УДК 550.8 (571.65)

О ПРИНЦИПАХ СТРУКТУРНО-ВЕЩЕСТВЕННОЙ КЛАССИФИКАЦИИ ГЕОЛОГИЧЕСКИХ ФОРМАЦИЙ

Б.Ф. Палымский

Федеральное геологическое унитарное предприятие "Магадангеология", г. Магадан

Предлагаемая общая классификация разнотипных геологических формаций построена на структурновещественной основе, с использованием материалов по Северо-Востоку России. Намечено шесть таксономических уровней: формационный тип (осадочные, магматические, метаморфические, рудные геологические формации) — семейство формаций — группа формаций — формационный вид (собственно геологическая формация) — разновидность — формационный индивид (формация, образовавшаяся в конкретном регионе, в определенное время и отображаемая на картах при геологическом картировании в виде стратиграфических подразделений, магматических и метаморфических комплексов).

Ключевые слова: геологические формации, классификация, структурно-вещественные признаки.

Формационный анализ прочно вошел в геологический обиход как один из главных методов и инструментов познания закономерностей геологического строения литосферы; поэтому необходимость изучения геологических формаций, как важнейшей категории природных системных объектов надпородного ранга, почти ни у кого не вызывает сомнения. Между тем, общепринятая методика выделения, описания и, самое главное, классифицирования формаций до сих пор отсутствует. Существующие классификации во многих случаях группируют формации по принадлежности к объектам более крупного ранга, как это делается в большинстве тектонических классификаций, к тому же касаются, как правило, какой-либо одной группы формаций (осадочных, магматических, реже - метаморфических). Для обсуждения предлагается вариант классификации геологических формаций, построенной на структурно-вещественных принципах. Первая попытка создания такой классификации, предпринятая автором ранее [10], была позитивно воспринята многими "корифеями" структурно-вещественного направления в отечественной геоформациологии – В.И. Драгуновым, К.В. Симаковым, В.А. Соловьевым и другими. Это обстоятельство послужило толчком к продолжению работы по ее совершенствованию; в качестве фактического материала использована характеристика геологических формаций Северо-Востока России, изучению которых автор посвятил около 50 лет научной и производственной деятельности.

Поскольку геологические формации, как сложные системные объекты, обладают самыми различными свойствами, характеристиками, то, в зависимости от взглядов, которых придерживается тот или иной исследователь, признаки, положенные в основу классификации формаций, могут резко различаться. Как отмечает Ю.А. Косыгин, "для одного реального пространства (т.е. фиксированного объема участка Земли или Земли в целом) может быть построено весьма много специализированных пространств"; такими пространствами "могут быть биостратиграфическое, петрографическое, геохимическое, гравиметрическое, геотермическое и т.д." [7. стр. 13]. Анализ формационных классификаций, проведенный В.И. Драгуновым [4], В.Н. Швановым [16], автором [10] и другими, показывает, что наиболее часто используемыми признаками являются эмпирически устанавливаемые парагенезисы горных пород (петрографический состав формаций), их структурные взаимоотношения, минеральный состав, химический состав, тектоническое положение, разнообразные условия образования (климатические, палеогеографические, физико-химические, геодинамические), метаморфические изменения, рудоносность и т.д. и т.п. Достаточно обычны высказывания о необходимости учета при классификации возможно большего числа признаков, что, в конечном счете, может привести к абсурду; например, признавая правомерность использования большинства признаков и их сочетаний в качестве основы классификации, при числе признаков,

