550.4+553.061.2(470.5)

PRE-PALEOZOIC MAGMATIC COMPLEXES OF KVARKUSH-KAMENNOGORSKY ANTICLINORIUM (MIDDLE URALS): NEW DATA ON GEOCHEMISTRY AND GEODYNAMICS

G.A. Petrov, A.V. Maslov, Yu.L. Ronkin

Institute of Geology and Geochemistry, Urals Branch of RAS

The description of the Upper Riphean-Vendian (Neoproterozoic) magmatic complexes of Kvarkush-Kamennogorsky anticlinorium, their geochemistry and isotope-geochronology data are given. The research allows us to show presence of definite lateral zoning of magmatism, which can be produced by different-depth magmatic cameras above mantle plume presence. The possible duration of mantle plume existence is ca. 200 Ma. Stratigraphic problems of the Middle Urals upper levels of the Upper Precambrian sedimentary sequences are discussed.

Key words: magmatism, Vendian, Riphean, geodynamics, mantle plume, the Middle Urals.

, 1991;	,	, 2001;	-	
	., 2002],	[1000 2	001.	[., 2002].
• •	20021	[1999, 2]	001,	,
,],		-	,,
,			-	, ,
			-	
			-	
				, (. 1, 2), -
			-	-
	,		-	, .
			-	-
		,		1990: . 2002].
				-
*	*	-	-	
				-
	,		-	()
	(.),		· · · · · · · · · · · · · · · · · · ·
-	ICP-MS	,,,		, -
				-
				. (U-Pb)
				-
	-	(-	745 . [., 2002].
)			-	
				, [
,	,	[-	2002].
., 1982;		, 1993,	.].	.,],
			-	-
,			,	-
	-		-	 [1982:
_	,		-	., 2002].
			-	, Rb-Sr
•			-	$, \qquad 671\pm 24 \qquad . \qquad (I_{sr} = 1000)$
		,	-	$0,7045\pm0,0004)$ [, 1989].
,	, -	,	-	-
,	,	,		
	(. 1).			
,				-
-		,	-	,
			-	- -
			-	,
			-	-
			-	_

(.%) (/)

