
Original Paper

Applications of Natural Language Processing to Geoscience
Text Data and Prospectivity Modeling

Christopher J. M. Lawley ,1,6 Michael G. Gadd,2 Mohammad Parsa,1 Graham W. Lederer,3

Garth E. Graham,4 and Arianne Ford5

Received 1 February 2023; accepted 8 May 2023
Published online: 2 June 2023

Geological maps are powerful models for visualizing the complex distribution of rock types
through space and time. However, the descriptive information that forms the basis for a
preferred map interpretation is typically stored in geological map databases as unstructured
text data that are difficult to use in practice. Herein we apply natural language processing
(NLP) to geoscientific text data from Canada, the U.S., and Australia to address that
knowledge gap. First, rock descriptions, geological ages, lithostratigraphic and lithodemic
information, and other long-form text data are translated to numerical vectors, i.e., a word
embedding, using a geoscience language model. Network analysis of word associations,
nearest neighbors, and principal component analysis are then used to extract meaningful
semantic relationships between rock types. We further demonstrate using simple Naive
Bayes classifiers and the area under receiver operating characteristics plots (AUC) how
word vectors can be used to: (1) predict the locations of ‘‘pegmatitic’’ (AUC = 0.962) and
‘‘alkalic’’ (AUC = 0.938) rocks; (2) predict mineral potential for Mississippi-Valley-type
(AUC = 0.868) and clastic-dominated (AUC = 0.809) Zn-Pb deposits; and (3) search geo-
scientific text data for analogues of the giant Mount Isa clastic-dominated Zn-Pb deposit
using the cosine similarities between word vectors. This form of semantic search is a
promising NLP approach for assessing mineral potential with limited training data. Overall,
the results highlight how geoscience language models and NLP can be used to extract new
knowledge from unstructured text data and reduce the mineral exploration search space for
critical raw materials.

KEY WORDS: Natural language processing, Language model, Word embedding, Semantics, Prospec-
tivity, Critical mineral.

INTRODUCTION

Bedrock geological maps are the standard tool
for visualizing the complex spatial-distribution of
rocks at surface and their associations through time
(Giles & Bain, 1995; Laxton & Becken, 1996; Reed
et al., 2005; Loudon, 2009; Sharpe, 2015). However,
every geological map is an interpretation, based on a
conceptual understanding of geological processes
and data derived from field observations and labo-
ratory analyses (Giles & Bain, 1995; Brodaric et al.,
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2004; Thorleifson, 2005; Whitmeyer et al., 2010;
Brodaric, 2012; Mantovani et al., 2020). The digital
geoscientific data used to make the preferred map
interpretation are typically stored in geological map
databases as numeric and/or text attributes linked to
spatial polygons with geometrical information
(Laxton & Becken, 1996; Laxton, 2017). Ideally,
each numeric and text attribute is defined in a da-
tabase model and corresponds to a different geo-
scientific concept (Raymond et al., 2012a; Wilson
et al., 2015; Horton et al., 2017; Mantovani et al.,
2020). Data in this form are ‘‘structured’’ and is
relatively straightforward to represent on a bedrock
map (e.g., rock types, geochronological information,
polygon identification numbers), particularly if the
vocabularies for each geoscientific concept corre-
spond to international data standards like the North
America Data Model (NADM), International Un-
ion of Geological Sciences (IUGS) geoscience
markup language (GeoSciML), and the European
data specification for geology (INSPIRE; Sen &
Duffy, 2005; Simons et al., 2006; Raymond et al.,
2012a; Laxton, 2017; Mantovani et al., 2020).

A significantly larger and growing proportion of
geoscientific data are ‘‘unstructured’’. Such data in-
clude detailed rock descriptions, lithostratigraphic
relationships, interpretations of geological pro-
cesses, and other text attributes collected over many
decades and at great financial expense by geological
survey organizations (Wheeler et al., 1996; Reed
et al., 2005; Laxton, 2017; Stephenson et al., 2022).
These unstructured forms of geoscientific text data
are essential to the map-building process because
they contain the concepts and observations under-
pinning the preferred map representation (Brodaric
et al., 2004; Pavlis et al., 2010; Mantovani et al.,
2020). The availability of this type of long-form text
data continues to grow as field computers allow
geologists to digitally record their observations, and
as geoscientific publications become linked to
geospatial databases. For paper-based geological
maps, this type of unstructured geoscientific infor-
mation is typically reported in the map legend or as
stratigraphic columns in the map margins. However,
paper-based geological maps were not considered as
part of the current study. Instead, we focused on the
large volumes of text available in geodatabases and
associated unstructured rock descriptions in lexicons
of geologic units (e.g., WEBLEX). The large vol-
umes of text available in a digital form make this
type of unstructured data difficult to use and rela-
tively ‘‘inaccessible’’ in practice. Text data are also

