= ГЕОХИМИЯ =

УДК 549.623.5

НАТРИЙ-СТРОНЦИЕВАЯ СЛЮДА – Na_{0.50}Sr_{0.25}Al₂(Na_{0.25}□_{0.75})Al_{1.25}Si_{2.75}O₁₀(OH)₂ ИЗ РУБИНОВОГО ЛОГА

© 2004 г. Н. И. Брянчанинова, А. Б. Макеев, Н. В. Зубкова, В. Н. Филиппов

Представлено академиком Н.П. Юшкиным 07.10.2003 г.

Поступило 20.10.2003 г.

В 2002 г. при детальных минералогических исследованиях коллекции слюдитовых плагиоклазитов проявления красного корунда Рубиновый Лог (Полярный Урал), расположенного на площади разрабатываемого хромитового месторождения Центрального (Райизский ультрабазитовый массив), была найдена необычная слюда с высоким содержанием стронция.

Проявление Рубиновый Лог находится в левом борту р. Макар-Рузь, пересекающей с севера на юг Райизский ультрабазитовый массив. В его строении принимают участие породы дунит-гарцбургитовой формации, подвергшиеся интенсивным процессам метасоматоза и метаморфизма [4-6, 8]. Основное линзообразное тело по разным источникам имело в плане размеры от 70 × 23 до 30×20 м. В настоящее время на дневной поверхности осталась только небольшая корневая часть плагиоклазитового тела (20 × 7 м), и можно наблюдать следующие зоны: альбитовую, паргаситхромитовую, корунд-хромит-паргасит-флогопитолигоклазовую, ядерную рубин-олигоклазовую. Часть тела, сложенная серыми плагиоклазитами с крупными кристаллами рубина, по-видимому, полностью выработана. Мелкие кристаллы рубина с зеленой стронциевой слюдой в сером плагиоклазите теперь можно встретить только в отвалах по бортам тела и по берегам Рубинового ручья. В экзоконтакте залегают антигорит-хлориттальковые сланцы, переходящие в лизардитовые серпентиниты, которые непосредственно примыкают к слабо измененным дунитам. В 150 м от обнажения с рубинами находится крупное хромитовое тело № 9 месторождения Центрального, которое в настоящее время отрабатывается, и остатки тела плагиоклазитов вскоре будут погребены под отвалами карьера.

Институт геологии Коми научного центра Уральского отделения Российской Академии наук, Сыктывкар В слюдистой подзоне С.В. Щербаковой [8] кроме флогопита было отмечено частое присутствие вростков другой слюды, диагностированной ею как фуксит, и долгое время, пока нами не были проведены микрозондовые исследования, которые уточнили ее химический состав, зеленая слюда из Рубинового Лога принималась за хромовую слюдку фуксит. В действительности зеленая слюда оказалась натрий-стронциевой слюдой, похожей по составу на парагонит. По внешним признакам фуксит и Na,Sr-слюда похожи.

В минеральной ассоциации с зеленой натрийстронциевой слюдой встречаются рубин, хромит, паргасит, олигоклаз и флогопит. Na,Sr-слюда образует тонкие оторочки вокруг кристаллов рубина и нарастает как на грани пинакоида, так и гексагональной призмы (рис. 1). Это срастание подобно келифитовой кайме вокруг граната. Во всех породах Рубинового Лога отмечается значительное (до 10%) содержание хромшпинелидов, для которых установлены две разновидности: крупные зерна феррохромита (1–3 мм) в породах и пылевидная вкрапленность (50–200 мкм) ферроалюмохромита в минералах, в том числе и в Na,Srслюде (табл. 1).

Химический состав новой стронциевой разновидности слюды (11 анализов) определен на сканирующем электронном микроскопе JSM-6400 с энергодисперсионной приставкой Link, ISIS-300 (U = 20 kB, I = 1 нA, t = 50 с, использованы аттестованные эталоны чистых металлов и синтетических соединений). Контрольные анализы (5 шт.) выполнены на микрозонде "Сатеbах" Н.Н. Кононковой. В табл. 1 приведена часть химических анализов Na,Sr-слюды и других породообразующих минералов Рубинового Лога.