	1	2	3	4	5	6	7	8	9
SiO ₂	52,05	49,13	54,52	42,96	45,87	46,46	45,08	46,5	58,37
TiO ₂	3,85	3,29	3,45	3,69	4,75	3,11	3,17	3,58	1,44
Al_2O_3	13,39	11,77	10,32	11,35	11,81	13,56	12,83	11,33	14,34
Fe ₂ O ₃	13,74	9,31	9,43	9,17	10,95	10,17	8,48	13,47	5,28
FeO	1	7	3,9	6,4	2,9	3,1	5	1,55	2,4
MnO	0,09	0,21	0,18	0,21	0,14	0,18	0,18	0,15	0,11
MgO	1,45	3,87	3,76	6,77	5,51	4,35	5,87	6,54	1,96
CaO	3,94	4,79	6,12	8,82	8,06	7,05	8,21	8,86	2,58
Na ₂ O	8,4	5,2	4,2	4,4	2,6	4,75	5,3	6,2	10,4
K ₂ O	0,97	2,29	0,19	0,96	3,86	3,3	1,77	0,05	2
P_2O_5	0,65	0,65	0,61	0,68	0,94	0,7	0,5	0,36	0,35
	100,89	100,18	99,53	99,09	100,64	100,27	100,48	100,78	100,46
Li	5,57	19,2	19,2	164,68	41,38	57,93	72,59	31,34	10,65
Rb	20,36	21,68	5,7	22,68	87,25	45,3	27,44	1,57	29,5
Cz	0,69	0,69	0,19	3,25	0,92	1,06	3,89	0,71	0,92
Sr	319,47	114,17	2327,85	1288,02	899,84	730,96	865,73	993,46	166,41
Ba	351,04	811,44	201,64	464,56	1094,75	904,96	677,44	81,93	381,33
Sc	32,23	30,4	27,7	21,11	22,55	11,96	22,43	28,88	4,88
V	211,45	432,72	411,25	480,17	412,25	226,36	500,97	408,05	112,38
Cr	198,42	56,23	94,97	318,99	69,64	131,57	258,5	445,23	100,07
Co	32,33	42,6	37,33	49,69	41,87	37,15	48,23	44,68	8,22
Ni	34,21	14,87	17,92	61,43	53,1	48,04	57,57	53,96	48,03
Cu	21,57	12,27	27,44	81,12	85,17	84,83	85,12	48	14,44
Zn	158,8	174,16	165,36	173,75	190,42	149,82	170,65	133,22	71,67
Ga	20,77	28,06	23,08	24,18	23,73	19,42	26,26	20	21,62
Y	42,44	45,63	42,2	33,72	41,32	35,79	37,21	26,62	26,73
Nb	23,58	21,98	20,54	107,91	101,62	120,81	114,27	73,44	97,86
Та	1,28	1,11	1,14	5,57	4,82	5,17	5,72	5,33	4,56
Zr	270,15	258,67	229,33	373,58	395,45	409,85	375,23	274,18	3/2,65
Hf	6,64	6,71	6,02	8,75	9,32	8,71	8,65	6,74	8,79
Mo	2,43	1,01	0,82	0,9	2,22	0,94	1,23	3,37	1,37
Be	1,28	2,/1	1,62	3,48	2,46	1,91	2,69	2,38	4,19
Pb	0,0	3,92	9,71	2,12	4,09	4,02	4,5	19,48	8,02
U	0,18	0,4	0,30	1,//	1,25	1,44	1,40	1,05	16.26
	2,79	2,48	2,55	9,39	72.80	9,52	9,04	/,21	56.00
La	30,33	70.02	32,32	121.5	152.09	14,5	12,00	41,0	111.60
Ce Dr	70,48	0,95	1,72	151,5	10.4	145,21	17.51	91,43 11.4	111,09
ri Nd	<i>3,31</i>	30.26	9,0	63.03	70.06	65.07	68.31	45.80	12,9
Sm	44,09	0.72	42,31	11 7	15,50	11.01	12.7	43,69	40,J 8 2
Fu	3 15	2 73	3,18	3.46	13,39	3.46	3.84	2.60	2 75
Gd	9,15	2,73	0.27	10.02	12.00	10.15	11.3	7.69	6.88
Th	9,79	9,08	1.45	10,02	12,99	1.42	1 52	1.1	0,00
Dv	7 85	8.26	7.61	6.68	8 59	7	7.56	5 58	5 16
Ho	1.49	1.58	1.52	1 28	1.54	1 32	1 37	1.06	0.98
Fr	3.5	30	3.8	2 99	3 4/	3 1 2	3.00	2 41	2 38
Tm	0.47	0.55	0.48	0.38	0.43	0.4	0.4	0.32	0.32
Yh	2 58	3 14	2 79	2 18	2 46	2 36	2 31	1 8	1 98
Lu	0.35	0.42	0.4	0.3	0.33	0.33	0.3	0.24	0.28
	0,00	0,12	·, ·	0,5	0,55	0,55	0,5	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,20

	. 1-3 –		,			, .	;
	, .	: 10 –	[., 20	01], 11-13 –	; 14-17	_
	,. :		(18),	(19)	-	(20); 21-23 –	
:	(24)	[,	2002], 25 -	,		;