difficult to visualize on maps, which, coupled with
the complex usage of geoscientific terms by multiple
authors over time and differences in map scale,
present several practical challenges to the applica-
tion of unstructured text in a geological mapping
context. Text attributes that do not conform to
standard vocabularies or that mix disparate concepts
are sometimes referred to as ‘‘semi-structured’’ and
are also difficult to use. For the purposes of this
study, all forms of text data (i.e., structured, semi-
structured, and unstructured) were combined prior
to further analysis.

Natural language processing (NLP) is a subfield
of artificial intelligence focused on interpreting hu-
man language by learning the meaning of words and
sentences (i.e., text semantics; Bengio et al., 2000;
Mikolov et al., 2013a, 2013b; Pennington et al., 2014;
Devlin et al., 2019; Chowdhary, 2020). The applica-
tion of NLP to geoscience text data has so far in-
cluded summarizing articles (Ma et al., 2021),
translating languages (Qiu et al., 2018; Consoli et al.,
2020; Gomes et al., 2021), generating keywords (Qiu
et al., 2018, 2019), and information discovery (Peters
et al., 2014, 2018; Wang et al., 2018; Holden et al.,
2019; Enkhsaikhan et al., 2021a, 2021b; Ma 2022;
Wang et al., 2022). These and other geoscience NLP
applications are possible because of recent open-
source tools developed by the artificial intelligence
community, improved access to high-performance
cloud computing, and the increased availability of
internet text-data for training state-of-the-art lan-
guage models (e.g., Open AI�s GPT-3 and -4; Floridi
& Chiriatti, 2020; Dale, 2021).

Language models comprise the mathematical
rules for representing words, parts of words, and/or
sentences as numerical vectors (i.e., word embed-
dings) that are, in turn, used to solve other machine
learning tasks (Hirschberg & Manning, 2015;
Chowdhary, 2020). The best-performing NLP mod-
els are currently based on transformers, deep-
learning models that can interpret the meaning of
words based on their context (Vaswani et al., 2017;
Devlin et al., 2019). Transformers and self-attention
are used to capture long-range and bi-directional
dependencies that are particularly important for
representing words that have multiple meanings
(i.e., polysemy). For example, the word ‘‘rock’’ may
refer to a music genre or a solid-mass of minerals
depending on the context. However, even simple
language models, trained using the frequency of co-
occurring words, have proven effective at encoding
words with similar meaning as closely associated
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numerical vectors (Mikolov et al., 2013a, 2013b;
Pennington et al., 2014; Bojanowski et al., 2017).
Static word embeddings like N-Gram, Word2Vec,
FastText, and Global Vectors for Word Represen-
tations (GloVE) can capture text semantics based on
the statistical distribution of words and, in some
domain-specific applications, can even outperform
more advanced language models (Lawley et al.,
2022a). Simple language models pre-trained on
general internet text data can also be re-trained on
smaller volume of domain-specific text, such as
geoscientific publications, to improve performance
for particular down-stream, geoscience tasks
(Padarian & Fuentes 2019; Fuentes et al., 2020;
Lawley et al., 2022a).

Herein we apply this type of geoscience lan-
guage model to the task of prospectivity modeling.
First, text data are combined from four geological
map databases across Canada, the U.S., and Aus-
tralia (Fig. 1). Second, open-source NLP tools are
used to process structured, semi-structured, and
unstructured text data (Fig. 1). Third, the average
and standard deviation of word vectors for each map
polygon (Figs. 1 and 2) are calculated using the

