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We develop a steady-state fluid-mechanical analysis describing the

effect of strain partitioning on viscous energy dissipation. As observed

in experimental studies of shear deformation of partially molten

rocks, strain partitions when melt segregates because viscosity is

reduced in regions of elevated melt fraction. The equations derived

here are based on parameters measured in experiments, describing the

evolution of melt distribution and rheological properties. We find that

the dissipation depends strongly on the configuration of the melt-rich

network of shear zones, including the average angle, volume fraction

of melt and amplification of strain rate in the melt-rich bands.

Minima in energy dissipation as a function of band angle develop,

corresponding to configurations of melt networks that minimize the

difference in mean stress between the band and the non-band regions.

We propose that the organization of band networks occurs by the

interplay between strain localization and viscosity variations asso-

ciated with melt segregation. The band networks maintain a steady-

state angle during shear by continuously pumping melt through the

network. The development of strain partitioning in melt-rich net-

works will modify the energetics of melting and melt transport by

efficiently extracting melt and reducing effective viscosity.

KEY WORDS: melt transport; rheology; self-organization; strain localiza-

tion; strain partitioning

INTRODUCTION

Most regions in the mantle where large volumes of melt
are produced are also deforming intensely, such as
mid-ocean ridges, subduction zones and sites of plume–
lithosphere interactions. We have demonstrated in labor-
atory deformation experiments on partially molten rocks

that the deviatoric stress causing deformation of the
rock can also drive small fractions of melt to segregate
and organize into melt-rich networks (Holtzman et al.,
2003a). We subsequently showed that melt transport
and deformation are very closely coupled processes
(Holtzman et al., 2003b). Similar coupled processes of
weakening and strain localization occur in many systems,
from metals to solid state rocks to granular materials, due
to many causes of local weakening like grain size reduc-
tion or solid phase separation. One objective of this
study is to quantify macroscopic effects of meso-scale
strain partitioning on the effective viscosity, with the aim
of developing a simple means of scaling the consequences
of strain partitioning to rheological conditions relevant
to the Earth. However, the primary goal is to derive an
analysis of the steady-state process that helps us to under-
stand the dynamics of the observed self-organization of
melt and solid during strain partitioning.
For applications to processes in the Earth, melt

segregation and strain partitioning will strongly influence
seismic, fluid transport and rheological properties. In this
paper, we will discuss the latter two. Numerous lines
of evidence suggest that much of the transport of melt
occurs in chemically isolated channels (Kelemen et al.,
1997). Thus, large-scale melt transport must be preceded
by segregation into channels. When melt segregates,
viscosity becomes heterogeneous because it is highly
melt fraction-dependent. Strain then partitions between
weak and strong regions, modifying the stress field. The
weak regions interact and self-organize into a connected
network. Strain localization occurs at much smaller scales
than are describable in current continuum geodynamic
models of any of the regions in the Earth where they
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will be important. However, the effects of segregation
on melt transport and on the effective viscosity of regions
of the mantle and crust will likely be influential at the
larger scales of these regional models (Buck and Su,
1989).
That melt segregation and channel formation can be

driven by deviatoric stress was predicted near the end of
the 20th century (Stevenson, 1989). An attempt at mod-
eling the initiation of melt segregation and growth of
melt-rich bands in simple shear has been performed by
Spiegelman (2003), expanding the analysis of Stevenson
(1989).Our study represents a very different approach.We
do not attempt to solve for the growth rate of melt-rich
perturbations; instead, we characterize the viscous energy
dissipation in steady state as a function of the configura-
tion of (melt-rich) weak zones. The analysis is written in
terms of parameters that are measured directly from melt
distributions in experimental samples, and thus should
be amenable to comparison with experimental results.
Viscous energy dissipation, the energy produced by

deformation of a fluid (or simply dissipation) is a quantity
that connects fluid dynamics with thermodynamics
(Mase, 1973). The concept appears in a range of contexts,
including the energetics of plate tectonics and mantle
convection (Froideveaux, 1973; Yuen and Schubert,
1977; Bercovici and Ricard, 2003), of mantle melting
and melt/rock interactions (Asimow, 2002), and of
self-organizing non-equilibrium systems (Nicolis and
Prigogine, 1977; de Groot and Mazur, 1984). Dissipation
is calculated to explore thermal weakening instabilities in
deforming, temperature-sensitive materials with and
without stress-dependent rheological properties (Yuen
and Schubert, 1977; Kameyama et al., 1997). Here, we
explore the effect of melt segregation and strain partition-
ing on dissipation in partially molten systems, with
implications for a wide range of petrologic/geodynamic
problems (Table 1).

Summary of experimental studies

The observed melt distribution reflects the state of stress
in the sample at the time of quenching, as shown in Fig. 1
and 2a. This statement is especially easy to justify for
samples in which dissipation and effective viscosity
reach a steady state, indicated by constant values of stress
and strain rate for much of the duration of the deforma-
tion, as shown in Fig. 2b. Our aim is to relate the prop-
erties of this melt distribution with the measured
rheological properties. A successful theory should explain
the following observations:

(1) The initial compaction length (of the system with
unsegregated melt), dc, is an important characteristic
length scale in the behavior of these systems, because
it predicts the conditions under which melt segregation
occurs and the spacing between largest bands, dsp, is

proportional to dc in a range of melt-rock systems
(Holtzman et al., 2003a). While the band spacing enters
only implicitly, but not explicitly in this analysis (i.e.
dissipation does not vary with band spacing), this obser-
vation is an essential part of the larger problem.

(2) When melt segregates, strain partitions between
melt-rich networks and melt-poor lenses, strongly modi-
fying the patterns of flow and orientations of the stress
tensors in the sample, as revealed by measurements of
lattice preferred orientations (LPO) (Holtzman et al.,
2003b).

(3) Melt bands exist with a bimodal distribution of
angles (0–30�) shown in Figs 1 and 2a. This pattern is
common. In general, large bands are found at higher

Table 1: List of symbols

Symbol Meaning

T Temperature

S Entropy

Ft,b,n Dissipation (total, bands, non-bands)

F* Dissipation for a homogeneous system with f ¼ ft
g Shear strain

g f Final shear strain

_gg Shear strain rate

Ff Final value of dissipation, associated with g f
h Viscosity

n Stress exponent ( _gg / tn)

h* Melt-free viscosity

l Weakening factor

s Differential stress (s11 � s33)

t Shear stress (s13)

Dtb�n Shear stress difference between band and non-band

ft,b,n Melt fraction, total, band, non-bands

fb,n Melt fraction normalized by ft
ab,n Area fraction of bands and non-bands (e.g. abands/atotal)

St Total segregation ¼ fbab
c Exponent in St definition

a Band angle relative to total shear plane

b Non-band angle

rt,b,n Density of the melt-solid composite

vt Average velocity of the whole sample (total)

vb Average velocity of the bands

vn Average velocity of the non-bands

T, B,N Velocity gradient tensors (@vi/@xj)

b13 Components of B (@v1/@x3)b, etc.

BR Rotated velocity gradient tensors

_eet;b;n Strain rate tensors (e.g. decomposed BR)

_gg II Second invariant of the stress tensor

pb Strain partitioning factor
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angles and narrow bands at lower angles. The thicker,
higher angle population is rotated an average of �20�

from the shear plane regardless of finite shear strain
(Holtzman et al., 2003a). We propose that this bimodal
distribution is the signature of a connected network.

(4) The changes in effective viscosity in a sample,
shown in Fig. 2b, begin with a gradual decrease and
then reach a steady state at a shear strain of g ¼ 1.
We hypothesize that the weakening is associated with
the formation of a connected network of melt bands;
steady state occurs when the kinetics of melt migration
and reorganization are balanced by the kinetics of solid
deformation during melt segregation.
The main purpose of this study is to understand what

properties of the deforming system control the observed
dissipation and enable the angular stability of a network
to exist. To do so, we calculate the total viscous energy
dissipation as the sum of the contributions from the band
and non-band regions, in terms of parameters whose
values are measured in our experimentally deformed
samples, ab, fb and a. These equations offer an explana-
tion for the observed preference of a� 20�. Even though
the solutions below involve many simplifying assump-
tions, they provide useful insights and suggest directions
for further study.

Viscous energy dissipation

The viscous energy dissipation is the contribution to the
total energy made by irreversible deformational work per

unit time and volume, that is, the power per unit volume.
We base our analysis on the dissipation because the
energies of separate parts of a system are additive,
whereas the viscosities are generally not (except in specific
cases). We relate changes in melt distribution to changes
in the energy of the system as a way of quantifying the
effects on the rheological behavior of the system with
time. An expression for the first law of thermodynamics
(Batchelor, 1967, p. 153, modified from equations 3.4.4
and 3.4.5, respectively, pulling r out of the definition of
dissipation), describing the total change in internal
energy, E, with respect to time, t, in a fluid is

DE

Dt
¼ 1

r
�Ps _eeii þ F þ @

@xi
k
@T

@xi

� �� �
: ð1Þ

The second term on the right-hand side (RHS) is the
dissipation function,

F ¼ heff _eeij _eeij �
1

3
_ee2ii

� �
ð2Þ

and Ps is pressure in the solid, k is thermal conductivity,
T is temperature, heff is effective shear viscosity, and _eeij is

(a)

(b)

Fig. 2. An example of one experiment (PI-1096). (a) Distribution of
band angles. In this sample, the distribution appears to be bimodal,
consistent with the image in Fig. 1. (b) Effective viscosity as a function
of shear strain. Note that in an experiment performed under constant
displacement rate conditions such as this one, the dissipation values
will follow a similar trajectory.