10	11	12	13	14	15	16	17	18	19
38,67	46,48	44,13	49,21	43,92	42,82	44,88	47,64	48,25	43,46
0,72	1,66	1,96	1,49	3,24	2,54	3,21	1,58	2,47	0,85
7,25	13,31	12,53	13,85	13,45	11,59	10,06	13,34	10,51	5,75
5,45	7,39	8,27	9,01	7,32	7,76	8,06	6,53	10,99	5,28
7,89	9,7	7,8	6,5	6	8,4	6	6,3	6,9	6,9
0,19	0,22	0,21	0,2	0,15	0,19	0,12	0,15	0,22	0,16
23,05	2,71	5,69	2,33	4,76	9,42	6,02	5,76	5,69	24,5
5,02	6,1	10,66	5,55	9,6	7,8	11,6	7,28	7,65	5,09
0,24	6,2	4,2	7,3	2,5	4,4	4,4	5,3	1,8	0,3
0,39	1,22	0,49	1,42	2,64	0,2	0,01	0,66	1,94	0,07
0,16	0,89	0,4	0,56	0,66	0,36	0,44	0,32	0,27	0,13
100,35	99,5	100,22	100,54	99,17	100,64	100,07	98,39	100,76	100,24
-	38,72	57,83	32,29	49,49	94,35	27,07	26,63	25,29	10,37
19	15,74	8,93	15,6	29,73	3,47	0,26	10,41	53,83	2,32
4,1	0,27	0,22	0,08	0,58	0,88	0,02	0,23	6,04	0,/1
141	441,53	368,07	451,33	551.12	224,99	168,/5	319,81	494,/1	50,66
141	435,7	419,48	270,52	18 22	200,01	24.28	303,82	390,04	50,04
12	164.07	284.66	9,29	10,52	254.09	24,38	23,2	45,18	122.49
628	164,07	284,00	40,02	27.11	334,98	255,50	217.21	200.22	2062.2
038	10,09	131,07	22.05	45.10	420,24	70.01	217,51	42.02	107.86
90	20,40	40,09	4 51	43,19	30,30	18.62	21.76	42,02	067.15
1497	20,78	91.60	4,51	23,07	52 67	40,02 53.46	46.52	152.22	65 71
43	107.25	126.18	110.04	212.34	131.7	161.62	40,52	132,22	69.72
7	21 47	25.1	23.07	30.34	20.84	20	20.36	192,25	8.63
10	33.99	32 35	52 21	467	20,04	20	20,50	48.18	14 78
21	60 5	51 27	90.39	124.02	27,07	41 73	17.93	12 29	17,99
1.08	2 67	2.6	4 34	5 91	7 09	2 39	1 18	0.77	0.99
41	202.38	179.36	312.55	619.74	206.19	308 54	152.55	159.34	37.02
1.2	4.18	4.25	7.01	13.87	5.41	7.19	3.75	4.4	1.1
0.3	1.22	0.88	1.19	3.96	6.75	1.67	0.77	1.05	2.02
0.2	1.62	1.46	2.21	3.17	1.42	1.49	1	1.67	0.7
1,6	2,82	3,58	6,34	4,08	1,67	1,37	1,2	9,73	1,92
0,5	0,78	1,27	1,46	2,45	0,67	0,96	0,65	0,7	1
1,9	4,03	3,75	6,98	8,09	3,62	2,36	1,71	1,4	1,46
12,2	36,66	31,48	59,73	82,39	20,5	30,99	15,35	12,45	21,62
22,7	76,67	64,51	120,09	187,2	49,75	78,49	37,46	30,38	44,68
2,7	9,04	7,82	13,73	23,53	6,95	10,52	4,98	4,47	4,97
10,9	36,55	31,51	53,97	91,92	30,9	45,99	21,53	21,59	18,28
2,29	7,45	6,54	10,11	16,6	7,02	9,39	5,14	6,23	3,11
0,76	2,42	1,94	2,78	4,43	2,16	2,7	1,74	2,03	0,77
2,17	7,24	6,64	10,49	13,24	6,48	8,08	5,18	7,12	3,39
0,33	1,15	0,99	1,55	1,81	0,98	1,12	0,79	1,23	0,5
2,02	6,21	5,92	9,13	8,99	5,4	5,74	4,51	8,06	2,7
0,36	1,23	1,15	1,81	1,72	1,11	1,02	0,89	1,67	0,51
0,92	3,15	2,99	4,81	4,09	2,65	2,42	2,13	4,7	1,31
0,13	0,43	0,42	0,68	0,54	0,34	0,32	0,27	0,67	0,18
0,87	2,53	2,45	4,15	3,18	1,98	1,77	1,66	4,07	1,02
0,11	0,36	0,35	0,58	0,44	0,28	0,23	0,23	0,59	0,14