preferred geoscience GloVe model reported in
Lawley et al. (2022a; Figs. 2 and 3). Word counts,
word associations, network analysis, term frequency-
inverse document frequency scores, and principal
component analysis are used as intrinsic evaluation
methods (Fig. 1) for the text processing pipeline
before applying the geoscience GloVe language
model to prospectivity modeling (Figs. 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, and 14). The language model is tested
on three down-stream tasks: (1) predicting the
location of rare rock types, i.e., ‘‘alkalic’’ and
‘‘pegmatitic’’, based on the available rock descrip-
tions (Fig. 10); (2) assessing the mineral potential for
Mississippi Valley-type (MVT; Fig. 11) and clastic-
dominated (CD; Fig. 12) Zn-Pb deposits based on
the text descriptions of favorable host rocks (Lawley
et al., 2022b); and (3) calculating cosine similarities
between word vectors for semantic search of Mount
Isa deposit analogues (Fig. 14). Each of these three
down-stream applications extracts knowledge from
unstructured text data and expand the applications
of geological map databases for prospectivity mod-
eling.

Figure 1. Text processing and modelling workflow. Geoscientific text data were sourced from four geological map databases. Multiple

natural language processing methods were used to prepare this text data for further analysis (i.e., tokenization, removing stop words,

stemming, and French to English translation). Word counts, word associations, network analysis, and nearest neighbors (based on cosine

similarities) were used to validate the quality of the processing workflow. Tokens were then joined with the geoscience GloVe model

(Lawley et al., 2022a) before calculating mean vectors for each map polygon (e.g., V1, V2, V3). The standard deviation of cosine

similarities between each word and each polygon�s mean vector was used to estimate map uncertainty. Principal Component Analysis

(PCA) was used to reduce the dimensionality of word vectors prior to predictive modelling and visualization.

1505Applications of Natural Language Processing



TEXT DATA

Text data used in the current study were
sourced from four geological map compilations (i.e.,
the corpora; Figs. 1 and 2). The quality, level of
detail, and length of text data was variable within
and among geological databases (Online Supple-
mentary Table; Fig. 4). Overall, the conterminous
U.S. and Alaska contained the longest and most
detailed rock and lithostratigraphic descriptions
(Fig. 4).

Data for Canada were sourced from 22
provincial and territorial geological map compila-
tions comprising 316,579 polygons, as reported in
Lawley et al. (2022b). Individual geological maps
within this compilation range in scale from 1:30,000
to 1:5,000,000 (Fig. 2a). Missing data were imputed
from the seamless but more generalized geological
map of Canada (1:5,000,000 scale; Wheeler et al.,
1996). Text data for Canada were sourced from rock
types, geological periods, lithostratigraphic infor-
mation, and rock descriptions. Expanded rock

Figure 2. (a) Generalized rock types for Canada, the conterminous U.S., and Alaska. (b) Generalized rock types for Australia. Map

colors are based on the generalized rock types reported in Lawley et al. (2022b).

Figure 3. (a) Standard deviation of cosine similarities for Canada, the conterminous U.S., and Alaska. (b) Standard deviation of cosine

similarities for Australia. Regions with higher standard deviations point to words with complex semantics and relatively high uncertainty.
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descriptions within an online database of geological
names (https://weblex.canada.ca) were concatenated
with map polygons using lithostratigraphic and lith-
odemic names wherever possible (Lawley et al.,
2022b).

Data for the conterminous U.S. were sourced
from the State Geologic Map Compilation (SGMC;
Horton et al., 2017). This published geodatabase
comprises 313,732 polygons covering 48 states
(Fig. 2a). Individual state maps used in the Horton
et al. (2017) compilation have scales that range from
1:50,000 to 1:1,000,000 and are a patchwork of
polygons with map boundary artifacts. Text data for
the conterminous U.S. were concatenated from the
unit name (i.e., UNIT_NAME), age information
(i.e., AGE_MIN, AGE_MAX), major (i.e., MA-
JOR1, MAJOR2, MAJOR3) and minor rock types
(i.e., MINOR1, MINOR2, MINOR3, MINOR4,
MINOR5), generalized geology (i.e., GENERAL-
IZE), and the long-form rock descriptions that are
available through linked tables (i.e., UNITDESC).

Data for the state of Alaska were sourced from
the Geologic Map of Alaska (Wilson et al., 2015).
This published map compilation comprises 245,562
polygons and is based on 1:63,360 to 1:250,000 scale
maps (Fig. 2a). Text data for Alaska were concate-
nated from the unit name (i.e., STATE_UNIT), age
information (i.e., AGE_RANGE), and long-form
rock descriptions available through linked
tables (NSA class and unit).