84 Палымский

равном 13, количество направлений в учении о формациях может вдвое превысить население земного шара [5]. Следовательно, необходимо найти наиболее существенные признаки формаций, не зависимые от субъективных представлений и воззрений. Как убедительно показал В.И. Драгунов [3, 4], во всех предлагаемых классификациях в явном или предполагаемом виде присутствуют в качестве обязательных признаков состав формаций (набор входяших в них пород) и взаимоотношения горных пород (структура формаций), т.е. элементы (или компоненты) формаций и их композиция, определяющие геологические формации как природные системы. Иначе говоря, главными системными признаками, как это отмечали еще основоположники учения о формациях Н.С. Шатский и Н.П. Херасков, служат парагенезисы горных пород, связанные единством вещественного состава и специфической упорядоченностью в пространстве. Только системный (структурновещественный) подход может обеспечить создание единой классификации геологических формаций, обладающей рядом несомненных преимуществ: вопервых, такая классификация сможет охватить все типы образований формационного ранга - осадочные, магматические, метаморфические, рудные (в широком смысле понятия); во-вторых, она может быть построена в единой иерархической системе, с одним основанием деления на каждом таксономическом уровне (по крайней мере, для каждого формационного типа); наконец, подобная классификация будет обладать наилучшей узнаваемостью, независимо от авторства.

Если выделение осадочных и магматических формаций в настоящее время не подвергается сомнению, то формационная принадлежность метаморфических толщ, исключая метасоматические образования, до сих пор является предметом дискуссий. Тем не менее, существование самостоятельной крупной группы метаморфических пород – бесспорно, а успехи в изучении метаморфических образований неизбежно приводят к необходимости выделять крупные и сложные тела, образованные структурно определенными сообществами метаморфических горных пород, т.е. – метаморфические геологические формации. Еще сложнее обстоит дело с выделением рудных и рудоносных формаций, хотя именно их описанию посвящено большинство публикаций по геологическим формациям и формационному анализу. Напомним, что четких геологических определений у понятий "полезное ископаемое", "руда", "месторождение", "рудная формация" не существует, поскольку эти понятия скорее экономические и обусловлены хозяйственными потребностями и технологическими возможностями производства. Однако важное практическое значение рудных сообществ предопределяет необходимость рассматривать и классифицировать рудные формации в качестве специфических геологических формаций или их частей, обладающих особой прикладной ценностью. По определению Д.В. Рундквиста, разделяемому автором, рудная формация — "это устойчивая ассоциация парагенезисов (пород, руд), объединенных общей структурой, в составе которых содержится компонент (элемент, минерал или парагенезис) в промышленных количествах" [8, стр. 31].

В качестве первого классификационного признака должен быть выбран, очевидно, вещественный, как наиболее выраженный, "бросающийся в глаза" даже при самом поверхностном знакомстве с телами формационного ранга. Основные трудности, из-за которых до сих пор никому не удалось создать приемлемую структурно-вещественную классификацию формаций, связаны с отсутствием общепринятой, построенной на общих основаниях, классификации горных пород, на что обращали внимание В.М. Цейслер [16], В.Н. Шванов [17] и другие. Как ни парадоксально, но наиболее изученные осадочные формации при описании состава чаще всего опираются на группировки горных пород по "гранулометрическому" признаку. Интересная классификация осадочных горных пород на структурно-вещественной основе [12] еще не получила общего признания в силу своей сложности и "нетрадиционности". Несколько лучше обстоит дело с классификацией магматических горных пород; достаточно устоялась и классификация метаморфических горных пород, хотя названия последних составлены с применением многословной "минералогической" характеристики.

Структурный признак – дополнительный, но не последний по важности; в некоторых случаях он имеет решающее значение, например, при описании флишевых формаций, крупных таксонов метаморфических формаций. В качестве главного структурного признака нами использован характер отношений между формациями, их компонентами (парагенерациями) и элементами (горными породами), как наиболее общий для всех формационных типов [2, 11]. В стратифицированных формациях преобладают отношения "порядка" (последовательности), находящие выражение в различных типах "слоистости"; смену парагенезисов горных пород в латеральном направлении характеризуют отношения "эквивалентности". Отношения "пересечения" свойственны, главным об-

разом, магматическим (плутоническим) формациям; отношения "включения" определяются присутствием в теле какой-либо формации чуждых элементов; наконец, отношения "контактирования" указывают на характер границ между геологическими формациями или их частями.