Fig. 1. An example of one experiment (PI-1096), olivine þ chromite
(4:1) þ 4 vol% MORB, constant strain rate, g ¼ 3.4. Melt-rich bands
are the darker gray regions from 0� to 25� to the shear plane (sample
wall). Black subvertical cracks form during the quench and do not
affect the melt distribution. The serrated boundaries reflect grooves in
the piston walls cut to grip the sample during shear.
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the ith, jth component of the strain rate tensor. [Note
that Batchelor includes the density in the dissipation
function while other sources do not (Mase, 1975;
Ranalli, 1987)]. The first term on the RHS of equation
(1) describes the contribution of the volumetric part of
the deformation (i.e. due to changes in pressure). At the
high T and P conditions of our experiments, ‘dilatancy’
is only local, accommodated by decompaction in one
region and compaction in another during melt segrega-
tion, both of which are forms of work, so they contribute
to the measured dissipation. (In Batchelor’s definition
of energy dissipation, this volumetric work is removed.
However, in the measured data, we cannot remove the
effects of this irreversible loss of energy. In the following
analysis, we focus on shear-dominated deformation and
assume that the volumetric part is negligible). The third
term on the RHS is the rate of heat gain/loss, which is
negligible during experiments at constant temperature,
so @T/@xi ¼ 0. A closely related equation describes the
entropy production

T
DS
Dt

¼ DE

Dt
ð3Þ

where S is the entropy. In our experiments, the main
contribution to the entropy production comes from F.
Measuring the dissipation and effective viscosity as a

function of strain in experiments provides insight into the
changing rheological behavior of the sample as the melt
distribution evolves. Taking the simple expression for the
shear stress, t ¼ heff _gg , where _gg is the shear strain rate,
the dissipation can be written as

F ¼ t _gg ¼ heff _gg2: ð4Þ

To calculate F and heff from experimental data, we use
the expressions

Fi ¼ ti _ggi and heff
i ¼ ti

_ggi
ð5Þ

where the subscript i indicates that the value is measured
and recorded during the experiment at small strain
increments. Each point in Fig. 2b represents the quotient
of stress and strain rate at a given finite strain. In
discussion, we will compare the results of the analysis
with the measured values of F and heff.

STEADY STATE VISCOUS ENERGY

DISSIPATION: GENERAL

DERIVATION

Here, we present the most general equations in this
analysis, describing the mass balance and rheological
properties. The approach to solving for the strain rates
is developed in the next section. To characterize the
segregation of melt and the partitioning of strain rate

between the melt-rich bands and the melt-depleted
lenses, we make two main simplifications:
(1) The system is in a steady state (or a ‘stationary state’,

de Groot and Mazur, 1984) such that the average hetero-
geneous spatial distributions of melt and strain rate are
constant in time, though, the local distribution of melt is
constantly changing. We do not assume that F is minim-
ized; rather, we demonstrate that geometric conditions
exist for which it is minimized.
(2) The bands and the lenses are ‘boundary

layers’ characterized by laminar flow (Batchelor, 1967,
section 5.7), as illustrated in Fig. 3. In this approximation,

α
β

abvb (1-ab)vn

vt

vt

vb

vt

(b)

(c)

(d)

1

3

v1

v3

B
α

v1
v3

N

β

(a)

α

(1-ab)*L ab*L

hb

hn ht

Fig. 3. The model setup. (a) The reference frames for the dissipation
calculations. The thick gray lines represent the bands and the thin gray
lines represent the shear plane in the non-bands. The lower diagrams
illustrate the reference frames for the velocity gradient tensors, B and
N, for the bands and non-bands. (b) The ‘unit cell’ whose funda-
mental length scale is the distance between two bands, or the thickness
of the lenses. These length scales are normalized and treated as
area fractions ab and 1 � ab. (c) The vector diagram illustrating that the
average velocities weighted by area fraction (in 2D) must sum to the
total average velocity. This diagram is the basis for most of the analysis
and derivation of strain rates. (d) The limit to real solution. vb cannot
be larger than vt or else the solution makes no physical sense. The
related mathematical limitation is derived in the text.
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we assume that each laminar flow field can be character-
ized by a vector representing the average velocity. These
two vectors have compatibility conditions, but there is no
spatially discretized compatibility between the margins of
these velocity fields. From this simplification the strain
rates are derived below.
As implied by equation (1), contributions to the total

energy are additive, Ft ¼
Pn

i¼1Fi . Equation (2) can be
simplified by assuming that the dilatancy term is much
smaller than the shear term:

F ¼ hf _eeij _eeij : ð6Þ

Thus, the dissipation in a strain-partitioned system is
described by

Ft ¼ abFb þ ð1 � abÞFn ð7Þ

where the subscripts b, n and t refer to the melt-rich
bands, melt-depleted non-band regions and the total
system, respectively, and ab is the area (or volume)
fraction of bands by which the dissipation contributions
of the band and non-band regions are weighted. The
energy dissipation in the bands and lenses is calculated
below with expressions that relate gradients in the band
and non-band velocity fields. First, we describe how we
parameterize the melt distribution and the melt fraction-
dependent viscosity.

Melt configuration and mass
conservation

In this analysis, as with the experiments, melt fraction is
constant and the whole system is closed. The equations
are written in terms of average properties of the melt
distribution. Melt ‘configuration’ refers to the ensemble
of measurable qualities describing the melt distribution
in a rock, experimental or natural. Melt-rich bands and
melt-depleted lenses are defined as regions with higher
and lower values of f than the average in the sample, ft,
respectively. The area fraction, ab, and average melt
fraction in the bands, fb, serve as rough measures of the
effectiveness of melt segregation and allow us to calculate
average rheological properties of the two types of regions.
The non-dimensional area fraction of bands and non-
bands are simply

ab ¼ aob
aot

and an ¼ aon
aot

ð8Þ

and the mass balance for segregated melt can be
described as

aotft ¼ aobfb þ aonfn ð9Þ
where fn is the melt fraction in the melt-depleted, lens or
‘non-band’ regions, and the o indicates the dimensional
area. Normalizing by aot , we obtain

ft ¼ abfb þ ð1 � abÞfn ð10Þ

and by ft,

f0bab þ ð1 � abÞf0n ¼ 1 ð11Þ

which is the statement of volume balance (or mass
balance for incompressible fluids). From here on, we will
refer to fb as the segregation factor, a measure of the
degree of melt segregation, as

f0b ¼ fb
ft

: ð12Þ

And so

f0n ¼ fn
ft

¼ 1 � fbab
1 � ab

: ð13Þ

From equation (11), fb ¼ (1/ab) [1 � (1 � ab)fn], which
says that as the melt fraction in the lenses approaches
zero, fn ! 0, fmax ! 1/amax. From here on, we drop
the primes from the notation.
Here, we define another dimensionless parameter that

describes the degree to which melt is segregated. The
total segregation factor, St ¼ fbab, ranges from 0 to 1.
At St ¼ 1, no melt remains in the lenses. We can measure
this value in experimentally deformed samples. St does
not uniquely describe the evolution of the melt config-
uration, but we can define paths that describe various
evolutions in terms of St. From experimental observa-
tions, we know that ab and fb increase with increasing
strain. A simple equation that fits observed paths of fb is

fb ¼ 1 þ ðfmax � 1ÞðStÞc ð14Þ

and by definition, St ¼ abfb, so

ab ¼ St

fb
¼ St

1 þ ðfmax � 1ÞðStÞc
: ð15Þ

The constants can be determined from experimental
data. In the following section, we show how this mass
balance feeds into the rheological properties.

Melt fraction-dependent viscosity

The strain rate of a melt-free rock may be described by
a flow law of the form

_ggf¼0 ¼ Atnd�m exp
�ðE* þ PV *Þ

RT

� �
ð16Þ

where A is the preexponential term, t is the shear stress,
d is the grain size, E* is the activation energy for creep,
P is the pressure, V* is the activation volume and R is
the gas constant. The effective viscosity (h ¼ t= _gg ) can
be expressed as (assuming grain size is independent of
stress),

hf¼0 ¼ A�1t�ðn�1Þdm exp
E* þ PV *

RT

� �
: ð17Þ
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In this analysis, we assume a simple Newtonian (n ¼ 1)
viscosity even though non-linear dependence of viscosity
on stress certainly influences the measured dissipation.
(In our experiments, melt segregation and strain parti-
tioning occur for a range of effective stress exponents,
from �1 to >3.)
In this paper, we are most interested in the non-linear

weakening effect of melt on the viscosity, often para-
meterized with the expression

hðfÞ ¼ hf¼0 exp ð�lfÞ ð18Þ

an equation based on an empirical fit to experimental
creep data (Kelemen et al., 1997). The value of the factor
l is �25 in the olivine þMORB system (Mei et al., 2002;
Zimmerman and Kohlstedt, 2004, referred to therein
as a). The value for the olivine þ chromite þ MORB
samples is undetermined, but we assume that it is similar.
The melt-dependent viscosity can be parameterized in
terms of fb as

hb ¼hf¼0 exp ð�lfbftÞ ð19Þ
and with a similar expression for hn, using equation (13).
In this study, we only address the changes in dissipation
due to the changing melt fraction, leaving to a future
study the effects of non-linear dependence of viscosity on
stress. This relationship implies that _ggf= _ggf¼0 ¼ exp ðlfÞ.
Although we leave the degree of strain partitioning as
a variable in the system, this relation does enter the
derivation below. We emphasize that the part of the
analysis dealing with the rheological properties and con-
stitutive relations governing weak zones can be modified
for any system, to account for other causes of viscosity
variations, for example, by grain size reduction or
thermal weakening.

Energy conservation

Ignoring the other contributions to the total energy from
equation (1), the statement of partitioned dissipation
becomes the energy conservation statement. The defini-
tions of the parameters in this problem are such that
most can be directly measured from the experiments:
ab, fb, ft, l, a and _ggt. The unknowns are the strain
rates in the band and the non-band regions, but strong
constraints may be placed on these values in the following
section. In sum, equation (7) becomes

Ft ¼ abhbð _eebij _eebijÞ þ ð1 � abÞhnð _eenij _eenijÞ ðaÞ
hb ¼ h0 exp ð�lfbftÞ ðbÞ
hn ¼ h0 exp ð�lfnftÞ ðcÞ

fn ¼ 1 � fbab
1 � ab

ðdÞ

*fb ¼ 1 þ ðfmax � 1ÞðStÞc ðeÞ
*ab ¼ St

1 þ ðfmax � 1ÞðStÞc
ð f Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð20Þ

where _eeb;nij are the strain rate tensors for the bands and
non-bands rotated into the reference frame of the sample.
The ‘*’ indicates that these equations are not essential to
the solution and are only used when solved in terms of St.