4-9 –	(4),		(5-8)	(9)	, . ; 10-1		
	, . :		((14, 15)	(16, 17); 18-20 –	-	
	, .	:	(21),	(22)	(23); 24-25 –	-	
26 –	-		,		; 27 – –	-	

	19	20	21	22	23	24	25	26
SiO ₂	43,46	45,77	45,63	45,77	67,2	42,72	46	75,12
TiO ₂	0,85	1,38	0,33	1,09	0,93	0,46	2,71	0,3
Al ₂ O ₃	5,75	9,69	4,5	11,19	16,23	7,48	13,19	12,96
Fe ₂ O ₃	5,28	5,42	6,01	7,1	0,98	5,54	5,76	0,72
FeO	6,9	12,3	7,47	7,8	2,04	4,89	9,21	1,72
MnO	0,16	0,21	0,15	0,2	0,06	0,16	0,2	0,04
MgO	24,5	12,4	23,45	9,03	1,36	25,62	7,16	0,92
CaO	5,09	8,29	3,72	11,49	1,49	4,53	8,78	0,51
Na ₂ O	0,3	2,4	0,36	1,8	6,6	0,06	0,81	4,74
K ₂ O	0,07	0,05	0,15	0,14	1,18	0,02	0,15	1,3
P_2O_5	0,13	0,21	0,04	0,1	0,19	0,09	0,23	0,06
	100,24	99,85	98,77	99,35	99,4	99,98	98,9	99,56
Li	10,37	152,04	-	27,03	_	_	27,86	4,13
Rb	2,32	0,49	5	4,08	27	_	0,08	35,96
Cz	0,71	0,02	-	0,08	—	-	0,001	0,38
Sr	50,66	174,27	50	143,55	100	-	538,07	393,19
Ba	50,64	44,05	_	30	—	_	6,63	197,79
Sc	15,88	24,14	_	39,88	—	_	44,76	4,07
V	133,48	215,06	190	287,5	4	98	427,15	46,48
Cr	3062,3	1314,83	34	210,79	30	1825	68,32	61,48
Co	107,86	72,24	35	52,3	15	79	37,78	68,41
Ni	967,15	401,33	27	141,45	20	798	80,14	41,52
Cu	65,71	65,5	_	130,17	—	_	52,2	73,72
Zn	69,72	89,12	_	72,91	—	_	111,76	64,55
Ga	8,63	15,13	_	16,9	—	_	21,14	9,41
Y	14,78	17,2	17	23,55	6	8	45,61	17,23
Nb	17,99	26,82	-	5,02	13	8	10,73	6,36
Та	0,99	1,29	-	0,33	_	-	0,63	0,24
Zr	37,02	68,6	95	56,75	120	35	73,92	21,03
Hf	1,1	1,83	-	1,64	_	1	2,68	0,86
Mo	2,02	1,24	-	1,16	_	-	0,79	0,69
Be	0,7	0,72	—	0,34	—	-	0,53	1,11
Pb	1,92	0,49	—	3,14	—	-	11,68	0,15
U	1	0,88	-	0,49	-	0,2	12,12	1,9
Th	1,46	1,8	_	0,43	_	0,4	1,18	0,05
La	21,62	15,64	-	4,26		3,9	11,55	18,99
Ce	44,68	33,54	_	10,91	-	7,5	28,89	42,15
Pr	4,97	4,09	_	1,62	-	1,4	4,11	5,68
Nd	18,28	17,47	_	8,1	-	6,2	19,21	24,36
Sm	3,11	3,73	_	2,45	-	1,52	5,59	5,65
Eu	0,77	1,11	_	0,87	-	0,42	1,84	1,68
Gd	3,39	3,61	_	3,1	-	1,84	6,61	4,82
Tb	0,5	0,55	_	0,56	-	0,29	1,11	0,64
Dy	2,7	3,2	-	3,74	_	1,78	7,21	3,19
Ho	0,51	0,59	-	0,83	_	0,37	1,52	0,62
Er	1,31	1,55	_	2,33	_	1,03	4,2	1,46
1 m	0,18	0,21	_	0,35	_	0,13	0,61	0,2
YD	1,02	1,23	-	2,12	_	0,81	3,65	1,15
Lu	0,14	0,18	-	0,32	-	0,11	0,64	0,18

