector 54 в изотопной лаборатории Геологической службы Финляндии (г. Еспоо). Точность измерений ¹⁴⁷Sm/¹⁴⁴Nd составляет 0.4%. Отношение ¹⁴³Nd/¹⁴⁴Nd нормализовано по ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Измеренное значение стандарта La Jolla ¹⁴³Nd/¹⁴⁴Nd = 0.511851 ± 6 (*n* = 8).

Адакиты (субвулканиты с возрастом 2995 млрд. лет и реже вулканиты с возрастом 2940 млрд. лет), выявленные в Игнойльской, Чалкинской и других структурах Ведлозерско-Сегозерского зеленокаменного пояса, относятся по содержанию SiO₂ (56–69 мас. %) к андезитам–дацитам (табл. 1). По содержанию петрогенных элементов адакиты отличаются от известково-щелочных пород повышенными концентрациями Na₂O, K₂O, Al₂O₃ (табл. 2), при значениях Mg[#] > 0.4.

Рис. 2. Sm–Nd-эволюционная диаграмма для коматиит-базальтовой и БАДР-адакитовой ассоциаций Ведлозерско-Сегозерского зеленокаменного пояса. 1 – коматииты, базальты, 2 – андезиты, дациты, 3 – адакиты.

Максимальные различия проявляются в концентрации редких и редкоземельных элементов. Адакиты Ведлозерско-Сегозерского зеленокаменного пояса характеризуются высоким содержанием Sr > >400 ppm, Ba>400 ppm, Zr>140 ppm, сильно фракционированным распределением РЗЭ $(La/Yb)_n >$ > 15 (табл. 1, 2) с аномально низким уровнем ТРЗЭ. Породы идентичны по спектрам распределения РЗЭ типовым адакитам островов Кука, северной вулканической зоны в Эквадоре, юго-восточной Японии и контрастируют лавам и туфам известково-щелочного ряда (БАДР-серия) Ведлозерско-Сегозерского зеленокаменного пояса, что наглядно иллюстрирует рис. 1. Существенное отличие архейских адакитов Ведлозерско-Сегозерского зеленокаменного пояса от современных аналогов состоит в более высоких концентрациях Cr и Ni.

Первичные отношения $\varepsilon_{Nd(2995)}$ для БАДР-адакитовой ассоциации Чалкинской структуры изменяются от +1.3 до +2.6 (табл. 3). Бо́льшая часть проб ложится на Sm–Nd-изохрону 2925 ± 150 млн. лет (ε_{Nd} = +1.5, CKBO = 57, *n* = 19), полученную ранее для близковозрастных коматиит-базальтовых вулканитов пояса (рис. 2). Несколько проб показывают аномально низкие значения $\varepsilon_{Nd(2995)}$ до –10.6 и высокие значения ¹⁴⁷Sm/¹⁴⁴Nd, обусловленные существенной потерей Nd, что может быть связано с метаморфическими преобразованиями в интервале 1.8–1.9 млрд. лет.

Модельный возраст адакитов Чалкинской структуры (по модели De Paolo [12]) варьирует в пределах 2959–3036 млн. лет, что говорит об от-

Таблица 1. Геохимический состав адакитов Ведлозерско-Сегозерского зеленокаменного пояса (мас.%; ppm)