На указанных принципах построен предлагаемый автором вариант структурно-вещественной классификации геологических формаций. Главной единицей классификации является "формационный вид", или собственно геологическая формация; выразителем вида служит элементарный парагенезис горных пород, характеризующих формацию ("парагенерация", по В.И. Драгунову [3]). Более высокие таксономические категории являются собирательными, обобщающими формации по все более абстрагированным признакам. Всего предлагается шесть таксономических уровней объектов формационного ряда (по аналогии с [9]), главные из которых: формационный вид — группа (род) формаций — семейство формаций — формационный тип (табл. 1).

Для магматических формаций в качестве промежуточного звена выделен подтип (вулканические и плутонические формации). По некоторым дополнительным (уточняющим) признакам виды могут разделяться на разновидности, например, в составе группы молассовых формаций может быть выделена красноцветная (молассовая) формация. Геологисъемщики имеют дело с формационными телами, об-

разовавшимися во вполне определенное время, имеющими определенную географическую привязку и отображаемыми на картах в виде стратиграфических подразделений, интрузивных и метаморфических комплексов; такие тела являются "формационными индивидами" (их нередко называют конкретными геологическими формациями).

Итак, наиболее крупные таксономические категории по аналогии со многими естественными классификациями названы типами и соответствуют осадочному, магматическому, метаморфическому и рудному формационным типам. Эти названия общеприняты и примерно совпадают с наиболее крупными группировками входящих в состав формаций горных пород. По устойчивым структурно-вещественным ассоциациям формационные типы разделены на семейства (табл. 2). В осадочном типе семейства выделены в основном по признакам петрографического состава - терригенные (с преобладанием обломочных пород), органогенно-хемогенные и глинистые; вероятно, правильней бы было называть их "кластолитовыми", "органолито-хемолитовыми", "пелитолитовыми", но нами принята к использованию уже устоявшаяся база терминов и понятий, несмотря на некоторую их противоречивость. В группах внутри семейств формации объединены по общим структурным закономерностям - обязательному присутствию "флишевых циклитов" во флишевых формациях, сложной цикличности в молассо-

Таблица 1. Таксономические единицы классификации геологических объектов формационного ранга.

ГЕОЛОГИЧЕСКИЙ КОМПЛЕКС								
Формационный ряд								
Формационный индивид	Разновидность	ГЕОЛОГИЧЕСКАЯ ФОРМАЦИЯ	Группа	Семейство	Тип			
Парагенерация								
ГОРНАЯ ПОРОДА								

Таблица 2. Семейства геологических формаций.

Таксоны	ОБЪЕКТЫ ФОРМАЦИОННОГО РАНГА					
Тип	Осадочный	Магматический	Метаморфический	Рудный		
	Терригенные	Ультрамафические	Нестратифици- рованные	Черных металлов		
Семейства	Органогенно- хемогенные	Мафические		Цветных металлов		
	Глинистые	Мафически-салические	Зонально стратифицированные	Редких и благородных металлов		
		Салические	Метасоматические	Неметаллических ПИ		

86 Палымский

вых, обычному отсутствию цикличности в микститовых. Видовые таксоны внутри групп выделяются по особенностям петрографического состава. Тип магматических формаций разделен на два подтипа в основном по структурному признаку: вулканических (наличие стратификации – отношений "порядка") и плутонических (с отношениями "пересечения" между породами различных фаз внедрения) формаций. Семейства определены по характерным минеральнопетрографическим парагенезисам – ультрамафических, мафических, мафически-салических и салических формаций [9]. В зависимости от преобладания пород нормального или щелочного ряда намечены группы; формационные виды учитывают характерные сочетания вулканических или плутонических пород. Структурные признаки положены в основу выделения семейств метаморфических формаций наличие или отсутствие стратификации, зональность. Группы и виды формаций отвечают наиболее типичным совокупностям метаморфических горных пород (мигматитовые, амфиболитовые, зеленосланцевые). Несколько отличается группировка семейства зонально-метаморфических формаций, в которой в косвенной форме учтен признак происхождения - стресс-метаморфические (подразумеваются динамометаморфические образования), термально-метаморфические (роговиковые), импактитовые (ударно-метеоритные).