SOLVING FOR STRAIN RATES

The essential remaining piece of this problem is to calcu-
late the strain rate tensors for the band and non-band
regions. The general approach is to define the average
velocities (using the boundary layer approximation),
derive velocity gradient tensors and then decompose
those velocity gradient tensors into strain rate tensors.
This procedure is outlined in detail in Appendix A, and
the results surface at the end of this section. The velocity
gradient tensors for the bands and non-bands are defined
in their own reference frames. To add them, the tensors
are rotated into the sample reference frame, as shown
in Fig. 3. While only the total strain rate component is
known, the other components can be either neglected or
solved for, using simplifications stated below.
To solve for the components of the strain rate tensors

analytically, we derive relationships between the com-
ponents of these tensors that allow the total number of
unknowns to be reduced to three:
1. We use a boundary layer approximation to define the

average velocity vectors and the relationships between
average velocity fields.

2. We impose simple boundary conditions on the above
relations and derive a relationship between the shear
strain rate in the bands and that in the non-bands.

3. We define a parameter that describes the degree
of strain rate partitioning occurring in the system.
This dimensionless parameter, pb, allows us to further
reduce the number of unknowns in the system.

4. Finally, we derive a relationship between the band
angle a and the non-band angle b.

Boundary layer approximation

The boundary layer approximation, illustrated in Fig. 3,
holds that if the velocity gradients normal to the bound-
ary are much greater than the gradients parallel to the
wall (and the shear direction), the flow can be described
as laminar and a simple average velocity vector can be
assigned (Batchelor, 1967, section 5.7). These average
velocity vectors for each region sum to the total average
velocity vector, vt, which is the basis for the vector dia-
gram shown in Fig. 3. This rule specifies the interactions
between the two velocity fields; there is no other coupling
between these fields. In this boundary layer approxima-
tion, the stress and velocity compatibility conditions at the
interface are not satisfied point-wise. Instead, we derive
compatibility conditions for the average velocity fields,
which is constrained by the divergence and curl of the
average velocity fields. Mass conservation based on the
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boundary layer approximation, using the average velo-
city vectors for each boundary layer, yields

rtvt ¼ rbvb þ rnvn: ð21Þ

Here, the density of the band is the mass of band material
in the whole volume, which is simply rb ¼ abrt; likewise,
the density of the non-bands is rn ¼ (1 � ab)rt (assuming
that the variations in densities due to differing melt
fractions are negligible). Dividing by rt, yields

vt ¼ abvb þ ð1 � abÞvn: ð22Þ

This vector equation is the source of all following
constraints on the strain rates, as illustrated in Fig. 3.
Performing the following operations on this equation

yields several constraints necessary for deriving relations
between various components of the velocity gradient
tensors.

(1) The divergence,

r � vt ¼ r � ½abvb þ ð1 � abÞvn�
¼ abr � vb þ ð1 � abÞr � vn ð23Þ

provides a relationship between dilatancy in the band
and non-band regions. In these experiments, the samples
are incompressible, such that r � vt ¼ 0. This constraint
is not used in the present analysis.

(2) The curl in the 1, 3 plane (the ‘flow plane’),

r · vt ¼ r · ½abvb þ ð1 � abÞvn�
¼ ar · vb þ ð1 � abÞr · vn ð24Þ

gives a relationship between the shear strain rate in the
band and that in the non-band regions discussed below.

Boundary conditions

The actual boundary conditions of the experiments
are complicated; there is no change in total volume
in the high-pressure experiments, but there is a small
component of flattening and sidewards extrusion during
shear (Holtzman et al., 2003b). Thus, in the following
approximations, the first is straightforward, but the
second is a simplification of reality:

(1) The divergence of the flow must be zero, since no
mass is gained or lost in the system:

r � vt ¼ 0 ð25Þ

and so equation (23) gives

abðb11 þ b33Þ ¼ �ð1 � abÞðn11 þ n33Þ ð26Þ

where (b, n)i,j refer to the components of the velocity
gradient tensors for the bands and non-bands, respect-
ively. This equation will be useful when the work done
by compaction/dilation is considered. However, for the

rest of this paper, we assume that the shear deformation
is much greater than the volumetric deformation (i.e.
any ii components), and thus we neglect the volumetric
terms altogether in this simplest approximation.

(2) The curl of the velocity field, equation (24),
provides another relation between components of the
velocity gradient tensors:

t13 ¼ abðb13 � b31Þ þ ð1 � abÞðn13 � n31Þ: ð27Þ

We make the approximation that the gradients of
velocity in the shear direction are also negligible, i.e.
b31 ¼ n31 ¼ 0, so this equation becomes

abb13 þ ð1 � abÞn13 ¼ t13: ð28Þ

Strain partitioning

Up to this point in this analysis the equations are sym-
metric in the sense that the bands and lenses are treated
equally. Here, we introduce an asymmetry, an equation
that prescribes the amount of strain partitioned into the
bands, and a ‘response’ propagates into the strain rates in
the lenses. In these experiments, the shear strain rate, _ggt,
is known, but the strain rates in the bands, _ggb, and lenses,
_ggn, are not. Because these two unknown strain rates are
coupled, we solve for _ggn in terms of _ggb. Here, we define a
partitioning factor, pb, that relates the total shear strain
rate to the shear strain rate in the bands. The definition
of pb includes the constraint that the shear strain rate in
a band must be maximum when the band is parallel to
the shear plane (a ¼ 0) and zero when it is parallel to the
principle compressive stress, a ¼ 45� in simple shear:

b13 ¼ pbt13 cosð2aÞ: ð29Þ

In equation (29), the partitioning parameter

pb ¼ b13

t13

����
a¼0

ð30Þ

is a factor describing the amount of strain rate
partitioned into the bands, where (b, t)ij refer to the
components of the velocity gradient tensors for the bands
and the total, respectively. Equation (29) is analogous to
Anderson’s theory of faulting (Turcotte and Schubert,
1982, p. 354). The factor pb embodies the principal
unknown in this formulation. We substitute equation (29)
into equation (28) for b13 and rearrange

n13 ¼ t13½1 � abpb cosð2aÞ�
ð1 � abÞ

: ð31Þ

Thus, we have reduced all the components of the
velocity gradient tensors to functions of t13 and pb.
The evolution of pb during melt segregation is one

of the broader issues in this study. Because pb is defined
in terms of components of the velocity gradient tensor,
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via the strain rates (see Appendix B), we can write pb in
terms of the constitutive relation for melt-bearing rocks,
equation (19):

pb ¼ b13

t13
¼ exp ½lftðfb � 1Þ�: ð32Þ

A path for pb with increasing melt segregation can be
written in terms of St, where fb ¼ 1 þ (fmax � 1)(St)

c. In
the solutions, we will compare the evolution of dissipa-
tion for paths of pb as a function of St with three different
values of c.
There is a clear physical limitation to the value of pb.

The vector diagram in Fig. 3c states that the velocity of
any particle in the band (unweighted by ab) cannot be
larger than the velocity applied to the walls of the sample,
that is, |vb| � |vt|. When this equality is solved, |vb| ¼
hbb13 and |vt| ¼ htt13. When plugged in to the inequality
statement and the substitutions made for

hb

ht
¼ ab

cosðaÞ and
b13

t13
¼ pb cosð2aÞ;

the result is a criterion that must be met for any
combination of pb and ab:

abpb �
cosðaÞ
cosð2aÞ : ð33Þ

The result is plotted in Fig. 4. Values of abpb must lie
below the solid curve in Fig. 4 for the dissipation
calculation to satisfy the criterion |vb| � |vt|. This limit
is ensured in the calculation by only solving dissipation
for values of a for which the respective values of pb and
ab satisfy these conditions.

The relationship between a and b

An interesting piece that falls out of these equations is the
relationship between the angle of the band and non-band
shear planes, or an expression for b in terms of only a, pb
and t13 (defined in Fig. 3). This relationship between a
and b is derived in Appendix A and plotted in Fig. 5.
There are several constraints on this relationship, which
are also illustrated in Fig. 5:

(1) Based on crystallographic fabrics, when bands
form at �20�, the b-planes of olivine are rotated in
the opposite sense away from the sample shear plane
(i.e. the sample walls) by �20�. The assumption that
the b-planes are roughly parallel to the local ‘non-band’
shear plane is discussed in Holtzman et al. (2003b). Thus,
we infer that when a � 20�, then b � �20�.

(2) If the bands are parallel to the sample shear plane
(a � 0�), the shear plane in the melt-depleted lenses
should also be parallel to the sample shear plane, so
b � 0�.

(3) If the bands reached an angle of 45�, where they
would be parallel to the maximum compressive stress,

no shear stress is resolved on them such that they could
only open in purely tensile mode. The shear in the non-
band regions should then be parallel to the sample shear
plane, such that when a � 45�, b � 0�.

0 5 10 15 20 25 30 35

α, band angle ( )

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p b
a b

real limit
ab=0.2, pb=1-4.5
ab=0.4, pb=1-4.5

Fig. 4. The limit of real solutions. This plot denotes the domain of real
solutions to the analysis according to the limit derived in equation (33)
and illustrated in Fig. 3d, for two values of ab and ranges of pb.

(a)

(b)

Fig. 5. The relations between a and b [see equation (52)]. (a) The
relationship between these two reference frames is constrained by some
data and some logic: (1) When bands are parallel to the reference (total)
shear plane, so should be the shear plane in the non-band. (2) When
bands are at an angle a to the shear plane, the non-band shear plane
should also be at an angle b, back-rotated relative to the sense of shear,
as observed in LPO data (Holtzman et al., 2003b). (3) When bands are
parallel to the most compressive stress, a ¼ 45�, they cannot accom-
modate any shear, so the non-band angle should be 0. (b) Calculations
of b as a function of a. The solid lines indicate odd values of pb and the
dashed lines indicate even values. The observed back-rotation of
olivine b-planes of �20� is consistent with pb > 6.
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The theoretical predictions plotted in Fig. 5 match
these three constraints very well. As discussed in the
Appendix, this relationship is not needed to solve
the strain rates because, in this version, we use only the
(second) strain rate invariant, which, by definition is a
scalar quantity derived from a tensor that is independent
of orientation. However, we include the derivation here
because it lends physical insight to the equations and
may be useful in future modifications to the analysis.