Data for Australia were sourced from the na-
tional 1:1,000,000 geological map dataset (Raymond
et al., 2012b). This dataset comprises 242,703 poly-
gons and is seamless with digital attributes formatted
to match GeoSciMl standards wherever possible
(Fig. 2b). Text data for Australia were combined
from map unit names (i.e., NAME), rock types (i.e.,

LITHOLOGY), and detailed rock descriptions (i.e.,
DESCR and GEOLHIST). It is noted that unlike
the data compiled for the U.S. and Canada, the data
for Australia are a national compilation and not a
compilation from state- or territory-based geological
map databases, which typically contain more de-
tailed text data. Additional text data are available in
the Australian Stratigraphic Units Database
(ASUD). This database contains 17,500 stratigraphic
names and their associated long-form rock descrip-
tions could be used in future research similar to the
Canada dataset.

Collectively, the four geological map databases
comprise 1,118,576 polygons and provide complete
coverage across Canada, the U.S., and Australia.

TEXT PROCESSING

All text processing was completed using the
‘‘tidyverse’’ (Wickham et al., 2019), ‘‘tidytext’’ (Silge
& Robinson, 2016) and ‘‘sf’’ (Pebesma, 2018) pack-
ages in R (R Core Team, 2023). Virtual machines
were used for the most memory intensive opera-
tions, typically using the EC2 M5 instances available
through Amazon Web Services (https://aws.amazo
n.com), Posit Workbench, and SageMaker (Joshi,
2020). The entire text processing workflow can be
simplified into three NLP tasks: (1) tokenization; (2)
stop words; and (3) stemming (Fig. 1). First, the
concatenated text data for each geological map da-
tabase were converted to lowercase and converted
to ‘‘tokens’’ using the ‘‘unnest_tokens’’ function
from the ‘‘tidytext’’ (Silge & Robinson, 2016) and
‘‘tokenizer’’ packages (Lincoln et al., 2018). The
tokenization process converts the concatenated text
fields for each map unit into a digital table, with

Figure 4. Kernel density estimates (KDE) for the frequency of tokens from each geological map database. Counts are based on the total

number of tokens for each map polygon after processing. Overall, the conterminous U.S. and Alaska yield the longest rock descriptions;

whereas Canada and Australia are associated with shorter rock descriptions.
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individual words represented as one-token-per row
(Fig. 1; Step 2.1). Words separated by hyphens,
other forms of punctuation, and white space were
broken into separate rows by this tokenization pro-
cess. Blank spaces, numbers, and punctuation were
then removed from the separated tokens and ex-
cluded from further analysis. It is noted that
numerical age dates, relative abundances of miner-

als, and any other numerical data were excluded
from further analysis as part of this text processing
workflow. This type of numerical information con-
tains important information but would have been
impossible to use with the geoscience GloVe model
vocabulary (Lawley et al., 2022a). Tokens with fewer
than 2 characters were also excluded.

Figure 5. Network analysis of the mostly frequent token associations for Canada (a), Alaska, (b), the conterminous U.S. (c), and
Australia (d). The network layout is based on the Fruchterman–Reingold algorithm to place the most common co-occurring token pairs

closer together (Fruchterman and Reingold, 1991). Natural groupings of nodes represent words with similar meaning. The lines between

nodes represent connections between geoscientific concepts; whereas the node thickness is proportional to counts of co-occurring words.
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The second step in text processing (Fig. 1; Step
2.2) removes ‘‘stop words’’, i.e., common but unin-
formative tokens from the corpora. Our study used
the pre-made list of English stop words included in
the ‘‘tidytext’’ package (e.g., ‘‘they’’, ‘‘this’’, ‘‘that’’,
‘‘what’’; n = 1149; Silge & Robinson, 2016). Coun-

try, state, provincial, and territorial names were also
removed as special cases because these tokens were
added during concatenation of some text fields. Ig-
neous and sedimentary formations named after
states are excluded during this step since these words
have multiple meanings. Similarly, tokens that were

Figure 6. Term frequency-inverse document frequency (TF-IDF) scores for Canada, Alaska, conterminous U.S., and Australia. Words

with high TF-IDF scores are the most characteristic for that particular database (i.e., word occurs frequently in one database but is rare

overall).

Figure 7. Principal component analysis (PCA) biplots for geological map databases from Canada (a), Alaska (b), the conterminous U.S.