			, .	; 28 –			(?), .	; 29 –
	[,	, 1990],		: 30 –	, 31 –		, 32 –
[, 2001]; 35 –		- ,	, •	[, 1977].

27	28	29	30	31	32	33	34	35
72,57	61,49	56,65	34,18	38,98	46,28	48,46	50,73	65,51
0,48	1,23	0,91	0,11	0,11	0,14	0,32	1,81	1,15
10,44	11,86	15,28	1,89	2,81	6,7	18,69	14	15,24
3,78	0,11	0,79	10,03	4,25	1,1	1,27	6,44	1,73
1,74	5,4	5,75	2,77	6,85	9,43	3,91	3,01	1,41
0,04	0,09	0,15	0,09	0,15	0,08	0,09	0,15	0,06
2,43	12,43	9,72	33,68	33,29	21,64	9,46	7,31	0,48
0,91	0,27	6,05	1,1	0,73	7,6	13,55	4,92	1,8
0,12	0,36	1,75	0,05	0,05	0,18	1,5	4,88	4,56
4,55	0,03	0,15	0,09	0,02	0,03	0,12	0,99	5,54
0,1	0,28	0,26	-	-	-	-	0,18	0,32
99,36	99,76	99,49	100,62	100,11	99,92	99,94	100,17	99,47
9,13	-	23,24	-	-	-	-	-	-
303	—	2,22	—	-	_	—	15	—
1,17	—	0,08	—	-	_	—	0,2	—
6,11	—	171,92	—	-	_	—	119	—
23,94	_	18,1	—	-	-	—	142	—
0,88	—	41,63	—	-	_	—	39	—
9,41	-	253,16	-	-	-	-	185	-
90,05	_	547,9	—	-	_	—	125	—
7,11	_	41,11	—	-	_	—	39	—
42,99	—	219,36	—	-	_	—	183	—
6,23	—	30,41	—	-	_	—	67	—
128,53	—	67,69	—	-	_	—	97	—
39,71	—	15,8	—	-	_	—	19	—
261,58	—	17,31	—	-	_	—	28	—
351,13	-	2,71	-	-	-	-	18	-
10,74	-	0,23	-	-	-	-	0,82	-
1864,99	-	25,77	-	-	-	-	78	-
43,07	_	1,03	_	-	-	_	1,84	_
1,29	-	0,77	-	_	_	—	0,2	—
8,95	-	0,29	-	_	_	—	0,7	—
6,44	-	7,59	-	_	_	—	1,5	—
7,23	-	0,09	-	_	_	—	0,3	—
58,3	-	0,22	-	_	_	—	1	—
189,87	-	1,9	—	-	—	—	12,2	—
393,33	-	5,31	-		-	-	20,3	-
43,05	_	0,82	_	_	_	_	3,3	_
157,24		4,48	-	-	-	-	15,5	-
29,26	-	1,6	-			—	4,67	—
1,02	_	0,64	_	_	_	_	1,62	_
28,86	-	2,08	_	_	_	-	4,56	_
5,41	-	0,39	-	_	_	-	0,8	_
36,6	-	2,68	-	_	_	_	4,15	_
8,08	-	0,58	-	-	-	-	0,82	-
22,44	-	1,68	-	-	-	-	1,87	-
3,44	-	0,25	-	-	-	-	0,3	-
20,63	-	1,57	-	-	-	-	1,54	-
3,2	-	0,23	-	-	-	-	0,18	-

; 30-33 –

,

-

, .