Synthesis

The following array of equations comprise the analytical
solution for the components of the strain rate tensor. The
first two, derived in Appendix A, give the scalar second
invariant of the strain rate tensor in the band and non-
band regions. The second three were derived above:

_eebij _eebij ¼ 1
2
ðb13Þ2 ðaÞ

_eenij _eenij ¼ 1
2
ðn13Þ2 ðbÞ

b13 ¼ pbt13 cosð2aÞ ðcÞ

n13 ¼ t13½1 � abpb cosð2aÞ�
ð1 � abÞ ðdÞ

*pb ¼ exp ½lftðfb � 1Þ� ðeÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð34Þ

Again, the ‘*’ indicates that this equation is only used
when the equations are solved in terms of St and when pb
is not fixed. In this set of equations the constants are l, ft,
t13 and c. The dependent variables are b13(pb, t13, a),
n13(pb, t13, ab, a), b(a), and from equations (20), hb,n(St),
ab(St) and fb(St). The independent variables are then a
and St. We plot Ft as a function of a, initially treating ab,
fb and pb as independent variables, and then all three as a
function of St.
From the above equations we also calculate an approx-

imate shear stress in the bands and lenses by using the
following definition,

t ¼ hf

ffiffiffiffiffiffiffiffiffi
_eeij _eeij

q
¼ hf _gg II : ð35Þ

The difference between tb and tn,

Dtb�n ¼ hb _gg IIb � hn _gg IIn ð36Þ

is a quantity with interesting implications for the
dynamics of the melt band organization. However, the
relationship of this stress (or stress difference) to the solid
and melt pressure is discussed in much greater detail in
Appendix C.

RESULTS

We solve equations (20) and (34) for total dissipation, Ft.
In general, Ft develops a minimum at the band angle at
which the contributions to the total from the bands and

lenses are equal, that is, where dissipated energy is
equipartitioned between the two regions, as shown in
Fig. 6. The location of this minimum depends on ab, fb
and pb. To develop these ideas we first illustrate the
behavior of the equations by varying these parameters
independently. Then, we present a more global picture
of the behavior of the system as a function of the total
segregation factor, St, which couples these parameters.
We also demonstrate how the minimum in dissipation
corresponds to the band angle at which shear stress is the
same in the two regions.
In Fig. 6, the separate contributions (weighted by ab)

to Ft from the bands and the lenses are plotted as func-
tions of a. The results are normalized by the reference
dissipation for a material of the same total, but unseg-
regated, melt fraction, F0. The bands and lenses make
inverse contributions to the total dissipation. The band
contribution is highest at low angles when the bands are
well oriented to take up the largest amount of slip and
lenses need to deform relatively little. As a increases, the
contribution from the lenses increases because they have
to deform more as the amount of deformation accom-
modated in the bands decreases. At the value of a where
these contributions are equal in magnitude (a*), that
is, where energy is equipartitioned, a minimum exists in
the total dissipation, defined where (dF/da)|pb ¼ 0 and
(d2F/da2)|pb > 0. In the following section, we explore
how variations in each of the variables describing melt
distribution, ab and fb, influence the position of the
minima in dissipation.

Dissipation, varying ab and fb
In each panel of Fig. 7, Ft is plotted as a function of
a with the partitioning factor pb as the varied parameter.
As discussed above, a minimum value of Ft occurs at
a* for a given value of pb. For a given value of pb, with

Fig. 6. The weighted contributions to the total dissipation from the
bands and the non-bands. The minima in the total value develops
where the two contributions cross over in magnitude. The horizontal
solid line marks F/F0 ¼ unity.
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increasing a, dissipation decreases until a minimum is
reached. As pb values increase, these minima migrate
towards higher values of a*. Interestingly, for any fixed
values of ab, fb and l, these minima all occur at the
same value of Ft for all values of pb. This situation occurs
because, in this set of solutions, pb is defined independ-
ently of ab and fb. (In the 3D plots discussed below pb
does depend on ab and fb.)
The six sets of Ft � a curves plotted in Fig. 7 explore

the effects of varying ab and fb. The left and right

columns illustrate the effects of increasing ab when fb ¼
2 and fb ¼ 3, respectively. In both columns, increasing
the value of ab results in greater reduction in dissipation
(and greater spread between maximum and minimum
values of F) and a higher value of a* at the minimum
in dissipation for a given value of pb. In other words, pb
can be larger because the bands are much weaker owing
to a higher melt fraction. In the right column, the mag-
nitude of the reduction in dissipation is much greater,
i.e. �50%, than in the left column. In Appendix D,
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Fig. 7. Six plots of Ft as a function of a varying fb and ab. Note the differences in locations of minima and absolute values of minima.
Left column, fb ¼ 2; right column, fb ¼ 3. Reading left to right, then down, (a) ab ¼ 0.1, fb ¼ 2 and St ¼ 0.2; (b) ab ¼ 0.1, fb ¼ 3 and St ¼ 0.3; (c)
ab ¼ 0.2, fb ¼ 2 and St ¼ 0.4; (d) ab ¼ 0.2, fb ¼ 3 and St ¼ 0.6; (e) ab ¼ 0.3, fb ¼ 2 and St ¼ 0.6; (f ) ab ¼ 0.3, fb ¼ 3 and St ¼ 0.9. Note that
in the lower left (ab ¼ 0.3 and fb ¼ 2), the curves are cut off just to the left of the minima, below which the solutions are not real, because they do
not meet the criterion defined in equation (33). In the right column, with a higher value of fb (¼3), the solutions with minima are fewer (because
the criterion is met for fewer conditions), and where they exist, they occur at lower angles than for a smaller value of fb for a given value of pb.
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we describe in detail the dependence of Ft on variations
in ab, fb and pb.

The evolution of dissipation with
melt segregation

We can simplify the above results by coupling ab, fb and
pb to the melt segregation parameter St, which is described
by equations marked with a ‘*’ in equations (20) and (34)
[also (14), (15) and (32)]. In Fig. 8, various paths for the
evolution of the ab, fb and pb are plotted as functions of
St, which are parameterized only by the exponent c. From
here on, Ft is calculated as a function of St and a, these
producing a surface of Ft at different states. Figure 9a
illustrates an example of one such surface for one set of
paths with c ¼ 0.5, as in Fig. 8. As St increases Ft gradu-
ally begins to decrease, and the tightness of the valley
increases, i.e., the dependence of Ft on a strengthens.
Thus, with increasing melt segregation and strain parti-
tioning, the system tends to exert a stronger preference
for a particular value of a*.
In Fig. 10, top row, the 3D surface is reduced to 2D by

contouring values of normalized dissipation. In these
plots, as St increases along the x-axis, the contours tighten
and the values of ft drop towards the minimum at a*.
The path of the minima with increasing St, shown by the
gray dots, provides an easy means of visually comparing
the effects of varying c. As c increases from 0.1 to 1, as
shown in Fig. 8, the melt fraction in the bands is higher at
any given value of St, consequently pb is correspondingly
higher and ab is correspondingly lower. Therefore, ft
tend to be lower, and a* tends to be higher, in agreement
with the results shown in Fig. 7.

Shear stress and the mean pressure
difference, Dtb�n

As discussed above, we can calculate the shear stress, t,
in the band and non-band regions, and Dtb�n, to provide
further insight into the meaning of the equations derived
here. In Fig. 9b, t in the bands and the non-bands is
plotted as a function of a for the same path of ab, fb and
pb as used in Fig. 9a. First, the shear stress in the bands
is independent of St because pb depends on fb such that
shear strain rate increases proportionally to the decrease
of viscosity in the bands as melt segregates. As a increases,
the shear stress in the bands decreases, because the bands
can accommodate less and less strain as they approach
45�. The stress in the lenses is more complicated, and
depends on ab and fb in addition to pb.
For any value of St, the point where the two curves

cross, that is, Dtb�n ¼ 0, corresponds to the band angle
a* at which Ft is minimized. In other words, the config-
uration at which dissipation is equipartitioned is also the
set of conditions at which shear stress is uniform across

the material, or [equation].

abhbð _gg IIb ja*Þ
2 ¼ ð1 � abÞhnð _gg IIn ja*Þ

2 ðaÞ
hbð _gg IIb ja*Þ ¼ hnð _gg IIn ja*Þ ðbÞ

hb

hn

¼ ð1 � abÞð _gg IIn ja*Þ
2

abð _gg IIb ja*Þ
2 ¼ ð _gg IIn ja	 Þ

ð _gg IIb ja*Þ
: ðcÞ

ð37Þ

When viewed in 2D, as in the bottom row of Fig. 10, the
line that describes the intersection of these two surfaces
tracks perfectly the line of minimum dissipation. Because
this line moves downward in t with increasing St,
the effective viscosity is decreasing (because the total
strain rate is constant).
The fact that a* corresponds to both the minima in Ft

and the point whereDtb�n¼ 0 has significant implications
for the dynamics of the organization of the melt bands
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Fig. 8. The evolution of configurational parameters with increasing
melt segregation, St, for amax ¼ 0.25, fmax ¼ 4 and c ¼ 0.1, 0.5, 1.0.
(a) fb as a function of St; (b) ab as a function of St; (c) pb as a function
of St.
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and the stability of the observed value of a. In the Dis-
cussion and Appendix C, we will explore this condition
further in a speculative way, while not knowing the rela-
tionship betweenDtb�n, the pressure difference in the solid
DPb�n

s , and the pressure difference in the melt, DPb�n
m .

Summary

(1) As fb and ab increase, Fmin decreases; as pb
increases, the angle at which Fmin occurs, a*, increases.

(2) As melt segregates (i.e. as St increases), the prefer-
ence for a specific a* becomes stronger (i.e. the potential
wells become steeper). If fb, ab and pb increase roughly
as described in Fig. 8, then a* should increase as melt
segregates, thus approaching an angle similar to those
observed in experiments.
(3) At a*, both Fmin occurs and Dtb�n ¼ 0. An impli-

cation is that the bands may organize around an angle at
which shear stress is constant in the sample and dissipated
energy is minimized.