(c), and Australia (d). The PCA was repeated for all four geological map databases combined (e). Each data point corresponds to a map

polygon. Colors are based on the generalized rock types described in Lawley et al. (2022b). The clustering of rock types along the first and

second principal components (i.e., PC1 and PC2) suggests that linear combinations of word vectors capture meaningful differences

between map unit descriptions. Random sampling was used to limit the amount of data for visualization purposes (n = 10,000).
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used to impute missing values were removed from
further analysis (i.e., ‘‘unknown’’) because the fre-
quency of these stop words is artificially inflated and
could impact the calculation of mean vectors.

Stemming, the third NLP step (Fig. 1; Step 2.3),
removes suffixes and prefixes to reduce the vocab-
ulary size of the corpora and to focus text analysis on
root words. In a geoscience context, stemming is a
useful tool for addressing all of the different terms
that are used by geoscientists to describe the same
concept. For example, siliceous, silicified, and silicic
are all used to describe a silica-rich rock in different
contexts. Standard stemming algorithms, such as the
Porter stemmer, attempts to intelligently remove
suffixes to a word stem using a series of pre-defined
rules (Bouchet-Valat, 2020). However, the output of
the standard stemming algorithms are not guaran-
teed to return a real word (e.g., ‘‘silica’’ becomes
‘‘silic’’). Testing completed as part of the current
study identified that a large number of important
geoscientific concepts would have been reduced to
meaningless word stems using these automated
stemming methods. The geoscience GloVe model
vocabulary contains mostly English words and thus
meaningless word stems would have been excluded
from further analysis. To include as many important
geoscientific words as possible, some of the most
common prefixes (‘‘macro’’, ‘‘micro’’, ‘‘mega’’, and
‘‘meta’’) were replaced manually for each token
using regular expression (‘‘regex’’) operations rather
than more advanced stemming algorithms. Similarly,
plural terms were identified and replaced using the
Harman (1991) method, as described in Hvitfeldt

Figure 8. (a) Average word vectors transformed by Principal Component Analysis (PCA) for Canada, the conterminous U.S., and

Alaska. (b) Average word vectors transformed by Principal Component Analysis (PCA) for Australia. Ternary colors are based on the

three most important linear combinations of word vectors (PC1 = red; PC2 = green; and PC3 = blue). The general agreement between

NLP maps and the generalized geology map suggests that rock type is the dominant source of data variance. The NLP map highlight

polygons with multiple rock types, including partly covered bedrock in Alaska (a), the conterminous U.S. (a), and Australia (b).

Figure 9. Receiver Operating Characteristics (ROC)

plots showing classification results for pegmatitic,

alkalic, Mississippi Valley-type (MVT) Zn-Pb deposits,

and clastic-dominated (CD) Zn-Pb deposits. The area

under the curve (AUC) is a measure of classification

performance. Poor models yield an AUC of 0.5; whereas

a perfect classifier will yield an AUC of 1. Overall, the

results suggest that simple Naive Bayes classifiers and

geoscience word embeddings can be used to predict map

polygons that are likely to contain rare rock types or used

as input into prospectivity modelling.
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Figure 10. (a) Classification model results for ‘‘alkalic’’ rocks in the southern conterminous U.S. Rare earth element deposits and mineral

occurrences are shown for reference and were not used for model training. (b) Generalized geological map of the southern conterminous

U.S. Colors are the same as the legend for Fig. 2.

Figure 11. (a) Prospectivity models based on NLP in the U.S. and Canada that have high potential for Mississippi Valley-type (MVT) Zn-

Pb deposits. The MVT deposits and mineral occurrences used for training are shown for reference (UMV = Upper Mississippi Valley

district). (b) Previously published prospectivity model for MVT deposits based on geology and geophysics (Lawley et al., 2022b).

Prospectivity values are filtered to the top 10% for visualization purposes.
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and Silge (2021). This simple heuristic: (1) removes
‘‘s’’ as a last letter for each word; (2) replaces ‘‘ies’’
with ‘‘y’’; and (3) replaces ‘‘es’’ with ‘‘e’’. Although
these manual stemming methods are relatively sim-

ple, the resulting words stems are more similar to the
geoscience GloVe model vocabulary (Lawley et al.,
2022a).

Figure. 12. (a) Prospectivity models based on NLP in Alaska and Canada that have high potential for clastic-dominated (CD) Zn-Pb

deposits. The CD deposits and mineral occurrences used for training are shown for reference. (b) Previously published prospectivity

model for CD deposits based on geology and geophysics (Lawley et al., 2022b). Prospectivity values are filtered to the top 10% for

visualization purposes.

