— ГЕОХИМИЯ =

УДК 549.07

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ФАЗОВОЙ ДИАГРАММЫ СЕЧЕНИЯ CaMgSi₂O₆-CaAl_{0.5}Si₂O₆ ПРИ ДАВЛЕНИИ 3.0 ГПа

© 2004 г. Н. В. Сурков, Ю. Г. Гартвич, Ю. В. Бабич

Представлено академиком Н.В. Соболевым 16.04.2004 г.

Поступило 06.05.2004 г.

Основными компонентами природных клинопироксенов являются стехиометричные миналы. Однако изучение составов природных клинопироксенов [1] и экспериментальные исследования показали наличие избыточного SiO₂ в виде жадеитоподобного минала Ca_{0.5}AlSi₂O₆, названного "кальциевая молекула Эскола" [2, 3]. Особое внимание уделяли этому миналу в связи с обсуждением "эклогитового барьера" [4, 5]. Было выдвинуто предположение о возможности использования этого компонента как индикатора давления в породах эклогитового парагенезиса. Однако данные экспериментальных исследований по устойчивости нестехиометричных клинопироксенов не согласуются между собой [4-9]. Решение данной задачи возможно путем построения корректной фазовой диаграммы сечения CaMgSi₂O₆-Ca_{0.5}AlSi₂O₆ при высоких давлениях. С этой целью были проведены исследования сечений Di-CaTs при давлении 3.0 ГПа.

Экспериментальная часть работы выполнена на аппарате высокого давления типа поршеньцилиндр [10] по общепринятой методике. В качестве нагревательного устройства использована ячейка на основе хлорида натрия [11]. Исходные вещества приготовлены весовым методом из прокаленных (1100-1400°С, 5-6 ч) оксидов марки ОСЧ. Рабочие смеси были расплавлены в прозрачное стекло. Образец в платиновой ампуле просушивали при 500-600°С и герметизировали электросваркой. Из образцов изготавливали двусторонний полированный шлиф, который изучали обычными петрографическими методами. Для анализа фаз использовали рентгенофазовый, рентгеноструктурный методы, состав фаз определяли с помощью электронного микроанализатора. Условия и результаты экспериментов приведены в табл. 1. В тексте, в табл. 1 и на рис. 3 использованы следующие сокращения и обозначения:

Институт минералогии и петрографии Сибирского отделения Российской Академии наук, Новосибирск СаТs – кальцийчермакитовый минал клинопироксена (CaAl₂SiO₆), CaEs – "кальциевая молекула Эскола" (Ca_{0.5}AlSi₂O₆), Gross – гроссуляровый компонент (Ca₃Al₂Si₃O₁₂), En – энстатитовый компонент (Mg₂Si₂O₆), Cpx – твердые растворы клинопироксена, Gr – твердые растворы гранатов, Q – полиморфные модификации кварца, Ky – кианит, α Di – α -диопсид, L – жидкость.

Специфической особенностью фазовых взаимоотношений оказались необычно низкие температуры плавления в диопсидовой части исследованного сечения и наличие необычной фазы, которая первоначально была диагностирована как диопсид. Основной особенностью этой фазы является полное отсутствие в ее составе глинозема и содержание до 5 мол. % энстатитового компонента. Рентгеноструктурные исследования показали отсутствие каких-либо структурных отличий этой фазы от диопсида [12, 13] при комнатной температуре и атмосферном давлении.

Оптическое изучение шлифов показывает, что диопсидовая фаза образует относительно крупные зерна (в два, три раза крупнее зерен других фаз), которые поперек удлинения имеют сечение, близкое к ромбическому, и неправильно шестоватую форму в сечениях вдоль удлинения (рис. 1, рис. 2). Все зерна испытывают тонкое полисинтетическое двойникование вдоль удлинения и довольно грубое двойникование поперек удлинения. Двойники хорошо видны только в двусторонне полированных шлифах и при больших увеличениях.

С учетом того, что клинопироксены диопсидового ряда образуют непрерывный ряд твердых растворов в сторону глиноземистого компонента, сосуществование высокоглиноземистого нестехиометричного клинопироксена и безглиноземистого диопсида невозможно. В связи с этим можно с достаточной уверенностью полагать, что данная фаза не относится к клинопироксенам диопсидового ряда, имеет структуру, отличную от клинопироксеновой, в каркасе которой кремнезем не может быть замещен на глинозем, и устойчива только при высоких давлениях и температурах. При понижении температуры и давления эта фаза (далее α -диопсид) не закаливается и превраща-

СУРКОВ и др.