Во всех исследованных минералах слюдитовых плагиоклазитов, кроме самих плагиоклазов, устанавливается изоморфная примесь хрома, что подчеркивает их генетическую связь с ультрабазитами. Так, рубин содержит 3.56 мас.% Cr₂O₃, зеленый амфибол паргасит, который иногда принимали за актинолит, – до 1.70, флогопит – до 1.57, а Na,Sr-слюда – 0.11–2.71 мас.% Cr₂O₃.

Московский государственный университет им. М.В. Ломоносова

Рис. 1. Электронно-микроскопическое изображение фрагмента образца рубинового слюдита, минеральная ассоциация (рубин, Na,Sr-слюда, флогопит, ферроалюмохромит): а – в обратно-рассеянных электронах, б–е – в характеристическом излучении MgK_{α_1} , AlK_{α_1} , SrL_{β_1} , KK_{α_1} , CrK_{α_1} . Светлыми точками на изображениях а и е проявились пылевидные вкрапления ферроалюмохромита. На изображениях в характеристическом излучении MgK_{α_1} и KK_{α_1} (б, д) светлыми пятнами проявился флогопит, а на изображении (в) в излучение AlK_{α_1} контрастно проявились светлым пятном рубин, серым – Na,Sr-слюда, темным – флогопит. Здесь на срезе образца виден характер срастания минералов: Na,Sr-слюда развивается по рубину и корродирует его.

Индивидуальной особенностью описываемой слюды является необычно высокое содержание стронция 3.06–6.02 мас. % SrO, который в структуре замещает натрий. Такое высокое содержание стронция в слюде отмечено впервые. Обычное его содержание, устанавливаемое спектральным анализом, позволяет говорить о весьма незначительной примеси стронция в слюдах [7]. Содержание 1.3% SrO в парагоните Антарктики [9] до настоящего времени было известно как самое высокое. Концентрация стронция 6 мас. % в исследованной нами слюде бо́льшая, чем концентрация натрия, позволяет рассматривать стронций как видообразующий элемент в минерале, а значит предположить, что, в сущности, это новый стронциевый минерал.

Дефицит суммы компонентов в анализах минерала (6–8%), наиболее вероятно, обусловлен присутствием воды или ОН-групп, не определяемых микрозондом. Методом прокаливания мономинеральной навески 50 мг до 1000°С определена величина п.п.п. = 6.02%. Данные ИКС и ДТА подтверждают наличие ОН-групп в этой Na,Sr-слюде.

Пересчеты на формульные коэффициенты 16 анализов стронциевой слюды методом зарядов [2] на (10 O + 2 OH) дают следующую усредненную эмпирическую формулу:

 $Na_{0.60}Sr_{0.19}Cr_{0.08}Ca_{0.09}K_{0.04}Fe_{0.02}Al_2\Box[Al_{1.31}Si_{2.69}O_{10}](OH)_2.$

Идеализированная химическая формула:

$$Na_{0.50}Sr_{0.25} Al_2(Na_{0.25}\Box_{0.75})[Al_{1.25}Si_{2.75}O_{10}](OH)_2$$

или

$$(Sr_nNa_{1-2n})Al_2(Na_n\Box_{1-n})[Al_{1+n}Si_{3-n}O_{10}](OH)_2.$$

В отличие от формулы парагонита в новой слюде значительно меньше катионов натрия, частичная замена которых на стронций компенсируется увеличением количества атомов алюминия в тетраэдрическом слое. Содержание главных компонентов минерала изменяется в узких пределах, мас. %: SiO₂ 38.27–42.24; Al₂O₃ 39.92–43.58; SrO

3.06–6.02; Na₂O 3.04–6.00. В качестве примесей в Na,Sr-слюде отмечаются, мас. %: K₂O 0.32–0.69; CaO 0.70–1.69; FeO 0.19–0.62; Cr₂O₃ 0.11–2.71; ред-ко TiO₂, BaO и MnO.