Figure 13. (a) Natural language processing results for Canada, the conterminous U.S., and Alaska. (b) Natural language processing

results for Australia. Ternary colors are based on the cosine similarity between word vectors and igneous (red), sedimentary (green), and

metamorphic (blue) geoscientific concepts. Rock descriptions that are more similar to igneous and metamorphic concepts highlight the

Canadian shield (a); whereas most of the rock descriptions from the conterminous U.S., Alaska, and Australia share more similarities with

sedimentary rocks.

1512 C. J. M. Lawley et al.



Data from Canada also required an extra
translation step prior to analysis (Fig. 1; Step 2.4).
Machine translation for the Québec geological map
database used the application programming inter-
face to DeepL (https://www.deepl.com). All trans-
lated tokens were then manually checked for errors
since technical terms remain a significant challenge
for machine translation. Overall, the final, pro-
cessed, and combined text dataset comprises
36,222,640 tokens from the conterminous U.S.
(15,038,657 tokens), Canada (8,089,963 tokens),
Alaska (7,965,923 tokens), and Australia (5,128,097
tokens). Hereafter ‘‘tokens’’ are referred to as
‘‘words’’ for simplicity.

GEOSCIENCE LANGUAGE MODEL

The original GloVe model was pre-trained on a
large matrix of co-occurring words (i.e., six billion
tokens) taken from the Wikipedia 2014 and Giga-
words datasets (Parker et al., 2011). This pre-trained
language model was then re-trained on a smaller
subset of public geoscientific documents sourced
from the Natural Resources Canada (NRCan) pub-
lication database (GEOSCAN), Canadian provin-
cial geological survey publication databases (i.e.,

Ontario, Alberta, British Columbia), and open-
source peer-reviewed publications as described in
Lawley et al. (2022a). Both GloVe models are based
on the assumption that words occurring together are
more closely related (Pennington et al., 2014).
Countries and their capital cities represent a famous
example of this word proximity relationship (Miko-
lov et al., 2013a, 2013b), although the same rela-
tionship applies to geoscientific text (e.g., Paleozoic
and Cambrian; igneous and granite; biotite and
schist; fluvial and sandstone; Padarian & Fuentes,
2019; Fuentes et al., 2020; Lawley et al., 2022a).
Each of the 400 k words in the geoscience GloVe
model is associated with a 300-dimensional numeri-
cal vector (Fig. 1; Step 3). Individual words within
the processed text data were then joined with their
corresponding vector before calculating an average
word embedding for each polygon (Fig. 1; Step 3).
Average word embeddings are not impacted by the
length of text data for each map polygon, allowing
short and long rock descriptions to be considered
together for the purpose of this study (Fig. 4;
Mitchell & Lapata, 2010; Wieting et al., 2016; Adi
et al., 2017; Shen et al., 2018). The output of this text
processing pipeline is a data table containing map
polygons as rows and 300-dimensional vectors as
separate columns (Fig. 1; Step 3). Data in this form

Figure 14. (a) Semantic search results for Mount Isa Zn-Pb deposit analogues in Australia. This form of nearest neighbors analysis and

semantic search can be used to estimate mineral potential for application with limited training data. (b) Previously published prospectivity

model for CD deposits based on geology and geophysics (Lawley et al., 2022b). Prospectivity values are filtered to the top 10% for

visualization purposes. The known CD deposits and mineral occurrences are shown for reference.
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can then be used as input for the classification tasks
in modeling discussed below (Fig. 1; Step 4). The
standard deviation of cosine similarities (discussed
below) was also calculated to measure the variability
of word vectors contributing to each map polygon
(Fig. 3).

VALIDATION MODELS

Word Counts

Word counts and the frequencies of co-occur-
ring words (i.e., ‘‘word pairs’’) were calculated in R
using the ‘‘tidyverse’’ (Wickham et al., 2019),
‘‘tidytext’’, and ‘‘widyr’’ packages (Silge & Robin-
son, 2016). These descriptive statistics provide sim-
ple evaluation metrics for documenting the
similarities and differences of the four geological
map databases. The most frequently used words
occur in more map polygons and are thus expected
to have a significant impact on the performance of
down-stream tasks. Rare words may also be impor-
tant if they are associated with numerical vectors
that are distinct from other text data within the same
polygon (discussed below).