(a)

(b)

Fig. 9. 3D results of dissipation and shear stress calculations as a function of a and St. (a) log values of normalized dissipation as a function of a
and St. pb varies according to the path shown in Fig. 8 with c ¼ 0.5, amax ¼ 0.25, fmax ¼ 4 and c ¼ 0.5. With increasing St, the value of a at Fmin

(a*) increases up to �25�. (b) Shear stress, t, as a function of a and St, for the same parameters as above. The surface for shear stress in the band is
constant as a function of St because pb varies with St such that shear stress is constant; as fb increases, strain rate increases inversely proportional to
the viscosity decrease. However, strain rate varies a great deal in the non-band. In the bottom row of the following figure, the difference between
these two surfaces (Dtb�n) is plotted.
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DISCUSSION

The above analysis is a partial description of the thermo-
dynamics of melt segregation and strain partitioning, and
is incomplete in several basic ways: (1) We look only at
the steady state dissipation as a function of configura-
tional parameters, but do not solve for growth or decay in
these properties with time. (2) We do not incorporate
length scales or statistics of melt distribution, only average
properties of melt distribution. (3) Velocity fields are
subject to very simplified constraints, in order to be solved
analytically. (4) Viscosities are Newtonian. Nonetheless,
the analysis captures some general trends in the changes
of states of melt distribution and clues to the dynamics
of the deforming system. It is intended to bridge experi-
ments and fully dynamic numerical models and to pro-
vide a framework for analyzing and interpreting the
experimental observations, written in terms of paramet-
ers that describe average properties (i.e. fb, ab, a and F),
which are directly measurable from experiments.
When dissipation is calculated as a function of the

(coupled) degrees of melt segregation and strain partition-
ing, as well as the band angle, clear local and global
minima develop. The implication is that, if a deform-
ing system has the possibility of minimizing its energy
dissipation or entropy production rate, it will tend in that

direction. In the context of this analysis, variations in Ft

can be viewed as small incremental movements between
short-term steady states. The minimization at one value
of St and transition to the next value of St occur by
changing the melt distribution (band angle and melt
content in bands) and strain partitioning such that the
dissipated energy is equipartitioned between the bands
and the lenses. The analysis predicts that the minima in
dissipation can easily occur at the observed band angles.
The main parameter that controls the value of a at which
Fmin occurs (a*) is the degree of strain partitioning, pb.
However, in real (experimental and natural) systems,
some other property of the system may influence the
observed a, such as the ratio of shear to normal stress.
The values of pb may be closely coupled to spatial vari-
ations in dilation and compaction rates. In this analysis
we do not explore such interplay.
We also demonstrate that the local minimum in dis-

sipation corresponds to the equalization of stress and thus
the elimination of stress gradients between the bands and
the lenses. This finding is a more physically intuitive way
of thinking about the stability of an average band angle
in a constantly reorganizing melt-network; it leads to an
answer to ‘how?’, whereas the energetics provides an
answer to ‘why?’. Below, we will develop an idea for how
the system constantly readjusts melt distribution around

Fig. 10. The evolution of dissipation and shear stress difference with increasing melt segregation, St. These figures are the 2D equivalents of Fig. 9,
where the z-axis values are contoured. The top row is the dissipation (Ft/F*) and the bottom row is the shear stress (t). Each column represents
a different value of c, the exponent in the expressions for ab, fb and pb as functions of St. In each plot, the white dotted lines represent the values
for a* at Fmin and Dtb�n ¼ 0. For each value of c, the paths of these lines are similar.
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the optimal band angle, by a pumping mechanism driven
by the departures from constant stress. Also, this tend-
ency towards constant stress suggests that the ‘Reuss
bound’ approximation of constant stress during strain
partitioning is a good one, and will allow for the deriva-
tion of a much simpler set of equations that describe
effective viscosity changes during melt segregation and
strain partitioning.
The solutions provide several insights into the behavior

of a deforming partially molten rock in which melt
segregates and thus strain partitions. To illustrate these
insights, first we describe this behavior in terms of the
effect of strain partitioning on the total dissipation and
begin to relate the conclusions to experimental observa-
tions. Second, we demonstrate simple inferences into
the mechanics of melt segregation and self-organization
of the networks of melt-rich bands. Finally, we discuss
the implications of melt segregation and strain partition-
ing for the rheological properties of partially molten
mantle and the irreversible thermodynamics of melt–
rock interaction.

Relating theory and experimental
observation: viscosity and dissipation

Magnitudes of dissipation change

In the data from the experiment shown in Fig. 2, viscosity
is reduced by 30% as melt segregates and strain parti-
tions, corresponding to a reduction in dissipation of 20%.
For this sample, the value of St is �0.5. Thus, we have
one point in the space described in Fig. 9, and it falls very
close to the surface [at St ¼ 0.5, a ¼ 20� and Ft/Fo ¼
�0.1 ¼ log(0.8)]. However, this result does not validate
the analysis, but it is simply an illustration of how we will
proceed in comparing the analysis to experimental data.
Essentially, by measuring the parameters describing the
melt distribution (ab and fb, and thus St), a, and the final
dissipation value, we can fit the data by varying the
dependence of pb on St.

The evolution of dissipation

The implication of the above paragraph is that the
evolution of strain partitioning controls completely the
evolution of dissipation. As shown in Fig. 2, within
increasing strain, the dissipation (and the effective viscos-
ity) decreases until about g ¼ 1, after which it flattens out.
This flattening indicates that a steady state has been
reached in the system, presumably in the statistical vari-
ations in the melt distribution and the strain partitioning.
We suggest that the decrease in dissipation and effective
viscosity is caused by an increase in strain partitioning,
associated with increasing melt segregation. The onset
of steady state may reflect the achievement of a balance
between the processes of melt reorganization relative to
the shearing solid and strain partitioning in the melt-rich

network. As discussed below, the transition to steady state
may coincide with an increased degree of connectedness
of bands within the melt networks. When this connectiv-
ity increases, melt can redistribute and strain can parti-
tion more effectively than when bands are not connected;
thus, the degree of connectedness and the potential for
strain partitioning may be coupled.
Another aspect of the experiments not described in the

analysis is the non-linear dependence of viscosity on
stress. The degree of dislocation creep depends on stress
and melt fraction (to the extent that melt fraction influ-
ences the effectiveness of grain boundary diffusion creep
and also influences the grain size). As melt segregates, the
stress magnitudes in the lenses will increase. Thus, in
the right regime, the activity of dislocations may increase
with melt segregation, causing weakening in the lenses.
This weakening will couple to the deformation conditions
in the band networks. These aspects can be quantified
and accounted for in future versions of this analysis.

The melt distribution

In Fig. 1, the widest bands traverse the sample at higher
angle relative to the shear plane than the thinner, more
numerous bands. In the bimodal distribution of band
angles, as shown in Figs 2b and 11, these wider bands
constitute the smaller population of bands at higher
angles. The narrow bands at lower angles connect the
wider bands. We suggest that this pattern of band angle
and thickness distribution is caused by the same set of
processes occurring at a smaller scale; because of the
strain partitioning, the stress field and thus the shear
plane are back-rotated relative to the sense of shear by
an angle of b, as illustrated in Fig. 11 and discussed in
Holtzman et al. (2003b). In this view, the ‘lower angles’
actually have the same angle relative to their local shear
plane as the thicker, higher angle bands do to the sample
walls. Thus, the mechanical preference for a 15–20�

α1

α2 β

Fig. 11. Two scales of melt bands. The largest bands traverse the
sample. The small bands connect the large bands at a lower angle
relative to the shear plane. Here, we suggest that this pattern of melt
distribution actually represents the same mechanical preference for a
15–20� angle at a second scale, i.e. in the lenses where the shear plane
is back-rotated by b relative to the shear plane (i.e. a1 � a2). This
would explain the bimodal distribution of band angles and the tend-
ency of the lower angle bands to be narrower than high angle bands, as
shown in Fig. 1.
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angle propagates downward in scale. This hypothesis
explains the bimodal distribution of band angles. The
lower angle bands tend to be narrower than high angle
bands because they are forming in a region with lower
background melt fraction. Another part of this story of
the distribution of band angles involves rotation and
growth of bands during shear, which is discussed below.

Mechanics of network formation and
stability

Calculations of the dissipation do not reveal the mechan-
ical process by which the system achieves any given
state. However, when we look at the variations in stress
between these two regions, as in Figs 9, 10 and 12, this
simple picture of the variations in stress distribution with
a explains qualitatively many aspects of the behavior of
the networks during deformation. In the following, we
discuss why bands nucleate, how networks form and
maintain a dynamic steady state, and how they evolve.
We want to understand how the melt moves through the
sample, how these patterns of movement couple to the
effective viscosity of the system, and ultimately how to
extrapolate these dynamics to conditions in the Earth.

Why and how do bands nucleate and grow?