1

...,..,..

-	r		. 4, 5).	27 / Cr (
, 1997].	ļ ,		4,80 -	$La_N Y b_N$
-			-	16,54
(. 4),	,		= 1,57-4.	, Zr/Nb = 5-8,5, Ce/Y =
, ,			-	REE,
., 1980,	, [(HREE)	,
., 2002]	, 1980;	2002;	-	,
, -			; (LREE) – –	
-			-	
	,		-	. REE
			-	,
-			HREE	
-			, -	
-		K-Ar	-	, ,

[., 2002]. Sm-Nd	. (, -
Rb-Sr	-) 626±57 .
	569+42	[., 1999].
, 559±16 . [, <u>2001</u>].	
L	-	-
		-
	-	,
	, -	· ,
	• •	· , , ,
•	-	
	-	
		[2002]
-	-	[., 2002], -
		(4 5).
		-
•		REE (165-294 /), Zr (179-
	-	313 /) Sr (368-451
—	- , -	/), KU (9-10 /) CI (17-132 /).
REE (222-379 /), Z	Lr (274-410 /), Sr (731-	-
1288 /) Rb (23-87	/). Cr	
DEE	70 445 /.	REE
KEE	-	Eu, , , -
	La,/Yb,	. La./Yb., -
8,72 1	10,63. $Zr/Nb = 3,3-3,9,$	6,21 7, ¹ 6, ^N
Ce/Y = 3,4-4,2.	REE	Zr/Nb Ce/Y , -
,	-	, 3,4-3,5 2-2,3
,	- Sr (166.4 /)	[2002]
	, -	- ,
, ,	-	
[., 1980]	,
	,	– , .
	-	
, ,		,
	-	, -
,	, - [-	_
, , 2002;	., 2002]	,
••	, -	, -
		-
	(?).	20021
. Rh		., 2002]
, 10	, -	
608±3 .	$(I_{sr} = 0,7033\pm3),$	-
Sm-Nd		

Sm-Nd

. . , . . , . .

-		, -		2	,	671±7,5
	-	,	-	. [., 1999]	-
		• • • • •	-		,	, , . –
		,	- -		,	- K-Na K -
,	-	, ,	-	,		, ,
	(.	. 1, . 6).		,		(. 6). -,
	K REF	Na , Na K E	-			- -
105 /	,	, ZrSrRb	87	•	(),
, 50 /.	, , , , , , , , , , , , , , , , , , , ,	37-160, 51-495	- 0,5- -			-
/) Ni (72	2-967 /).	Cr (200 REE	-3062	: 41,6 / ,	REE Zr, Sr	Rb - 57, 144
		,	-	4 / . (211	Cr Ni, 141 /	, -) REE -
	,		-	11,3, Ce/Y =	MORB (La _N /Yb _N 0,46).	(, 6) - x = 1,92, Zr/Nb =
	La _N /Yb _N Zr/N , 2,51-2,5	6,1 Ib Ce/Y 6 1,95-3,02.	8,5; , -	/	· · · ,	-
	12.02 0.2	La _N /Yb _N Zr/Nb	2,49, Ce/Y	25 1999].		[,
	12,92 0,5,	E-MORB	REE		(?).	-
E-MORB,		- ,	-		[., 2002].
,	REE.	,	-	-	- ,	-
		,	-		4.5 .	250 , - (40-
,				80°).	, ,	-