Ком-	103-2	104-5	105-7	103-2b	103-25	105-70	u-2	u-5	u-10	u-20	u-21	u-22
понент	Д	ЛАТ	Д	Д	Д	Д	ЦАТ	Л	ЛАТ	СШ	СШ	СШ
	Чалкинская структура					Игнойльская структура						
SiO ₂	65.66	54.14	65.78	66.84	56.28	66.25	60.22	60.03	57.24	65.24	65.74	66.00
TiO ₂	0.74	1.82	0.63	0.65	0.88	0.62	0.65	0.63	0.63	0.49	0.54	0.50
Al_2O_3	14.26	15.10	16.37	16.79	15.52	16.34	16.35	14.53	14.78	15.66	16.16	15.41
Fe ₂ O ₃	2.07	3.52	2.52	1.31	1.94	2.12	2.01	2.09	1.11	1.26	1.68	1.00
FeO	3.88	4.74	1.87	2.51	7.26	1.98	3.81	3.74	3.59	2.80	2.51	2.23
MnO	0.07	0.32	0.053	0.10	0.20	0.061	0.073	0.088	0.093	0.062	0.039	0.060
MgO	1.76	3.61	1.9	0.55	4.80	2.9	4.57	6.52	4.73	3.06	2.58	3.21
CaO	4.76	11.20	4.14	4.06	7.29	4.11	2.41	3.21	5.40	1.97	1.97	2.34
Na ₂ O	3.86	2.56	4.48	3.87	2.85	3.32	5.47	5.07	5.39	5.41	5.67	5.14
K ₂ O	1.72	1.30	1.3	2.20	1.05	1.55	2.31	1.89	1.77	1.61	1.04	1.96
H ₂ O	0.11	0.10	0.11	0.08	0.10	0.13	0.12	0.20	0.10	0.13	0.14	0.12
П.п.п.	0.72	1.24	0.66	1.02	1.30	0.59	1.72	1.67	4.70	2.34	1.60	2.09
Сумма	99.61	99.65	99.81	99.98	99.47	99.97	99.71	99.67	99.53	100.03	99.67	100.06
Cr	202	180	201	142	297	78	394	493	649	289	268	254
Ni	35	86	24	49	123	26	183	197	239	148	115	93
Co	10	24	10	12	32	8	21	23	22	20	13	11
V	66	129	63	113	148	109	153	181	179	163	132	117
Pb	8.55	7.89	24.60	10.09	10.37	12.13	6.63	4.96	3.34	7.62	7.48	7.91
Rb	61.57	45.52	43.38	56.16	52.95	46.79	63.55	44.05	43.58	49.35	38.86	59.15
Ba	476.91	280.60	447.77	553.68	438.75	617.46	736.95	694.37	617.89	734.56	417.36	853.79
Sr	472.21	463.83	486.92	495.58	406.40	595.41	292.68	237.90	246.82	445.91	601.65	304.54
Nb	5.20	6.37	4.77	6.09	6.83	5.48	5.03	5.54	5.42	7.52	5.97	5.58
Zr	218.35	180.50	161.96	220.10	221.07	158.91	143.52	146.78	141.92	178.42	134.48	153.32
Y	8.965	16.684	11.695	10.533	16.265	12.774	10.144	15.637	13.357	16.126	10.518	9.630
Th	7.840	6.092	4.258	8.662	8.720	5.227	5.871	10.553	6.429	9.433	6.454	6.117
La	16.894	26.221	21.329	15.183	32.014	10.350	15.967	47.123	30.241	38.023	20.225	25.211
Ce	35.648	59.220	42.373	32.806	71.348	24.294	33.463	95.477	64.832	85.046	42.308	51.737
Pr	3.600	6.107	4.702	3.497	7.362	3.204	3.757	10.940	7.868	9.070	4.743	5.585
Nd	15.442	29.686	21.942	13.369	27.227	13.626	15.814	46.377	32.161	34.658	18.425	22.559
Sm	2.807	5.399	4.326	2.574	4.320	3.746	3.460	7.793	5.725	6.059	3.459	4.210
Eu	0.821	1.358	0.975	1.044	1.587	1.201	1.019	1.911	1.581	1.696	1.016	1.137
Gd	1.768	3.577	2.922	2.187	3.946	3.091	2.988	6.394	4.885	5.400	3.138	3.440
Tb	0.302	0.548	0.438	0.311	0.448	0.437	0.374	0.672	0.547	0.621	0.377	0.372
Dy	1.521	2.884	2.117	1.777	2.487	2.266	1.858	2.927	2.519	2.934	1.911	1.801
Но	0.349	0.650	0.433	0.361	0.513	0.442	0.355	0.525	0.473	0.531	0.368	0.337
Er	0.841	1.406	1.013	0.912	1.281	1.101	0.943	1.388	1.211	1.375	0.902	0.872
Tm	0.095	0.186	0.122	0.121	0.156	0.154	0.132	0.187	0.165	0.183	0.119	0.115
Yb	0.713	1.381	0.868	0.735	0.983	0.915	0.810	1.074	0.969	1.079	0.737	0.743
Lu	0.090	0.170	0.112	0.106	0.132	0.128	0.118	0.160	0.129	0.131	0.099	0.112
U	1.207	1.465	1.093	3.256	1.668	1.494	1.386	1.843	1.478	2.298	2.650	1.683
Sc	6.583	14.416	5.188	7.117	9.191	5.564	12.309	13.833	13.334	12.068	8.079	8.890
Hf	4.476	3.991	3.809	5.065	5.676	4.056	3.466	3.362	3.465	4.538	3.307	3.618
Та	0.283	0.395	0.340	0.305	0.255	0.344	0.297	0.283	0.239	0.309	0.264	0.316

Примечание. Д – дайка, ЛАТ – литокласт из агломератового туфа, ЦАТ – цемент агломератового туфа, Л – лавобрекчия, СШ – субвулканический шток.