The notion of stress-driven melt segregation was first
proposed by Stevenson (1989). In a 1D model of a
deforming partially molten material, small perturbations
in melt fraction cause small variations in viscosity because
of the dependence of viscosity on melt fraction. In the
limit where strain rate is spatially invariant, these low-
viscosity regions are also low-pressure regions, so more
melt tends to flow into them, leading to an instability,
spontaneous melt segregation and band formation on
length scales less than the compaction length, dc.
Richardson (1998) extended the problem to 2D pure
shear. None of these studies have been able to predict a
characteristic spacing, other than that it will be less than a
compaction length. Hall and Parmentier (2000) attemp-
ted to define a constraint on the band spacing by incorp-
orating the effect of water removal during melting on
increasing the matrix viscosity.
Rabinowicz and Vigneresse (2004) and Speigelman

(2003) extended Stevenson’s analysis to a simple shear
boundary condition, in 1D and 2D, respectively. In a
linear stability analysis, Spiegelman found that the melt
segregation instabilities (bands) form at a range of angles
and rotate with the shear flow and those at a ¼ 45� grow
fastest. In the linear analysis with Newtonian melt
fraction-dependent viscosity, shear perturbations on the
bands do not reduce rotation rate because they are not
coupled to the background simple shear flow. Both
Holtzman et al. (2003a) and Spiegelman (2003) suggested
that the observed band angle is a compromise between

the fastest growing orientation (45�) and the orientation
of maximum shear (0�). In this analysis, consideration of
strain partitioning and not growth rate leads us to a
different, but not necessarily exclusive, conclusion.
Here, we directly couple the flows in the band and non-

band regions, but are limited to assuming a steady state;
however, we can speculate on the conditions that cause
the initial segregation of melt, using the illustration in
Fig. 12. In the plot of t as a function of a, to the right
of a*, at which Dtb�n ¼ 0 (i.e. the crossover of the t(a)
curves for the band and the non-band), melt flows down
the pressure gradient, from non-band to band regions.
This curve implies that, as bands rotate with increasing

Fig. 12. Mechanics of the steady state: the melt ‘pumping cycle’.
(a) Melt must constantly be moving through the network for the
average band angle to be constant. One hypothesis illustrated here is
that melt is continuously pumped through the network, from low-angle
bands to high-angle bands (thick orange arrows) and from high-angle
bands to low-angle bands (thin red arrows) for the reasons illustrated
below and discussed in the text. (b) A slice through Fig. 9b at St ¼ 0.6.
The two parts of the melt pumping cycle are illustrated with the same
arrows as above. The thick orange arrow represents the driving force
for melt to migrate from low angle to high angle bands because their
shear stress, and thus their mean pressure, is lower. The red arrow
implies that at some critical angle, the melt pressure increases to be
closer to that of the stress in the lenses; this causes a flip in the direction
of the melt pressure gradient, driving melt from bands at high to low
angles. The cause of this change in melt pressure is the increased
deformation in the lenses squeezing melt-rich bands together and
raising the melt pressure. The green (vertical) line represents the max-
imum angle at which bands are observed.
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shear strain to higher angles, melt flows from bands at low
angle to ones at high angle, consistent with the (instant-
aneous) observed correlation between band angle and
thickness, and with the results of Speigelman (2003).
The value of a* depends on St and pb, so bands should
be observed at angles equal to or less than a*, where the
condition for the growth of bands is met. However, they
tend to rotate to higher angles, up to an observed limit of
�30� not 45�, as discussed below. An attempt to explain
this upper limit is made below. The existence of bands
at lower angles than a* may be explained by the strain
partitioning and multiple scales of segregation, as dis-
cussed above and in Fig. 11.

How is a steady state maintained?

As discussed in Holtzman et al. (2003a), in order to main-
tain a steady state and a constant average band angle,
melt must constantly move relative to the solid. The
following hypothesis is based on the analysis, but is an
inference based more on the observations than the calcu-
lations. We propose that the steady state average band
angle is maintained by the following ‘pumping’ cycle,
illustrated in Fig. 12:

(1) Bands nucleate by the mechanism discussed above
at some low value of a.

(2) As a band rotates with the overall shear flow, it
grows (i.e. melt fraction and thickness increase) up to a
limit, which is observed at �30�. The orange arrow in
Fig. 12a shows melt flowing from a band at low angle to
one at slightly higher angle. In Fig. 12b, this flow is
represented by the orange arrow that tracks the decreas-
ing shear stress in the band with increasing band angle.

(3) An upper limit of the band angle (�30�) is reached
at which melt is driven back to lower angle bands, as
shown by the red arrows in Fig. 12a and b. The upper
limit of band angles exists because the system will only
tolerate a certain shear or mean stress difference
between the bands and non-band regions. As the bands
rotate to higher angle, the lenses are forced to deform at
higher rates, increasing the stress in them, as plotted in
Fig 12b. As they deform more, they squeeze the bands,
increasing the stress in the solid framework in a band,
thus increasing the melt pressure in the bands. This
increased melt pressure drives melt from high to low
angle bands. The red arrow in Fig. 12b moves from the
shear stress in the band to that in the lens, representing
the local increase in stress as a band at high angle starts
to be squeezed between two lenses. This change in stress
does not fall out of the analysis because we only consider
the simple shear components of deformation. Thus, this
idea is testable in theory by calculating the flattening
components of the solid deformation in the lenses, and
coupling these modes to the stress in the band. The key
to the pumping mechanism is that the slope of the shear

stress gradient with band angle switches from negative
(orange line) to positive (red).
This pumping cycle drives a net melt flow relative to

the solid through the network of melt-rich bands, such
that the average band angle remains constant as the
sample deforms in shear. This process relies on the exist-
ence of a highly connected network, as observed in
experiments (Figs 1 and 2) and illustrated in Fig. 11.
Another mechanism and pathway by which melt

migrates relative to the solid may exist, as proposed by
Holtzman et al. (2003a). In this mechanism referred to as
‘wave migration’, the melt in a band migrates against the
solid flow by doing work against the solid to open porosity
on the ‘upstream’ side and close porosity on the ‘down-
stream’ side, moving as a wave of porosity through the
solid matrix. This process does not require the presence
of a network; every band struggles on its own.
The variations in the evolution of F with increasing

strain may represent variations in the dominant mechan-
ism by which bands are moving relative to the solid. We
propose that the energetics of the two band migration
mechanisms actually differ, although this point is not con-
sidered in the analysis. The wave migration mechanism
may both consume more energy (i.e. make heff higher) in
the opening and closing of melt pockets and partition
strain less effectively than a network can. The network
migration requires longer distances of melt travel than
wave migration, but these pathways have much higher
permeability than non-band regions. Both mechanisms
may occur at different locations in the network at any
given moment and/or time. If the energetics of the two
mechanisms are significantly different, the initial increase
in effective viscosity in some experiments (not shown)
may indicate a dominance of the wave migration mech-
anism over the network migration mechanism at the start
of an experiment, before the connected network devel-
ops. If so, the decrease in heff with increasing strain re-
sults from a subsequent increase in the effectiveness of the
mechanism of network migration.

Implications for the Earth

Increasingly, we are able to quantitatively study partially
molten regions in the Earth as complete dynamic and
thermodynamic system. In this view, the formation and
persistence of melt-rich networks will characterize the
close coupling between dynamics of mantle flow and
thermodynamics of melting. However, for now, we sep-
arate the discussion into implications for rheological
properties and for melting thermodynamics.

Rheological properties

When strain partitioning in networks occurs, the macro-
scopic effective rheological properties reflect meso-
scopic variations in viscosity as well as the microscopic
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deformation mechanisms that determine those viscosities.
Thus, to determine these effective rheological properties
(i.e. heff) constitutive equations must be written in terms
of the geometric and rheologic properties of the various
regions combined in a physically meaningful way. Most
simply, heff ¼ Ft=ð _ggtÞ2, where F is calculated with
equations (20) and (44). Although we made some progress
towards this aim, this approach is probably limited. Since
the assumption of constant stress appears to be a good
one, deriving an effective viscosity from a Reuss-bound
calculation will be useful.
As discussed above, in the tightly confined conditions of

our experiments the reduction of dissipation (or effective
viscosity) is less than an order of magnitude. The effective
viscosity for reasonable earth-like values of many of
the parameters for a segregated system (1.8 · 1018 Pa.s)
gives a 50% reduction of the melt-present viscosity
(3.7 · 1018 Pa.s for ft ¼ 0.04), that is, an almost order-
of-magnitude reduction of the melt-free viscosity (1 ·
1019 Pa.s). However, in natural systems with less rigid
boundaries (and boundary conditions) than in the experi-
ments, systems may have more degrees of freedom to
organize into configurations that allow greater reductions
in viscosity.

Thermodynamics of melting and melt–rock reaction

The formation of melt-rich networks and the onset of
strain partitioning have interesting implications for the
thermodynamics of melt formation and extraction pro-
cesses. Both deformation due to mantle flow and melt
transport in networks can influence the entropy budget,
as stated by the relation between energy and entropy in
equation (3). The very fast and effective segregation and
transport of melt provided by the network will lead to
both positive and negative contributions to the energetics
of melt–rock reaction. Asimow (2002) expanded the
energy equation of McKenzie (1984, equation A37) to
include the irreversible terms and the energy contri-
butions of melt–solid disequilibrium in addition to the
enthalpy of isentropic decompression. In his scaling ana-
lysis, Asimow compares the energies of all irreversible
terms to the energy available to drive melting due to
adiabatic (isentropic) decompression, or the enthalpy DH.
This value is rWCp(@T/@z) � 3 · 10�6 W/m3 where r
is the density (3.3 · 103 kg/m3), W is the upwelling
velocity (�10�1 m/year), Cp is the isobaric heat capac-
ity [�1000 J/(K.kg)] and (@T/@z) is the geotherm
(�0.3 K/km). He isolates these irreversible contributions
as the (1) thermal conduction and radiogenic heat pro-
duction; (2) viscous dissipation in the fluid due to buoy-
ancy driven compaction (including gravitational energy
release and frictional heating); (3) viscous dissipation in
the matrix as a result of compaction; (4) advection of heat
by migrating melt; and (5) compositional disequilibrium

between solid and melt. In the following discussion,
we address the influence of the formation of melt-rich
connected networks on several of these contributions. For
the sake of discussion, we assume that stress-driven net-
works form deep in the melting column, and other melt
transport/segregation mechanisms occur subsequently.
To explore that assumption, a greater understanding of
the relative kinetics of stress-driven and reaction-driven
segregation is required, as discussed further below.

Deformation and dissipation. Asimow’s analysis examines
viscous dissipation in the migrating melt and solid due
to compaction. He concludes that both of these terms are
insignificant. However, the contribution to the total dis-
sipation may be much greater from the shear deforma-
tion than from compaction. Because his analysis is 1D,
Asimow does not include deformation due to corner flow.
As shown in Fig. 13, the dissipation has a wide range
of values for reasonable mantle strain rates and effec-
tive viscosities beneath a mid-ocean ridge; these values
broadly straddle isentropic decompression value for
power available to drive melting, implying that, in some
locations, the heat produced by dissipation may contrib-
ute to melting.
As illustrated in Fig. 14, for perfectly passive upwelling,

the stress, strain rate and thus the dissipation will be zero
in the center and will increase towards the flanks of the
melting region, with maximum values in the region of
tightest corner flow for the case of a Newtonian viscous
flow. Dissipation will be highest where stresses are highest
in a slab-pull-driven spreading center, where a constant
global strain rate is imposed. If equipartitioning and
minimization of dissipation are achieved, then the

10-14 10-13 10-12

Strain rate, s-1

10-8

10-7

10-6

10-5

10-4

Φ
s/a

P,noitapissi
D

η=1e18 Pa.s
η=1e19 Pa.s
η=1e20 Pa.s
η=1e21 Pa.s
∆H - isentropic

Fig. 13. Is viscous dissipation an important contribution to the energy
available to cause melting of the mantle? The dissipation values for a
range of normal strain rates and upper mantle viscosities, compared
with the power per unit volume available to cause melting, DHisentropic,
after Asimow (2002). The reduction of dissipation caused by strain
partitioning will lower each of these curves by up to an order of
magnitude.
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entropy production would be reduced relative to that of a
homogeneously deforming system. However, this reduc-
tion may still leave the dissipation large enough to
contribute considerably to the total energy of the
system available to drive melting. For example, for
h ¼ 1 · 1019 Pa.s and _gg ¼ 5 · 10�13l/s, F ¼ 2.5 ·
10�6 Pa/s, or 83% of DH due to upwelling. A 50%
reduction in h due to melt segregation would cause a
50% reduction in F or 42% of DH.