	,	,	-					,		-
,			•	,						-
		_	-			,				-
			-				,			•
,						:	,		,	
			-		,		,			-

, , , , ,	,
	-
, , , - ,	
, (3%),	-
	, -
, _	,
3.) .
)	
, -	, -
	, ,
(,), 581±3 .	-
[Decknonnen et al., 1999].	, -
	-
(), - (-)	, –
), (. /). Na K	, -
K-Na Na ;	Na K-Na
Rb $5-36$ /, Sr $-50-$	(,7);
, , , , , , , , , , , , , , , , , , ,	Sr (150-550 /).
41-50 /	
REE $(1 \circ \sqrt{2}) = 6.05 \ 7 = 7.00 = 2.02$	MORB -
; $La_{N'} I b_{N} = 0.95$; $ZI/Nb = 3.92$; Ce/Y = 2.45.	96.6 / . Zr 75-200 / . Cr 48-750 /
-	Ni 58-840 / ,
, -	REE -
[Beckholmen et al., 1999]: , -	-
,	-
2840±18 2860±33	
-	$(La_{N}/Yb_{N} = 2,54,$
/	Zr/Nb = 6,89, Ce/Y = 0,63) -
	-
,	
, -	
· · ·	
-	
-	
· -	-
, -	
- , , -	,
, -	[2001]

,

-

(

,

,

MOR ,

60

(. . 1)

REE.

MORB.

),

REE

1.

	, ,	680-670 .	-
	, -	-	-
	-		-
REE,	MORB, –		-
,	-		-
	-	,	
625-610 .		:	
	REE		-
		, ,	-
	-		, -
,	-	,	
	-		

		[- , 1989;	REE,	MORB,	
., 20	001].					
570	550					
	,		-			

_

(«

, , - , _ .

¹ Rb-Sr Sm-Nd 2- (-) 2 , - [.,2005], (-555 .) -

[., 1982;	, 1983;	, 1993, .]
			-

_

	-	-				
	,			,		
	ſ	-	ſ	1980	13	
2001;	, 2002; Rybalka et al., 2004].	-	L	, 1900,	.]	

-	.],	[., 1982, .],					(
, 1990, .]	1983; , 1993,	,,	(2) [1991;	- ,	,),	()	
-		_	,	-				
-	100	r		-	,		,	
;], - -	, 198.	Ĺ		-	,		-	
-				-	,			
-				-				-
-		,		•	65-75			(
).		,		
-	-			-			-	
[1980]			K - A r	_				
-	,		K-Ar	-				

³ [_____, 2003, 2004; _____, 2005], _____ [2005],

(Vaizitsinia .).

Inaria,

,

590 . (630 566). Rb-Sr	609- 5 , -
, 620±18 . [1989;, 1983]. ,	- , , , - , , , , <u>650±20</u> . [- , 1993, .], -
() () 620+15	- - III - - (1991 .). ,
, 1964], , 650±20 [., 1991; , 1	[- [- 0 . , 1978, 1996;, 2004, .] - 1993]. , -
-	, -
(600±10 .) [, 2000]. , , , () / (, [Plumb, 1991]	- , - - , - 5, - 608-630 .) (?)
. , . [Plumb, 1991], III –	- , , , - 1990- – (cap dolomite), - – [Knoll - et al., 2004] .
, 650 [Knoll et al., 2004] III ,	- , - , - , - , - , - , - , - , - , - ,

⁴ , 5 •

•

⁶⁶

	,)		- (- -	-	-
2005_1	([-), _, _	,	, -
2005],	,	. ,	, , 		
	(),	,		ſ	
			-	,	· · · · · · · · · · · · · · · · · · ·
,	,		, - -		-
				-	- , -
			-		
,		,	-		
,		, (, _).	[., 1999]	, , -
,	, - 750		- - , -	,	- , , ,
680-670			- -	[., 2002],	., 2002; -
. 625	5-610 .		(570-	(608±3 627±57 . 559+16 [- , - 569±42 1999-2001
,			-	, 2002].	
	- 200 .		-	(-)
			-		, -

- - , 2002. . 124-146.