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 6 2004

Структура	Чалка	Игнойла	Чалка	Игнойла	Остер	Паласельга	Няльмозеро	А покит*
Порода	C (1	ищ)		лдакит				
N	6	19	10	9	4	3	3	81*
SiO ₂	61.30 ± 4.0	62.61 ± 4.1	65.72 ± 4.2	64.63 ± 4.3	64.39 ± 3.8	58.91 ± 3.4	62.11 ± 5.13	64.66 ± 3.2
TiO ₂	0.94 ± 0.31	0.57 ± 0.19	0.68 ± 0.21	0.56 ± 0.22	0.76 ± 0.14	0.61 ± 0.21	0.69 ± 0.2	0.51 ± 0.2
MgO	3.35 ± 1.81	3.57 ± 1.23	1.83 ± 1.94	2.89 ± 1.18	1.94 ± 0.62	2.14 ± 0.83	2.01 ± 0.45	2.20 ± 1.0
CaO	5.65 ± 1.22	4.02 ± 2.11	4.45 ± 1.43	3.52 ± 1.89	4.12 ± 0.73	4.28 ± 0.81	3.45 ± 0.14	5.00 ± 1.3
Na ₂ O	3.52 ± 0.81	4.36 ± 0.93	3.57 ± 1.42	5.11 ± 1.12	3.86 ± 0.22	3.91 ± 0.74	3.98 ± 0.14	4.09 ± 0.4
K ₂ O	1.21 ± 0.66	1.58 ± 0.60	1.21 ± 0.69	1.71 ± 0.21	1.51 ± 0.47	1.23 ± 0.35	1.81 ± 0.34	1.72 ± 0.6
Cr	209 ± 64	210 ± 79	201 ± 14	302 ± 52	104 ± 25	117 ± 35	85 ± 11	30–50
Ni	82 ± 41	81 ± 40	39 ± 17	141 ± 16	78 ± 12	71 ± 14	60 ± 7	20–40
Co	26 ± 4	21 ± 5	15 ± 4	18 ± 4	19 ± 3	21 ± 4	20 ± 4	<20
Ba	212 ± 89	320 ± 66	461 ± 28	518 ± 32	425 ± 58	315 ± 64	495 ± 18	>400
Sr	286 ± 112	250 ± 34	454 ± 21	304 ± 77	379 ± 91	320 ± 38	509 ± 54	>450
Nb	6 ± 0.2	5 ± 0.8	4 ± 0.9	5 ± 0.9	9 ± 2.4	5 ± 0.5	6 ± 0.7	<10
Zr	160 ± 25	130 ± 13	190 ± 39	148 ± 10	225 ± 34	139 ± 24	180 ± 16	130–165
Th	6.1 ± 1.7	8.4 ± 2.2	5.1 ± 2.3	6 ± 3.4	2.4 ± 0.8	3.1 ± 0.4	3.9 ± 0.9	3–7
$(La/Yb)_n$	3.11 ± 1.21	5.18 ± 1.24	19.59 ± 2.42	21.60 ± 1.18	19.24 ± 1.21	18.49 ± 3.67	20.98 ± 2.04	21.98 ± 5.07

Таблица 2. Вариации среднего геохимического состава типичных субвулканитов известково-щелочного (БАДР-серия) и адакитового ряда в структурах Ведлозерско-Сегозерского зеленокаменного пояса (мас. %; ppm)

Примечание. С (ищ) – субвулканиты нормального известково-щелочного ряда, С (адакиты) – субвулканиты адакитового ряда, *N* – число образцов. *Состав типичного адакита (выборка из 81 анализа) приведена по работе [1].

Таблица 3. Sm–Nd-данные для БАДР-адакитовой ассоциации Чалкинской структуры, Ведлозерско-Сегозерский зеленокаменный пояс

№ обр.	Порода	Sm, ppm	Nd, ppm	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	$\epsilon_{\rm Nd}(T)$	$T_{\rm DM}$
105-7	Адакит (дайка)	3.96	18.59	0.1286	0.511358	1.3	3036
104-5	Адакит (литокласт в туфе)	5.03	23.20	0.1311	0.511447	2.1	2959
111-3	Андезит (массивная, порфировая лава)	3.91	20.36	0.1161	0.511122	1.5	3012
104-1	Андезит (псаммитовый туф)	5.21	27.98	0.1125	0.511084	2.1	2959
105-1	Андезит (псаммитовый туф)	3.31	14.53	0.1379	0.511612	2.6	2891
103-5	Андезит (массивная лава)	3.36	13.21	0.1538	0.511670	-2.3	3584
101-1	Андезит (массивная лава)	2.88	8.50	0.2051	0.512267	-10.5	
103-2	Адакит (дайка)	2.33	7.45	0.1887	0.512038	-8.6	

Примечание. $\varepsilon_{Nd}(T)$ рассчитан на 2995 млрд. лет, T_{DM} – модель по De Paolo [12].