Таблица 1.	Результаты экспе	риментов в сечении	CaMgSi ₂ O ₆ -C	$a_0 5 AlSi_2O_0$	5 при давлении	13.0 ГПа

Условия эксперимента		Результат									
Nº		-	x _i	ассоциация	фаза	состав фаз, мас. %					
обр. 1, ч	1, C					CaO	MgO	Al ₂ O ₃	SiO ₂	сумма	N
P454	1505	0.3	10	$\alpha Di + Cpx + L$	Срх	22.38	6.38	10.50	62.94	102.21	4
					αDi	24.62	19.91	0.03	55.89	100.46	4
P457	1428	5	10	$\alpha Di + Cpx + L + Q$	Срх	23.16	9.65	6.99	60.23	100.04	3
					αDi	24.84	19.50	0.08	56.21	100.64	6
P459	1408	7	10	$\alpha Di + Cpx + Q$	Срх	23.68	1.39	14.36	60.85	100.3	3
					αDi	25.98	18.81	0.23	55.15	100.18	2
P42	1511	3	20	$\alpha Di + Cpx + L$	L	20.63	3.77	12.92	63.65	100.99	10
					Cpx	24.60	16.27	5.28	54.15	100.32	4
					αDi	25.04	19.15	0	56.37	100.57	3
P45	1456	5	20	$\alpha Di + Gr + L + Gr$	Gr	24.67	8.46	24.55	42.32	100.01	3
					L	20.29	1.68	19.54	57.23	98.74	2
					αDi	25.44	18.71	0.04	54.72	98.91	1
P48	1412	6	20	$\alpha Di + Cpx + Gr + L$	L	21.33	2.3	15.26	60.79	99.68	2
					Cpx	23.57	11.67	11.63	51.40	98.28	4
	1250		20		αD_1	25.71	18.86	0.01	56.18	100.75	
P56	1358	6	20	$\alpha D_1 + Gr + Cpx + L$	Срх	22.18	4.21	28.53	44.98	99.92	
					Gr	34.15	2.31	21.80	42.01	100.28	3
D451	1520	2	20	arDi - Cara - I		24.82	19.58	0.00	50.44	99.85	4
P431	1550	3	30	$\alpha D1 + Cpx + L$	L	22.08	0.30	12.03	59.50	100.04	
					cpx aDi	24.35	10.40	4.09	55.2 55.72	00.29	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$
P//8	1507	3	30	$\alpha Di + Cnx + I$	I	24.41	4 73	12.89	57.62	99.29	2
1 440	1507		50	ubi + Cpx + L	Cnx	23.41	15.91	46	50.32	94 24	1
					αDi	22.41	17.52	0.02	51.85	92.24	1
P439	1407	8	30	α Di + Cpx + L + Gr	L	22.66	3.45	14.08	59.69	99.89	2
1.07	1.07		20		Cpx	24.97	16.04	5.93	53.44	100.39	3
					αDi	24.91	18.21	0.10	55.13	98.36	2
P442	1306	18	30	$\alpha Di + Cpx + L + Gr$	L	22.69	3.25	12.81	61.38	100.13	1
				1	Срх	24.79	14.60	6.98	53.36	99.74	4
					αDi	24.89	19.3	0	55.52	99.71	1
P445	1208	38	30	$\alpha Di + Cpx + Gr + Q$	Gr	29.69	3.26	24.43	40.54	97.92	1
					Срх	24.75	14.82	14.73	46.2	100.50	2
					αDi	25.18	19.07	0.03	56.23	100.52	4
P450	1530	3	50	Cpx + L	L	19.12	7.80	15.01	59.97	101.90	7
					Срх	23.50	15.37	7.52	52.95	99.36	3
P447	1507	3	50	Cpx + L	L	17.99	5.54	15.69	60.94	100.17	6
					Cpx	23.38	14.86	8.92	52.48	99.66	7
P458	1428	5	50	Cpx + Gr + L	L	19.21	7.58	15.70	59.85	102.35	3
					Срх	23.63	15.82	8.4	52.06	99.91	3
P438	1407	8	50	Cpx + Gr + L	L	17.70	5.54	16.48	61.46	101.18	4
					Срх	23.61	14.55	10.12	51.28	99.56	3
P441	1306	18	50	Cpx + Gr + Q	Срх	23.51	14.60	9.67	51.97	99.75	4
P444	1208	38	50	Cpx + Gr + Q + Ky	Gr	32.03	3.9	22.81	41.11	99.86	2
	4.422				Срх	24.54	13.71	11.66	49.84	99.76	4
P461	1408	7	70	Cpx + L	Срх	22.97	7.96	22.81	46.32	100.07	4

Примечание. т – время, час, x_i – мол. % CaEs, N – число усредняемых анализов.

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 4 2004

Рис. 1. Полисинтетическое двойникование α-диопсида в сечении поперек удлинения зерна.

Рис. 2. Двойникование α-диопсида в сечении вдоль удлинения зерна.

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 4 2004

Рис. 3. Фазовая диаграмма сечения Di–CaEs при давлении 3.0 ГПа. Темные кружки – условия проведения экспериментов.

ется в диопсид, в фазу, наиболее близкую по составу. Свидетельством подобного превращения является полисинтетическое двойникование.