	() - ,	
	· · · , ·	
"	(03-05-64121) » (-85,2003,5),	, 1990. 243
		// : , - , , , - ,
		: , 2002 200-203. ,,,
	· ., · ., · ., · . ·: , 1982. 140 .	(Sm- Nd Rb-Sr)// 1999 369. 6. . 809-811.
// ·	· · · · · 2. · · · , 1980. · · 33-47.	// . 2001 9. 5 480-503.
	, 2001. 108 .	/ , 2004. 299
	, 2000. 256 . 	· · · // - (). : , 1990 62-64.
	: , 2004. 144 . ,,	· · · , 1991.60 .
) //	/
	-) //	: , 1986. 147 .
	. 2005 . 3 267-280.	// . 2002. 3 46-68.
401.	6 784-788. ,	// , , , , II , , , , , , . I. : , 1969 301-304.
	· · · · · · · · · · · · · · · · · · ·	· · · · , 1983. 223 .
	· .3. · . ; , 1980. · .30-46.	. // -2002 : , 2003 70-82.

// ,

(

•

•

•

68

-

.

() // -2003. , 2004. . 65-86. 1:200 000. -40-XVIII. , 1999. 268 2000.146 -1988. // , 1989. . 107-110. . 3. 1980. . 3-29. // . 1993. . 1. 1. . 6-20. // . 2000. . 95-107. . ., . 1991. 4. . 3-16. // . II . III. , 1969 . 134-143. . // . III. . II . 318-326. 1969 : (, 1993. 85). / .: , 1983. 184 1:200 000. -40-XVII. 2002.172 . , 1997. 320

tional basalt-pantellerite sequence of fractional crystallisation, the Boina centre (Afar rift, Ethiopia) // J. Petrol. 1975. 1. P. 65-78.

Beckholmen M., Petrov G., Larionov A. Rifted margins of Baltica in the Scandinavian Caledonides and the Uralides // EUG-10. Abstracts. Cambrige publ., 1999. . 93.

Beckholmen M., Glodny J. Timanian blueschistfacies metamorphism in the Kvarkush metamorphic basement, Northern Urals, Russia // The Neoproteozoic Timanide orogen of Eastern Baltica. London: Geol. Soc. Mem., 2004. V. 30. P. 125-134.

Condie K.C. Archean magmatism and crustal thick-ness // Geol. Soc. Am. Bull. 1979. V. 84. 9. P. 2981-2992.

Knoll H., Walter M.R., Narbonne G.M., Christie-Blick N. A new period for the geologic time scale // Science. 2004. V. 305. P. 621-622.

Le Bas M.J., Le Matrie R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram // J. Petrol. 1986. V. 27. 3. P. 745-750.

Mullen E. MnO-TiO₂- P_2O_5 : a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis // Earth Planet. Sci. Lett. 1983. V. 62. 1. P. 41-58.

Plumb K.A. New Precambrian time scale // Episodes. 1991. 14. P. 139-140.

Rybalka A., Petrov G., Juhlin C. et al. Crustal structure of the Middle Urals and East European Craton Transition Zone based on reflection seismic data // 32 IGC. Abstracts. Florence, 2004. P. 1007.

Sun S.-S., McDonought W.F. Chemical and isotopic systematics of oceanic basalts: implications for the mantle composition and processes // Magmatism in the oceanic basins. London: Geol. Soc. Spec. Publ., 1989. P. 313-345.

Taylor S.R., McLennan S.M. The continental crust; its composition and evolution. Cambrige: Blackwell, 1985. 312 p.

Wedepohl K.H. Tholeiitic basalts from spreading oceanic ridges: the growth of oceanic crust. Naturwissenschaften, 1981. 68 p.

·- · · · · ,

//