Структура и морфология кристаллов. Минерал относится к моноклинной сингонии, пространственная группа $C_{2h}^6 - C2/c$, Z = 4. Рентгенограмма новой стронциевой слюды получена с мелкого зерна (0.2 мм) фотометодом в камере РКА. Главные рентгеновские (диагностические) линии Na,Sr-слюды на дебаеграмме: 9.63 (3), **4.34** (**10**), 3.13 (9), 2.50 (10), 2.07 (8),

Таблица 1. Химический состав и формульные коэффициенты породообразующих минералов слюдитовых плагиоклазитов, мас. %

Компонент	1	2	3	4	5	6	7	8	9	10
SiO ₂	65.57	43.28	36.70	_	_	0.12	38.62	38.27	39.74	39.24
TiO ₂	_	0.14	0.33	0.07	_	0.01	_	_	_	_
Al_2O_3	21.02	17.43	22.02	23.34	8.93	95.85	41.03	40.57	39.92	41.43
Fe ₂ O ₃	_	-	-	2.32	1.42	0.46	-	-	-	_
Cr ₂ O ₃	0.02	1.70	1.94	40.89	58.11	3.56	1.19	2.71	1.58	0.79
FeO	0.02	5.25	4.21	27.12	27.32	-	0.28	0.62	0.19	0.34
MnO	_	0.07	0.04	0.49	-	-	-	-	-	-
MgO	-	15.30	19.01	5.20	3.88	-	0.12	-	-	-
CaO	5.68	11.55	0.03	-	-	-	0.76	1.32	1.08	0.70
NiO	-	0.04	-	-	0.02	-	-	-	-	-
SrO	-	-	0.01	-	-	-	5.58	6.02	5.73	5.70
BaO	-	-	1.76	-	-	-	-	-	-	-
Na ₂ O	7.66	3.63	2.04	-	-	-	4.12	3.04	4.04	3.99
K ₂ O	0.03	0.31	6.54	-	_	-	0.69	0.54	0.36	0.56
Сумма	100.00	98.70	94.68	99.43	99.68	100.00	92.39	93.09	92.64	92.72
Si ⁴⁺	2.93	2.921	2.623	-	-	-	2.708	2.628	2.777	2.733
Ti ⁴⁺	-	0.007	0.018	0.027	-	-	-	-	-	-
^{IV} Al ³⁺	1.07	1.072	1.359	7.135	2.926	0.973	1.292	1.372	1.223	1.267
^{VI} Al ³⁺	-	0.314	0.496	-	-	-	2.099	1.911	2.065	2.134
Fe ³⁺	-	-	-	0.453	0.298	0.003	-	-	-	-
Cr ³⁺	-	0.091	0.110	8.385	12.776	0.024	0.066	0.147	0.087	0.044
Fe ²⁺	-	0.296	0.252	5.882	6.384	-	0.016	0.036	0.011	0.020
Mn ²⁺	-	0.004	0.002	0.107	-	-	-	-	-	-
Mg ²⁺	-	1.540	2.026	2.011	1.616	-	-	-	-	_
Ca ²⁺	0.27	0.835	0.002	-	-	-	0.057	0.097	0.081	0.052
Ni ²⁺	-	0.002	_	-	-	-	-	-	-	-
Sr ²⁺	-	-	_	-	_	-	0.227	0.240	0.232	0.230
Ba ²⁺	-	_	0.049	-	_	-	-	_	_	-
Na ⁺	0.73	0.475	0.283	-	_	-	0.560	0.405	0.547	0.539
K ⁺	0.002	0.027	0.811	_	_	-	0.062	0.047	0.032	0.050

Примечание. Минералы: 1 – олигоклаз № 27, 2 – паргасит, 3 – флогопит, 4 – фероалюмохромит, 5 – феррохромит, 6 – рубин, 7–10 – Na, Sr-слюда.

Рис. 2. Полиэдрическая структура натрий-стронциевой слюды.

1.893 (8), 1.591 (8), 1.469 (10), 1.018 (8), 1.008 (8). Рентгенограммы Na,Sr-слюды и парагонита очень близки. По результатам монокристальной съемки на 4-кружном дифрактометре (Syntex $P\bar{1}$ на кафедре кристаллографии геологического факультета МГУ получены следующие параметры элементарной ячейки Na,Sr-слюды: a = 5.161(4); b = 8.907(7); c = 19.31(2) Å; $\beta = 94.83(8)^{\circ}$. Эти значения близки параметрам элементарной ячейки парагонита 2M₁, что позволяет рассматривать дан-

ный образец Na,Sr-слюды как политип $2M_1$. Кристаллическая структура Na,Sr-слюды (рис. 2) была уточнена с использованием программы Shelx-97 [12] (R = 0.073). Основу структуры Na,Srслюды, так же как и всех представителей группы слюд, составляют трехслойные пакеты TOT, в которых октаэдрические слои зажаты между двумя тетраэдрическими сетками из (Si, Al)-тетраэдров. Тетраэдрические сетки образованы двумя неэквивалентными тетраэдрами с практически одинаковым распределением атомов Si и Al. В от-