Network Analysis

Network analysis was completed using the
‘‘tidytext’’ (Silge & Robinson, 2016), ‘‘igraph’’
(Csardi & Nepusz, 2006), and ‘‘ggraph’’ (Pedersen,
2021) packages in R (R Core Team, 2023). The
networks are based on the co-occurrence of words
for each map polygon, with each node representing a
word and each node-edge representing a connection
between words (Fig. 5). The shape of the network is
controlled by the layout function, which, in this case,
used the Fruchterman-Reingold algorithm
(Fruchterman & Reingold, 1991). Other graph
algorithms and layouts have the potential to high-
light different aspects of the text data (Csardi &
Nepusz, 2006). The layout function is thus a sub-
jective choice, and, in this case, was selected to
minimize the number of overlapping nodes edges for
visualization purposes (Fruchterman & Reingold,
1991). Network analysis based on this method can
highlight natural groupings of nodes that define
geoscientific concepts (Fig. 5). The connections be-
tween node clusters define the connectivity between
those geoscientific concepts (Fig. 5). The same

method and algorithm was used by Morrison et al.
(2017) to define the connectivity of mineralogical
systems. Ma (2022) provides a recent review of
graph theory applications in geoscience. Network
analysis is used with domain knowledge as a form of
intrinsic evaluation of the NLP workflow (Figs. 1
and 5).

Term Frequency–Inverse Document Frequency

The term frequency-inverse document fre-
quency (TF-IDF) statistic was calculated using the
‘‘tidytext’’ package (Silge & Robinson, 2016). The
statistic is based on the relative frequency of words
for each of the four geological map databases (i.e.,
term frequency; TF) multiplied by a factor that de-
creases the weight of the most commonly used words
(inverse document frequency; IDF; Hvitfeldt &
Silge, 2021):

TF � IDF ¼ TF t; dð Þ � IDF tð Þ

where t is the number of times a term (t) occurs in
document (d).

Frequently used words that appear in most
geological map databases yield low TF-IDF scores;
whereas words that appear frequently in some geo-
logical map databases but not others yield high TF-
IDF scores (Fig. 6). The TF-IDF scores can be used
to evaluate the importance, or relevancy, of words
within the compilation of geological map databases.
Calculated TF-IDF scores were also used as an
intrinsic evaluation method for the text processing
pipeline (e.g., translation errors, stemming issues,
missed stop words).

UNSUPERVISED MACHINE LEARNING
METHODS

Principal Component Analysis (PCA) and
scaling (Fig. 1; Step 4) were calculated using the
‘‘prcomp’’ function in R (R Core Team, 2023) to
extract the most important linear combinations of
word vectors for predictive modeling and visualiza-
tion purposes. Combining PCA results, or other
forms of unsupervised machine learning, with do-
main knowledge is essential for attaching geoscien-
tific significance to the largest sources of data
variance and was used here as an intrinsic evaluation
method (Lawley et al., 2022a). First, principal com-
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ponents were calculated separately for each of the
four geological map databases to evaluate the text
processing pipeline (e.g., detect outliers; Fig. 7a, b, c,
and d). Second, PCA scores were calculated for text
data from all four geological map databases com-
bined (Fig. 7e). The combined PCA scores were
then joined back to the manual rock classification
and geometrical attributes of each map polygon for
visualization purposes (Fig. 8).

SUPERVISED MACHINE LEARNING
METHODS

Classification

All predictive modeling was completed using
the ‘‘h2o’’ package in R (R Core Team, 2023), which
is the interface to the H2O artificial intelligence
platform (www.h2o.org). For our investigative study,
classification models were trained for two different
tasks: (1) prediction of rare rock types (Figs. 9 and
10); and (2) assessing the mineral potential for basin-
hosted Zn-Pb deposits (Figs. 11 and 12). The first
classification task sought to predict areas with
‘‘pegmatitic’’ and ‘‘alkalic’’ intrusions based on the
available rock descriptions. The training data for this
application were defined using the presence or ab-
sence of rock types using custom search terms, as
described in Lawley et al. (2022b). For ‘‘pegmatitic’’
rocks the original list of search terms prior to French
to English translation included: ‘‘megacryst’’, ‘‘peg-
matite’’, ‘‘pegmatitic’’, and ‘‘pegmatitique’’. The
original list of search terms for ‘‘alkalic’’ rocks was
more comprehensive and includes: ‘‘alkali’’, ‘‘alka-