сутствии в составе магматических источников древнего корового материала.

Для адакитов субвулканического штока Игнойльской структуры с $\varepsilon_{Nd(2995)} = +1.0...+2.1$ эти значения также близки и составляют 2973– 3083 млн. лет.

Геохимическая и изотопная характеристика адакитов отражает особые условия их генезиса. Модельные расчеты позволили оценить температуры ликвидуса адакитовых магм ВедлозерскоСегозерского зеленокаменного пояса, которые составляют 1020–1090°С, и показали, что исходные для адакитов Чалкинской и Игнойльской структур магмы могут быть получены при 10–15% плавлении гранатового амфиболита (субдуцированные океанические базальты) с образованием Срх (59%) + Gar (10%) + Pl (25%) + Hbl (6%) рестита с последующим фракционированием Pl ± Cpx.

К настоящему времени близкие по возрасту архейские адакиты выделены в зеленокаменных

ДОКЛАДЫ АКАДЕМИИ НАУК том 397 № 6 2004

поясах кратона Сьюпириор (Канада), таких, как Бич-Учи с возрастом 2739 \pm 2 млн. лет [13], Вава с возрастом 2670 \pm 66 млн. лет [2], а также на Карельском кратоне в Каменноозерской структуре с возрастом 2875 \pm 2 млн. лет [14].

Таким образом, как показали данные исследования, формирование островодужных БАДР-адакитовых ассоциаций происходило в архее уже на рубеже 3.05 млрд. лет в пределах Фенноскандинавского и прочих кратонов мира в близких геодинамических обстановках, значимую роль в которых играло заложение конвергентных межплитных зон перехода океан-континент, и именно присутствие адакитовых расплавов является признаком начальной стадии зарождения субдукции в этих системах.

Авторы выражают благодарность Ю.А. Ронкину за проведение аналитических работ.

Исследования выполняются при поддержке РФФИ, грант 02–05–97507, и Программы ОНЗ РАН "Глубинное строение и геодинамика Карельской части Фенноскандинавского щита".

СПИСОК ЛИТЕРАТУРЫ

- 1. Martin H. // Lithos. 1999. V. 46. P. 411-429.
- Polat A., Kerrich R. // Earth and Planet. Sci. Lett. 2002. V. 202. P. 345–360.

- 3. *Bourdon E., Eissen J.P., Gutscher M.A. et al.* // Earth and Planet. Sci. Lett. 2003. V. 205. P. 123–138.
- Svetov S.A., Svetova A.I., Huhma H. // Geochem. Intern. 2001. V. 39. Suppl. 1. P. s24-s38.
- 5. Светов С.А. // ДАН. 2003. Т. 388. № 5. С. 664–668.
- Светова А.И. Архейский вулканизм Ведлозерско-Сегозерского зеленокаменного пояса Карелии. Петрозаводск: КарНЦ РАН, 1988. 148 с.
- Сергеев С.А. Геология и изотопная геохронология гранит-зеленокаменных комплексов архея Центральной и Юго-Восточной Карелии. Автореф. дис. канд. геол.-минер. наук. Л., 1989. 24 с.
- 8. Овчинникова Г.В., Матреничев В.А., Левченков О.А. и др. // Петрология. 1994. Т. 2. № 3. С. 266–281.
- Лобиков А.Ф. В сб.: Проблемы изотопного датирования процессов вулканизма и осадкообразования. Киев. 1982. С. 90–91.
- 10. Peltonen P., Kontinen A., Huhma H. // J. Petrology. 1996. V. 37. № 6. P. 1359–1383.
- 11. Sun S.S., McDonough W.F. // Geol. Soc. Spec. Publ. 1989. V. 42. P. 313–345.
- DePaolo D.J., Linn A.M., Schubert G. // J. Geophys. Res. 1991.V. 96. P. 2071–2088.
- 13. *Hollings P., Kerrich R. //* Contribs Mineral. and Petrol. 2000. V. 139. P. 208–226.
- 14. Puchtel I.S., Hofmann A.W., Amelin Y.V. et al. // Geochim. et cosmochim. acta. 1999. V. 63. № 21. P. 3579–3595.