личие от чисто натриевого диоктаэдрического парагонита внутри октаэдрического слоя Na,Srслюды отчетливо проявилась дополнительная позиция, частично заселенная атомами Na. Учитывая присутствие даже этой дополнительной позиции Na в O-слоях Na,Sr-слюды, ее структуру следует рассматривать как диоктаэдрическую в соответствии с рекомендациями подкомиссии КНМНМ ММА по слюдам [11]. В межслоях Na,Sr-слюды в крупных октаэдрах расположены статистически замещающие друг друга атомы Na, Sr и Ca.

Характерные выделения и физические свойства. Na,Sr-слюда встречается в виде листочков, чешуек и мелкочешуйчатых агрегатов. Она обладает характерной для слюд весьма совершенной спайностью по (001), имеет неровный излом. Окраска минерала светлая изумрудно-зеленая. Твердость Na,Sr-слюды выше, чем у других слюд: измерения, проведенные методом вдавливания алмазной пирамидки по Виккерсу, дали значения 217 ± 37 кгс/мм², что соответствует твердости 4 по шкале Мооса. Плотность натрийстронциевой слюды, измеренная методом микробюреток, составила 3.07 ± 0.03 г/см³, а вычисленная по рентгеноструктурным данным 2.99 г/см³, что также несколько выше, чем у парагонита.

Оптические свойства. Показатели преломления определены методом фокального экранирования на приборе ППМ-1, разработанном В.Г. Фекличевым: $n_g = 1.642(2), n_m = 1.635(2), n_p = 1.598(2), n_g - n_p = 0.044$. Угол 2V – 60° – 80° (эксп.), 70° (расч.). Расчетное значение угла 2V получено по номограмме Г.С. Кравцова. Минерал двуосный, оптически отрицательный, обладает плеохроизмом от бледно-зеленого цвета по N_p до желтоватозеленого по N_o. Удлинение положительное, угасание прямое. Не люминесцирует под воздействием ультрафиолетовых и катодных лучей. ИК-спектр Na,Sr-слюды, состоящий из полос: 488, 544, 716, 1008, 3450, 3625 см⁻¹, весьма близок по виду и расположению аналитических полос в ИК-спектре парагонита [7], и его можно интерпретировать по аналогии с парагонитовым: полосы 488, 544 см⁻¹ вызваны деформационными колебаниями Si-O-Me и Si–O; 1008 см⁻¹ – валентными колебаниями Si–O, а 3450, 3625 см⁻¹ – валентными колебаниями ОН-группы.

Поведение при нагревании. Кривая ДТА Na,Sr-слюды подобно термограммам мусковита и парагонита содержит два эндотермических эффекта при 850 и 1100°С. С кислотами и щелочами минерал не реагирует.

Нахождение. Na,Sr-слюда входит в минеральный парагенезис рубиновых плагиоклазитов, который включает следующие минералы: олигоклаз, паргасит, флогопит, ферроалюмохромит, феррохромит, хромовый корунд – рубин. Возраст плагиоклазитов, оцененный К-Аг-методом по флогопиту, составляет 320 ± 20 млн. лет. Слюдитплагиоклазитовые тела пространственно совмещены с пегматоидными гигантозернистыми дунитами, размер зерен оливина в которых может достигать 20 см. Наличие водных и фторсодержащих минералов в рубиновом парагенезисе и пегматоидных дунитах указывает на участие в минералообразовании флюидной фазы. Мы склонны считать рубинсодержащие слюдитовые плагиоклазиты с крупными и даже гигантскими кристаллами рубина (до 12 см), паргасита, флогопита ультраосновными пегматитами, образование которых происходило с участием летучих компонентов и накоплением в конечных продуктах процесса (слюдах, амфиболах, корунде) кальция, калия, натрия, алюминия и стронция, не типичных для ультраосновной системы.