Существование α -диопсида в качестве самостоятельной фазы увеличивает количество фаз в солидусе системы до четырех, что дает возможность интерпретировать низкие температуры в диопсидовой части сечения CaMgSi₂O₆–CaAl_{0.5}Si₂O₆, при которых появляется жидкость за счет появления эвтектики с участием α -диопсида – типа α Di + + Cpx + Gr + Q = L. В результате фазовая диаграмма сечения диопсид–"кальциевая молекула Эскола" (CaMgSi₂O₆–CaAl_{0.5}Si₂O₆) приходит в соответствие с правилом фаз, что является дополнительным аргументом для выделения α -диопсида как самостоятельной фазы.

На основании полученных результатов построен вариант фазовой диаграммы сечения $CaMgSi_2O_6$ — $CaAl_{0.5}Si_2O_6$ при давлении 3.0 ГПа (рис. 3). Температура плавления диопсида указана согласно данным [14]. Фазовые соотношения со стороны "кальциевой молекулы Эскола" показаны по данным [9].

В солидусе сечения в направлении от диопсида к компоненту "кальциевая молекула Эскола" происходит последовательная смена фазовых объемов Срх, α Di + Cpx, α Di + Cpx + Q, α Di + Cpx + Gr + Q, Cpx + Gr + Q, Cpx + Gr + Ky + Q, Gr + Ky + Q. В области ликвидуса в диопсидовой части прослеживается плавление по эвтектической реакции α Di + Cpx + Gr + Q = L, в кальциевой части – по реакции Cpx + Gr + Ky + Q = L [9]. Нестехиометричные клинопироксены образуют ограниченные твердые растворы с содержанием минала кальций-молекула Эскола до 23 мол. %, которое зависит от температуры и ассоциации. При высоких температурах в присутствии жидкости составы твердых растворов клинопироксенов нельзя выразить в обычных пироксеновых миналах, но в большинстве случаев они представлены трехкомпонентными твердыми растворами серии CaMgSi₂O₆-CaAl₂SiO₆-Ca_{0.5}AlSi₂O₆.

На основе установленных фазовых взаимоотношений можно выделить фазовые объемы, соответствующие не только корундовым, кварцевым (коэситовым) и кианитовым эклогитам, но и ассоциации с α -диопсидом, типа α Di + Cpx + Q + Gr. Аномально низкие температуры плавления ассоциаций с участием α -диопсида имеют большое значение для магматической петрологии, так как позволяют объяснить появление огромных объемов базальтовых расплавов, излившихся в процессе образования траппов.

Выводы: 1) изучены фазовые взаимоотношения диопсид—"кальциевая молекула Эскола" и построен вариант фазовой диаграммы сечения диопсид–кальций-молекула Эскола при давлении 3.0 ГПа; 2) установлено присутствие новой фазы (α-диопсид), которая при закалке испытывает фазовое превращение, переходя в диопсид; 3) существование α-диопсида приводит к появлению

ДОКЛАДЫ АКАДЕМИИ НАУК том 398 № 4 2004

новых реакций, что вызывает понижение температур плавления в сечении диопсид-кальций-молекула Эскола почти на 200°С.

Работа выполнена при поддержке РФФИ (грант 02–05–65394) и НШ-93–2003.5.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.
- Соболев В.С., Соболев А.В. // Геология и геофизика. 1977. № 12. С. 46–59.
- 3. Жариков В.А., Ишбулатов Р.А., Чудиновских Л.Т. // Геология и геофизика. 1984. № 12. С. 54–63.
- 4. Ханухова Л.Т., Жариков В.А., Ишбулатов Р.А., Литвин Ю.А. // ДАН. 1976. Т. 229. № 1. С. 182–184.
- 5. Ишбулатов Р.А. Очерки по физико-химической петрологии. М.: Наука, 1977. В. 6. С. 97–167.

- 6. Малиновская Е.К., Дорошев А.М., Булатов В.К., Брай Г. // Геохимия. 1991. № 2. С. 216–226.
- Gasparik T., Lindsley D.H. // Rev. Miner. 1980. V. 7. P. 309–339.
- 8. Wood B.J. // Amer. J. Sci. 1978. V. 278. № 7. P. 930–942.
- 9. Сурков Н.В., Дорошев А.М. // Геология и геофизика, 1998. Т. 39. № 9. С. 1254–1268.
- Годовиков А.А., Смирнов С.А., Малиновский И.Ю. и др. // Приборы и техника эксперимента. 1971. № 6. С. 159–160.
- 11. *Сурков Н.В.* А. с. СССР № 1762458 // Бюл. изобр. 1992. № 34. С. 213.
- 12. Дорошев А.М., Сурков Н.В., Малиновский И.Ю. // Зап. ВМО. 1981. Ч. 110. В. 5. С. 629–632.
- 13. Дорошев А.М., Малиновская Е.К., Сурков Н.В., Булатов В.К. // Геохимия. 1986. № 12. С. 1755–1764.
- Boyd F.R., England J.K. // J. Geophys. Res. 1963. V. 68. № 1. P. 311–323.
- 15. Surkov N.V., Gartvich Ju.G. // Exp. in Geosci. 1998. V. 7. № 2. P. 24–25.