Melting and melt–rock reaction. The effects of stress-driven
segregation on the transport properties of a partially
molten region may tend to increase the disequilibrium
and the irreversible contributions to the total energy.
Continuing with the mid-ocean ridge example, we offer
the hypothesis that melting may be more ‘batch’-like in
the center of the melting column where stresses are lower
and stress-driven segregation is less effective, and more
‘fractional’ at the flanks of the melting region, where
stress drives melt segregation more efficiently. When
melt segregates easily at small melt fractions, the melting
is more fractional than batch-like in nature. Fractional
melting generally leads to lower melt productivity than a
batch melting model in which the melt has time to equi-
librate with its source (Asimow et al., 1997). The degree of
fractional melting will depend on the relative kinetics of
the stress-driven and reaction-driven mechanisms. Estim-
ating these kinetics is beyond the scope of this paper. As
illustrated in Fig. 14, the compositional lithosphere (dark
green) forms where enough water, Fe and melt have been
extracted that the remaining rock is significantly stronger
than adjacent asthenosphere material (Hirth and

Kohlstedt, 1996; Phipps Morgan, 1997). In this idea,
much of the upwelling peridotite will pass through a
region of more batch-like melting followed by more frac-
tional melting in regions where segregation is driven by
stress. Both Kelemen et al. (1997) and Asimow (1999)
concluded that most parcels of melting peridotite have
to undergo part of their melting history in a batch melting
mode and part in a fractional melting mode, but placed
no constraints on the spatial or temporal sequence. We
would predict that the fractional melting follows an initial
period of batch melting.
In more detail, we also suggest further spatial variations

in the melting thermodynamics. Fast and efficient melt
segregation by stress-driven network formation in the
deep parts of the melting region will lead to greater
melt–rock disequilibrium at shallower levels in the melt-
ing region. A highly connected network allows fast melt
transport to advect heat upward and to cause greater
differences in chemical potentials between melt and solid,
thus contributing more energy to the melt–rock reactions
at shallower levels in the melting region. These reactions
lead to an instability called the ‘reaction infiltration
instability’ (RII) (Aharonov et al., 1995; Daines and
Kohlstedt, 1993). This mechanism can cause efficient
melt segregation, channel formation and transport, but
requires initial melt–rock disequilibrium and subsequent
dissolution in order to occur. As melt is quickly segre-
gated and chemically isolated from its source rock, the
degree of melt–rock disequilibrium increases as the melt
ascends, thus increasing the efficiency of the RII as a
mechanism of channel formation. The greater the degree
of disequilibrium between melt and peridotite, the more

(a) deformation (b) thermal/chemical

Fig. 14. A schematic illustration of the effects of stress-driven melt segregation and transport on thermodynamics of melting and melt-rock
reaction beneath a ridge. In both figures, red lines indicate the mantle flow paths and white lines indicate melt flow paths. (a) The white-to-blue
region indicates where dissipation will be relatively high, and the gradient represents increasing levels of stress, which should be mirrored in degree
of stress-driven melt segregation (St), and the increase in permeability with network formation. (b) The white-to-red gradient indicates a transition
from net reduction in entropy due to efficient melt extraction and thus the most fractional melting (white) towards a net increase in entropy due to
the advection of heat and chemical disequilibrium from deeper levels.
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rapid will be the dissolution reaction kinetics that produce
dunite from peridotite. Thus, stress-driven and dissolu-
tion driven melt segregation mechanisms will probably
interact closely in the mantle. In this scenario, the RII
may be more efficient at shallower levels in the melting
column and may act to stabilize channels formed by
stress-driven melt segregation.
In conclusion, there may be large spatial variability in

the controls on the thermodynamics of melting beneath a
ridge and other melting, deforming regions in the Earth.
Where stresses are low, melting may be more batch-like,
and thus productivity will be higher. As stresses increase,
stress-driven segregation causes more fractional melting,
implying lower productivity. However, in these regions,
both the dissipation due to deformation and the increas-
ing thermal and chemical disequilibrium may lead to
increased productivity. Thus, it is possible that these
two opposite trends will tend to balance each other
such that an isentropic approximation would be reason-
able. This conjecture can be explored quantitatively in
further studies.

CONCLUSIONS AND FURTHER

QUESTIONS

Although simple, this analysis provides insight into a
possible mechanism by which networks of melt-rich
bands form and maintain an average configuration in
a dynamic steady state, by achieving an equipartition
of energy dissipation between melt-rich and melt-poor
regions. The values of energy dissipation in the parti-
tioned system are very sensitive to several parameters
that characterize the melt distribution, and these predic-
tions can be compared quantitatively with experimental
observations. Numerous variations could be added to this
analysis, but we present it here in its skeletal form. The
success it has when compared with experimental data will
determine which modifications are made. However, sev-
eral possible directions are worth pointing out for their
value in describing unanswered questions.
(1) Compaction and decompaction. In the analysis above, we

assume that the simple shear velocity gradient contributes
far more to the total viscous energy dissipation than the
work done in accommodating local changes in melt
fraction (i.e. compaction and decompaction). Though
the paths along which melt flows are not solved explicitly
(i.e. the compaction equations are not solved), the volu-
metric change may be accounted for in the energy lost in
changing the melt fraction, as the bands migrate relative
to the solid. To maintain stability, the bands must con-
stantly be adjusting. To adjust, they must be able to
do work against the solid matrix. If we can estimate the
driving force for local melt migration, then we can
constrain the ability of the solid to resist decompaction,

that is, the bulk viscosity. Including these terms may
modify the preference for an angle associated with a
certain degree of strain partitioning.
(2) Length scales and statistical distribution of melt. At present,

the analysis is written in very simple average boundary
layer approximations with no coupling on interfaces
between the boundary layers. However, deforming sys-
tems with identical average properties may have different
local distributions of melt. Will the energy dissipation of
a system with one band of area fraction a equal that of a
system with 10 bands of 0.1a? If not (as seems likely), we
need to incorporate the spacings between bands and
mechanical interactions between band and non-band
regions at their interfaces.
(3) The need for non-linear dynamic models. A complete

continuum mechanical description of a melt-segregation
process requires coupled mass, momentum, and energy
conservation equations for two fluids with very different
rheological properties (McKenzie, 1984; Scott and
Stevenson, 1984; Fowler, 1990; Bercovici et al., 2001).
The viscoelastic properties of the matrix are generally,
though not always (Connolly and Podladchikov, 1998)
ignored, but may be important. Non-linear solutions arise
because of the dependence of both permeability and
viscosity on melt fraction, as well as the effects of stress-
dependent viscosity. We must seek the simplest theory
that can describe the full richness of behavior exhibited
in experiments. Fully dynamic models will be an essential
part of extrapolating the experimental results to natural
settings.
Ultimately, we aim to be able to map St onto partially

molten regions of the Earth, in spatial and temporal
variations. Knowing the degree of melt segregation and
all the related parameters, we can constrain the effects of
meso-scale self-organization of melt on the rheological,
seismic and transport properties of these regions. By cal-
culating seismic properties (anisotropy and attenuation)
directly to St, direct comparisons of model and observa-
tion may be possible.
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APPENDIX A: VELOCITY GRADIENT

TENSORS

Here, we solve for the velocity gradient and strain rate
tensors in the bands and non-bands by using the refer-
ence frames shown in Fig. 3. In the experimentally
deformed samples, the deformation is 3D (Holtzman
et al., 2003b), and thus there are no null components of
the strain rate tensor. However, for simplicity as discussed
above, we assume that the dominant components of the
tensor are the 13 components (i.e. b31 ¼ n31 ¼ 0), simpli-
fying the problem to 2D. We further reduce these tensors
to only their 13 components, prior to rotation, based on
the assumption that the local shear (13) components
are much greater than any dilatational (ii) components.
Therefore,

B ¼
0 b13

0 0

� �
; N ¼

0 n13

0 0

� �
; T ¼

0 t13

0 0

� �
ð38Þ
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where b13 ¼ (@v1/@x3)b, n13 ¼ (@v1/@x3)n and t13 ¼
(@v1/@x3)t. The band and non-band velocity gradient
tensors are then rotated into the sample (t) reference
frame, using the rotation tensor

R ¼
cos � sin �

�sin � cos �

� �
ð39Þ

where � ¼ a or b. [In 3D, this rotation occurs about the
two-axis, normal to the shear direction (1), in the shear
plane (1–2)]. The rotated matrix is calculated as, for
example,

BR ¼ RBRT: ð40Þ

The band angle a is >0 and the non-band angle b is <0,
as counterclockwise angles are positive. The velocity
gradient tensor must first be rotated into the total
(sample) reference frame and then decomposed into the
strain rate form. (These operations are not dependent on
the order in which they are performed.) The following
derivation is for the strain rate in the bands; the exact
parallel method applies for the non-bands.
The solution for the velocity gradient tensor in the

band, rotated into the sample reference frame, is

BR ¼ b13 sina cosa b13 cos
2a

�b13 sin
2a �b13 sina cosa

� �
: ð41Þ

To calculate the strain rates, these tensors are
decomposed into a deformation part, the strain rate,
[(@vi/@xj) þ (@vj/@xi)] and a rotational part, the vorticity,
[(@vi/@xj) � (@vj/@xi)] (Mase, 1970, p. 112), such that