Чтобы определить место найденной слюды в минералогической систематике слюд, рассмотрим изоморфные соотношения в ряду натрий-стронциевых слюд при последовательном замещении Na⁺ на Sr²⁺ с шагом 0.25 формульных единиц и, соответственно, в ряду натрий-кальциевых слюд при замещении Na⁺ на Ca²⁺. Здесь можно обозначить следующие гипотетические минеральные фазы, пока не обнаруженные в природе:

$$\begin{split} A - Na_{0.50}Sr_{0.25} \ Al_2(Na_{0.25}\Box_{0.75})Al_{1.25}Si_{2.75}O_{10}(OH)_2, \\ B - Sr_{0.5}Na_{0.5}Al_2Al_{1.5}Si_{2.5}O_{10}(OH)_2, \\ C - SrAl_2\Box Al_2Si_2O_{10}(OH)_2, \end{split}$$

 $D - Na_{0.50}Ca_{0.25}Al_2(Na_{0.25}\Box_{0.75})Al_{1.25}Si_{2.75}O_{10}(OH)_2$

 $E - Ca_{0.5}Na_{0.5}Al_2Al_{1.5}Si_{2.5}O_{10}(OH)_2.$

Парагонит – NaAl₂ \square AlSi₃O₁₀(OH)₂ и предполагаемые фазы А и D по рекомендациям "Подкомитета по слюдам КНМНМ ММА" [11] должны относиться к диоктаэдрическим собственно слюдам, тогда как предполагаемые фазы В и Е, так же как и конечные члены рядов маргарит – СаАl₂□Al₂Si₂O₁₀(OH)₂ и его стронциевый аналог С, это уже х р у п к и е слюды со своими структурными особенностями. Гипотетические минеральные фазы В и Е по тем же рекомендациям [11] следовало бы считать триоктаэдрическими слюдами, где в позиции М октаэдрических слоев располагаются катионы в количестве ≥2.5 формульных единиц. Эти же фазы В и Е могли бы быть новыми минералами, в которых замещена половина катионов натрия на стронций или кальций.

Природные слюды, близкие по составу к теоретическим фазам D и E, под названием натриевый маргарит описаны Г.Д. Афанасьевым, Н.Х. Айдиньяном [1] и G. Koch [10]. Очевидно, что эти природные фазы не являются маргаритом и при исследованиях их структуры на современном оборудова-

Признаки	Парагонит (Приполярный Урал [7])	Sr-парагонит (Антарктида [9])	Na, Sr-слюда (Рубиновый Лог)	Браммалит (Казахстан [7])	
a ₀	5.13	5.19	5.161	5.12	
b ₀	8.89	9.02	8.907	8.91	
c ₀	19.36	20.00	19.31	19.26	
β	94.10	не указан	94.83	95°50′ ± 20′	
Цвет	Белый	Белый	Светлый изумрудно- зеленый	Белый с оливковым оттенком	
Твердость по Моосу, по Виккерсу	2.5	2–3	$\begin{array}{r} 4\\ 217\pm37\end{array}$	Мягкий	
Плотность, г/см ³	2.82-2.90	2.84-2.95	3.07	Нет данных	
расч.	(2.907)	(2.85)	(2.99)		
n _g	1.600-1.609	1.586-1.612	1.642	1.579	
n _m	1.594-1.609	1.582-1.604	1.635	Нет данных	
n _p	1.564-1.580	1.550-1.574	1.598	1.561	
$n_g - n_p$	0.028-0.038	0.035-0.042	0.044	0.018	
Угол 2V	40–50	30–45	60-80	Большой	
Оптический знак	(-)	(-)	(-)	(-)	
Эндоэффекты	850, 1100	Нет данных	850, 1100	670	

Таблица 2. Сравнение структурных, оптических и физических свойств натриевых слюд

нии они могли бы быть выведены в качестве самостоятельных минеральных фаз.

подкомитета по Председатель слюдам КНМНМ ММА проф. Milan Rieder, ознакомившись с результатами наших исследований, предложил отнести описываемую слюду к стронциевой окта-натриевой разновидности браммалита – $(Na,K)_{1-n}Al_2\Box [Al_{1-n}Si_{3+n}O_{10}](OH)_2$. Однако мы не можем с ним согласиться, так как считаем, что описываемая натрий-стронциевая слюда отличается от браммалита еще больше, чем от парагонита, а именно, физическими, термическими, оптическими свойствами и структурой (табл. 2). Принципиально различие в химическом составе этих двух слюд: в Na,Sr-слюде наблюдается значительный и з б ы т о к алюминия в тетраэдрах, а для браммалита характерен его дефицит, что видно из представленных формул.