При построении классификаций рудных формаций в геологической литературе преобладает целевой, "генетический" подход - формации объединяются либо по признаку происхождения (магматические, пегматитовые, гидротермальные и т.д.), либо по принадлежности к определенным тектоно-магматическим этапам или геодинамическим обстановкам. Существует ряд публикаций [8, 13], в которых использованы принципы специальной (отраслевой) металлогении, а группировки рудных формаций осуществляются по металлам или другим полезным компонентам. По существу, эти классификации подразумевают выделение крупных формационных таксонов по элементному (химическому) составу, с дальнейшим подразделением на сообщества по сходным минеральным и породным (рудным) парагенезисам. Поскольку это направление в общих чертах соответствует структурно-вещественным принципам, оно положено в основу предлагаемой классификации рудных формаций. В составе формационного типа выделено (без учета общераспространенных) три крупных рудных семейства – черных металлов, цветных металлов, редких и благородных металлов, и налсемейство неметаллических полезных ископаемых, включающее формации индустриального, химического сырья, горючих полезных ископаемых. Внутри семейств обособляются группы по сходным минеральным и рудным парагенезисам. Безусловно, некоторые формации в группах, объединенные в основном по полезному компоненту, имеют мало общего по происхождению, однако это, в известной мере, неизбежно в связи с "прагматическим" подходом к выделению рудных и рудоносных формаций вообще.

Рассмотренные схемы классификации охватывают, в основном, объекты "моноформационные". В природе многочисленны примеры "полиформационных" геологических тел, причем "смешение" формаций происходит практически на всех таксономических уровнях. В литературе давно фигурируют "вулканогенно-осадочные" (смешение на уровне типов), "карбонатно-терригенные" (на уровне семейств), базальт-андезитовые, мигматит-гранитовые (на уровне групп и видов) формации и т.п. В последнее время многие исследователи настойчиво предлагают вводить в общую классификацию геологических формаций переходные формации, по крайней мере, на уровне высших таксономических категорий, например, осадочно-вулканогенные, вулкано-плутоногенные, плутоно-метаморфические [6], или магма-метаморфические, метамагматические [1]. Очевидно, необходимы какие-то общие правила для наименования таких полиформационных объектов. Например, для двух- и более компонентных систем название следует давать по двум преобладающим формационным объектам, перечисляя их через дефис (вулканогенно-плутонические, известняково-доломитовые и т.п.); при преобладании в составе (более 50 % от общего объема) одной из формаций, ее название ставится последним перед словом "формация". При незначительном участии одной из формаций, но имеющей важное практическое значение (это относится, прежде всего, к рудным формациям), ее название ставится впереди в виде прилагательного (угленосная молассовая, марганценосная кремнистая формация).

Подчеркнем три основных момента. Во-первых, наиболее тесные связи со всеми другими формациями имеют рудные формации. Учитывая, что объем рудных формаций по сравнению с другими геологическими формациями, как правило, незначителен, в полиформационных названиях следует отражать их в форме прилагательных. Отсюда следует также, что в зависимости от цели формационного анализа рудоносные формации могут описываться либо как самостоятельные классификационные объекты, либо в одной из моноформационных категорий. Во-вторых,

снимаются разногласия о возможности выделения некоторых сложных полиформационных объектов, например, вулкано-плутонических ассоциаций, представление о которых развивалось Е.К. Устиевым [15] и активно поддерживалось Р.Б. Умитбаевым [14]. На более низком таксономическом уровне представляется оправданным выделение габбро-гранитовых, габбро-плагиогранитовых формаций, отдельные компоненты которых образуют устойчивые сочетания друг с другом. Наконец, с позиций предлагаемой классификации нежелательно "смешение" объектов разного таксономического уровня, описания которых нередко встречаются в научной литературе.