_eebij ¼
1

2
BR þ ðBRÞT
h i

ð42Þ

where T indicates ‘transpose’. We are mainly interested
in the strain rate tensor,

_eebij ¼
1

2
b13

sin 2a cos 2a
cos 2a �sin 2a

� �
: ð43Þ

The calculation of a scalar quantity is implied by the
Einstein summation notation, _eeij _eeij , which means that
all the elements of the tensor are squared and summed
(Ranalli, 1995, equation 4.20). Thus, after much algebra,
the invariants reduce to (as they should be independent
of orientation),

_gg IIb ¼ _eebij _ee
b
ij ¼

1

2
ðb13Þ2 ð44Þ

and

_gg IIn ¼ _eenij _ee
n
ij ¼

1

2
ðn13Þ2: ð45Þ

APPENDIX B: THE RELATIONSHIP

BETWEEN a AND b

The following section describes the derivation of the
relationship between a and b that is essential for solving
the strain rates and thus the dissipation calculation. All
constraints on the relationships between ab, pb, and the
velocities and strain rates are derived from the vector
diagram drawn in Fig. 3. We seek a relationship between
a and b in terms of the parameters ab and pb. Using the
trigonometric relations drawn in Fig. 3b,

vt ¼ abvb þ ð1 � abÞvn ð46Þ

where

vt ¼ Tht ¼
0 t13

0 0

� �
0

ht

� �
; ð47Þ

vb ¼ BRhb ¼ b13 sinðaÞ cosðaÞ b13 cosðaÞ2

�b13 sinðaÞ2 �b13 sinðaÞ cosðaÞ

" #

·
hb sinðaÞ
hb cosðaÞ

� �
ð48Þ

and

vn ¼ NRhn ¼ n13 sinðbÞ cosðbÞ n13 cosðbÞ2

�n13 sinðbÞ2 �n13 sinðbÞ cosðbÞ

" #

·
hn sinðaÞ
hn cosðaÞ

� �
: ð49Þ

Solving equation (3) yields two equations,

htt13 ¼ abhbb13 cosðaÞþ ð1� abÞhnn13 cosðbÞcosða�bÞ
0¼� abhbb13 sinðaÞ� ð1� abÞhnn13 sinðbÞcosða�bÞ

� �
:

ð50Þ

We solve the bottom equation for n13 and substitute it
in to the top one, and then substitute in the unit cell
definitions

hb

ht
¼ ab

cosðaÞ and
hn

ht
¼ 1�ab

cosðaÞ and
hn

hb
¼ 1�ab

ab

illustrated in Fig. 3 Finally, pulling b onto the left side
gives

tanðbÞ ¼ �ðabÞ2b13 tanðaÞ
t13 � ðabÞ2b13

: ð51Þ
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Then, substituting in our definition of pb, so that b13 ¼
pbt13 cos(2a), we get the workable version

tanðbÞ ¼ ðabÞ2pb cosð2aÞtanðaÞ
ðabÞ2pb cosð2aÞ � 1

ð52Þ

which is plotted in Fig. 4. Again, this relationship does
not affect the strain rate because we use the invariant to
calculate the dissipation and viscosity.

APPENDIX C: THE RELATIONSHIP

BETWEEN SHEAR STRESS AND

MELT PRESSURE

The shear stress in the bands and lenses can be calculated
from the relative strain rates and viscosities in the band
and lenses. The values of these stresses provide perhaps
a more physically intuitive view of the behavior of
these equations than the dissipation does, and provide
an avenue into further questions and problems of the
dynamics of melt segregation. The solid pressure influ-
ences the fluid pressure andmelt flows directly in response
to gradients in the fluid pressure. Here, we outline a few
simple relationships between the shear stress and the
local melt and solid pressures. The aim is to motivate
the questions of what pressure gradients may exist in the
deforming systems that allow the melt to organize and
continually readjust to maintain a constant average angle
and a steady state.
As illustrated with a Mohr circle in Fig. A1, we define

the various stress and pressure terms that we discuss
below. Within the band and non-band regions, we define
solid and fluid pressures, P

b

s , P
b
f , P

n

s and Pn
f , respectively,

where the overline indicates that the pressure is the mean
stress, or

P ¼ s11 þ s22 þ s33

3
: ð53Þ

If s33 is equal to the confining pressure, Pc, and
s22 � s33, then

P ¼ ðs11 � s33Þ þ 3s33

3
¼ 2

3
t þ Pc ð54Þ

where t is the shear stress. Since Pc is constant in the
sample, DPb�n

s ¼ 2
3
ðDtb�n

s Þ, where the shear stress
difference is what we calculate in this analysis. We use
the invariant of the deviatoric strain rate tensor as an
approximation of the shear strain rate, such that
t � hð1

2

ffiffiffiffiffiffiffiffiffi
_eeij _eeij

p
Þ and Dtb�n

s ¼ tb � tn ¼ hb _gg IIb � hn _gg IIn .
So the remaining question is how this shear stress or

mean stress relates to the local fluid pressure? The fluid
pressure is not defined as a mean stress because the shear
stress in the fluid will be negligible (Fowler, 1990).
Ultimately, when we calculate DPb�n

s , we must relate
it to DPb�n

f in order to understand how deformation
will affect melt flow. However, the relationship between

these two differentials is not clear. Within one element of
a two-phase continuum, there exists a solid and a fluid
pressure, for example, P

b

s and Pb
f . These two pressures

are related by

P s � Pf ¼ �zr�vs ð55Þ

where r � vs is the compaction rate and z is the bulk
viscosity, which is probably strongly dependent on the
melt fraction (McKenzie, 1984; Scott and Stevenson,
1986; Fowler, 1990). The form of this dependence is
often assumed to be z / f�1. If Pf > P s, the melt pockets
dilate, and if P s > Pf, they compact. Thus, if we knew
the compaction rate and the bulk viscosity, we could
determine a local melt pressure from this equation.
However, the pressure gradient depends on the gradient
of the shear strain rate and on the compaction/
decompaction rate (Spiegelman, 2003, equation 4).
Because we are only looking at the differences in the
contribution of shear deformation, in the present
analysis, we cannot calculate this relationship, but only
speculate in the Discussion. For the purpose of the
analysis presented here, we make the simplest assump-
tion that spatial gradients in fluid pressure will have the
same sign as those in solid pressure in the same location.
Another factor affecting the fluid pressure is the surface

tension, which relates the Pf to the curvature of melt-
pocket walls (Stevenson, 1986; Cooper, 1990). When
fluids tend to wet the grain boundaries (i.e. 2g sf > g ss),
surface tension tends to flatten perturbations in melt
distribution and resist melt segregation. These effects
are also not considered in this analysis.

b
sP

fPb

P
n

s Pn
f

Pc σ11
b

τn

τb

σn
11

Pn
Pb

τ

σii

∆P b-n
s

s s

stress in the solid

Fig. A1. The definition of the various pressures discussed in the
analysis.
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APPENDIX D: SENSITIVITY TESTS

We systematically vary ab, fb and pb to explore the influ-
ence of a wide range of parameters on the values of the
minima in dissipation and their dependence on band
angle. The results, illustrated in Fig. A2, are plotted
according to the following scheme. In the top row
(Fig. A2a and b), the effects of varying fb are shown in
two ways. In the bottom row (Fig. A2c and d), the effects
of varying ab are shown. In the left column (Fig. A2a and c),
we plot the values of a associated with each minimum in
dissipation, as a function of pb for different values of
fb (top) and for a (bottom). In the right column (Fig. A2b
and d), we plot the normalized values of the dissipation
where the minima occur, as functions of fb (top) and ab
(bottom), exploiting the observations above that the value
of dissipation at the minima does not depend on a or pb,
but only on ab and fb. The figures in the right column
show the most basic and intuitive results: (1) the more that
melt segregates into the bands (fb), the lower the energy
dissipation; and (2) the larger the volume fraction of
bands (ab), the lower the energy dissipation. In other
words, melt segregation and strain partitioning are

energetically favorable; the more the melt segregates,
the lower the energy becomes and the weaker the rock
becomes.
Varying fb. In Fig. A2a, we plot the influence of the

partitioning factor pb on the band angle at which F is
minimized, a*. The general trend of all slopes indicate
that, as pb increases, a* increases, as seen in Fig. 7, for a
fixed value of ab and fb. As fb increases, a higher value
of pb is required to reach a minimum in dissipation at a
given angle. In other words, at a given value of a, the
weaker the bands are relative to the lenses, the more
strain must concentrate in the bands to minimize the
dissipation. As shown in Fig. A2b, as strain rate in the
bands increases relative to the total, the absolute value
of the dissipation drops quickly and almost linearly. The
deviation from linearity comes from the fact that fb
appears in the exponential term in the viscosity–f rela-
tion, equation (19). For ab ¼ 0.2, a twofold increase in fb
leads to a twofold decrease in dissipation.
Varying ab. When ab is varied (Fig. A2c and d), the

curves of a* vs pb have a similar curvature as those
when fb is varied. However, increasing ab has the inverse
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Fig. A2. Sensitivity tests. The minima in dissipation as a function of a vary with ab, pb and fb. All parameters are the same as in Fig. 7. (a) a* as a
function of pb, with variable fb; (b) Fmin/F0 as a function of fb; (c) a* as a function of pb, with variable ab; (d) Fmin/F0 as a function of ab, for two
values of fb.
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effect on a* than increasing fb. At a constant value of pb,
increasing ab causes an increase in a*; or at a constant a*,
a decrease in ab corresponds to an increase in pb. To
clarify the latter, the more the strain rate is concentrated
in the bands, a smaller volume of (or fewer) bands is
(are) needed to attain a minimum dissipation level at
a certain angle. In Fig. A2d, Fmin decreases linearly
with increasing ab, because ab is simply a weighting

factor on the dissipation values for the bands and
lenses in equation (20) and for pb in equation (34d
and e). The total amount of dissipation reduction is much
more sensitive to fb than to ab. Finally, the effect of
varying l (not shown) on the relation of F to pb is very
similar to that caused by the variation of fb, because an
increase in both essentially weakens the bands relative to
the solid.
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