В связи с этим следует обратить внимание на парагонит со стронцием, описанный Е.S. Grew и др. [9]. Как отметили сами авторы, изученный ими минерал "уникален по существенному избытку Al^{IV} ", а именно имеет 1.25 ат. Al^{IV} в формуле, и это при том, что содержание SrO составляет 1.3%. По нашему мнению, описанный ими минерал является высоконатриевой разновидностью нашей Na,Sr-слюды, поскольку изменения в кремнекислородном тетраэдре уже произошли и, следовательно, структура скорее будет отвечать описанной выше, чем структуре парагонита. Очевидно, собственно парагонит является дискретным и характеризуется постоянством состава, структуры и свойств. Na,Sr-слюда же, судя по всему, имеет довольно широкий диапазон вариаций видообразующих катионов и обладает существенно иными физическими свойствами по сравнению с парагонитом и другими минералами группы слюд.

Из приведенных рассуждений следует, что изученная нами Na,Sr-слюда структурно, по свойствам и химическому составу отличается от парагонита и не является его разновидностью, не является она разновидностью и никаких других известных в природе слюд. Остается открытым вопрос о стронциевой слюде как о новом минеральном виде, пока не будут найдены фазы с еще более высоким содержанием стронция. Однако бесспорно, что в общей формуле слюд IM₂₋₃ \Box_{1-0} T₄O₁₀A₂ к перечню катионов в позиции I – Cs, K, Na, NH₄, Rb, Ba, Ca необходимо добавить еще и Sr. Na,Sr-слюда в минералогической классификации займет свое место в семействе собственно диоктаэдрических слюд в группе парагонита [3, 7, 11].

Мы признательны сотрудникам Института геологии Коми НЦ УрО РАН Т.Н. Поповой и Г.Н. Модяновой за постоянную помощь в исследованиях, Н.Н. Кононковой (ГЕОХИ РАН) за контрольные микроанализы и Е.Л. Белоконевой (МГУ) за содействие в рентгенодифракционном эксперименте. Большую помощь при обсуждении результатов структурных исследований оказывал чл.-корр. РАН Д.Ю. Пущаровский, чью помощь и поддержку мы особенно ценим.

Работа выполнена при финансовой поддержке РФФИ (грант 03–05–64054), программы "Российские Университеты" и президентской программы поддержки научных школ (грант 2250.3003.5).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Афанасьев Г.Д., Айдиньян Н.Х. //* Изв. АН СССР. Сер. геол. 1952. № 2. С. 138–140.
- 2. Булах А.Г., Кривовичев В.Г., Золотарев А.А. Формулы минералов. Термодинамический анализ в минералогии и геохимии. Практическое руководство и справочник. СПб.: Изд-во СПбГУ, 1995. 260 с.
- 3. Годовиков А.А. Минералогия. М.: Недра, 1983. 647 с.
- 4. *Макеев А.Б.* Минералогия альпинотипных ультрабазитов. СПб: Наука, 1992. 197 с.
- 5. Макеев А.Б., Брянчанинова Н.И. В сб.: Геология и минерально-сырьевые ресурсы Западно-Сибир-

ской плиты и ее складчатого обрамления. Тюмень, 1991. С. 65–67.

- Макеев А.Б., Брянчанинова Н.И. Топоминералогия ультрабазитов Полярного Урала. СПб.: Наука, 1999. 257 с.
- Минералы. Справочник / Под ред. Ф.В.Чухрова. Т. 4. В. 1. Слоистые силикаты. М.: Наука, 1992. 600 с.
- 8. Щербакова С.В. // Тр. ВСЕГЕИ. 1976. Т. 201. С. 111–119.
- 9. Grew E.S., Hinthorne J.R., Marques N. // Amer. Miner. 1986. V. 71. № 9. P. 1129–1134.
- 10. Koch G. // Chem. Erde. 1935. Bd. 9. H. 4. S. 453.
- 11. *Rieder M., Cavazzini G., D'yakonov Y. et al. //* Can. Miner. 1998. V. 36. P. 41–48.
- 12. *Sheldrick G.M.* SHELX-97. Program for the Solution and Refinement of Crystal Structures. Madison (Wis): Siemens Energy and Automation, 1997.