Отметим в заключение, что главная цель предлагаемой классификации – систематизировать разнотипные геологические формации и их группы по возможности в едином ключе; по мнению автора, наиболее общая формационная классификация должна строиться по определяющим признакам – составу и структуре, как и для других природных объектов. "Целевые" классификации могут строиться по разным признакам, на разных основаниях, и число этих признаков, как и самих классификаций, может быть бесконечно большим. По-видимому, целевой подход вполне оправдан в тех разделах геологии, которые ориентированы на практику – при изучении распределения полезных ископаемых, решении стратиграфических, палеогеографических, гидрогеологических и т.п. задач.

ЛИТЕРАТУРА

 Буданов В.И. Неиспользованные возможности формационного анализа эндогенных образований // Современные проблемы формационного анализа, петрология и рудоносность магматических образований: Тез. докл. Всерос. совещания, Новосибирск, 16–19 апреля 2003 г. Новосибирск: СО РАН, 2003. С. 40–41

- Геологические тела (терминологический справочник) / Под ред. Ю.А. Косыгина, В.А. Кулындышева, В.А. Соловьева. М.: Недра, 1986. 334 с.
- 3. Драгунов В.И. К терминологии формационных подразделений // Осадочные и вулканогенные формации. Л.:Недра, 1966. С. 36–47
- 4. Драгунов В.И. Основные понятия учения о геологических формациях // Материалы к совещ. 20–23 мая 1968 г. Вып. 1. Л.: Ленинградская картфабрика ВАГТ, 1968. С. 21–27
- 5. Драгунов В.И., Айнемер А.И., Васильев В.И. Основы анализа осадочных формаций. Л.: Недра, 1974. 160 с.
- Кирилюк В.П. Ведущие типы плутоно-метаморфических формаций щитов древних платформ // Современные проблемы формационного анализа: петрология и рудоносность магматических образований / Тез. докл. Всерос. совещания, Новосибирск, 16–19 апреля 2003 г. Новосибирск: СО РАН, 2003. С. 158–160
- 7. Косыгин Ю.А. Тектоника. М.: Недра, 1988. 462 с.
- Критерии прогнозной оценки территорий на твердые полезные ископаемые /Под ред. Д.В. Рундквиста. Л.: Недра, 1986. 752 с.
- 9. Магматические формации СССР. Л.: Недра, 1979. Т.1. 319 с.; Т. 2. 279 с.
- 10. Палымский Б.Ф. Основы формационного анализа. Магадан: СВКНИИ ДВО РАН, 1996. 131 с.
- 11. Симаков К.В. На пути к теоретической стратиграфии. Магадан: СВНЦ ДВО РАН, 1997. 180 с.
- 12. Систематика и классификации осадочных пород и их аналогов // В.Н. Шванов, В.Т. Фролов, Э.И. Сергеева и др. СПб.: Недра, 1998. 352 с.
- 13. Строна П.А. Главные типы рудных формаций. Л.: Недра, 1978. 199 с.
- 14. Умитбаев Р.Б. Охотско-Чаунская металлогеническая провинция. М.: Наука, 1986. 286 с.
- 15. Устиев Е.К. Охотский структурный пояс и проблемы вулкано-плутонических формаций // Проблемы магмы и генезиса изверженных пород. М.: Изд-во АН СССР, 1963. С. 161–182.
- 16. Цейслер В.М. Формационный анализ: некоторые проблемы // Изв. вузов. Геология и разведка. 1988, № 9. С. 3–10.
- 17. Шванов В.Н. Структурно-вещественный анализ осадочных формаций. СПб.: Недра, 1992. 230 с.

Поступила в редакцию 4 июля 2005 г.

Рекомендована к печати Н.А. Горячевым

B.F. Palymsky

The principles of the structure-and-matter classification of geological formations

The offered general classification of different-type geological formations is based on the structure-and-matter principles using the evidence of northeastern Russia. Six taxonomic levels are outlined: formation type (sedimentary, magmatic, metamorphic, and ore geological formations) – formation family – formation group – formation kind (geological formation proper) – variety – formation individual (formation formed in a specific region, at a certain time, and geologically mapped as stratigraphic divisions, magmatic and metamorphic complexes).

Key words: geological formations, classification, structure-and-matter features.