lic’’, ‘‘basanite’’, ‘‘essexite’’, ‘‘foid’’, ‘‘hawaiite’’,
‘‘larvikite’’, ‘‘latite’’, ‘‘monzonite’’, ‘‘neph’’, ‘‘ne-
pheline’’, ‘‘néphéline’’, ‘‘nordmarkite’’, ‘‘phonolite’’,
‘‘pulaskite’’, ‘‘quartz-monzonite’’, ‘‘quartz-syenite’’,
‘‘shonkinite’’, ‘‘syenite’’, ‘‘syénite’’, ‘‘syenitic’’,
‘‘syénitique’’, ‘‘syenodiorite’’, ‘‘syenodioritic’’, ‘‘tin-
guaite’’, ‘‘trachy’’, and ‘‘trachyte’’. In some cases,
geochemistry may have been used to identify ‘‘al-
kalic’’ rocks, although this information is not con-
tained within the geological map databases. The
prediction of ‘‘pegmatitic’’ and ‘‘alkalic’’ rocks is
relatively simple because it tests the ability of word
embeddings to capture rock information that is
known to exist in the training data (Table 1). Rock
descriptions that do not contain these words were
treated as negative for the purposes of predictive
modeling (Table 1).

The second classification task was to predict the
mineral potential for MVT and CD Zn-Pb deposits
based on the characteristics of their host rocks.
Carbonate (e.g., limestone, dolostone) and silici-
clastic (e.g., carbonaceous shale and its metamor-
phosed equivalents) rocks represent the most
favorable host rocks for MVT and CD deposits,
respectively. Both deposit types are also more
prospective during certain geological periods,
lithostratigraphic information that also exists within
the unstructured text data (Leach et al., 2001; Lyons
et al., 2006; Huston et al., 2016, 2022). Training data
for this application are based on the locations of
known mineral occurrences and deposits for all
three countries (Lawley et al., 2022b). The locations
of these deposits were not explicitly included in the
original text data and must be inferred from the
favorable rock descriptions. As a result, predicting

Table 1. Predictive model results

Results Model

Alkalica Pegmatitica Mississippi Valley-type (Zn-Pb) depositsb Clastic-dominated (Zn-Pb) depositsb

All positives (n) 54,078 26,133 1180 418

All negatives (n) 1,064,498 1,092,443 1,117,396 1,118,158

Training positives (n) 43,263 20,907 944 335

Training negatives (n) 851,599 873,955 893,917 894,527

Test positives (n) 10,815 5226 236 83

Test negatives (n) 212,899 218,488 223,479 223,631

Training AUC 0.938 0.966 0.838 0.841

Test AUC 0.938 0.962 0.868 0.809

aTrue positives are based on previously published vocabularies (Lawley et al., 2022a, 2022b)
bTrue positives include known locations of deposits and mineral occurrences (Lawley et al., 2022a, 2022b)
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mineral potential represents a significantly harder
machine learning task.

Training and test data for both down-stream
tasks were generated using an 80:20 split, making
sure to preserve the class distribution for each set.
The training data were then split again into five
cross-validation sets using stratified sampling (i.e.,
evenly distributing deposits and mineral occurrences
between sets). Up- and down-sampling were used on
the training data to address the relatively few de-
posits and mineral occurrences that are available for
training using the ‘‘caret’’ package (Kuhn, 2008).
For the up-sampled training data, this required
replacement so that positive and negative classes
had the same frequency. Models were trained using
the first 50 principal components, which represent
more than 90% of the data variance. For compar-
ison, the first ten principal components represent
69% of the data variance. All three training sets (i.e.,
original class distribution, up-sampled, and down-
sampled) were modeled separately using the Naive
Bayes algorithm in the ‘‘h2o’’ package. Simple Na-
ive Bayes classifiers were selected as the preferred
modeling method because: (1) the method did not
require parameter tuning; (2) the method scaled well
for larger numbers of predictors; and (3) the method
was less susceptible to overfitting, which can nega-
tively impact the generalization of model results to
unknown areas. The area under the curve (AUC)
for the receiver operating characteristic (ROC) plot
was used to evaluate model performance in all cases
(Fig. 9). Models with higher AUC suggest better
classification performance. A perfect classifier would
yield an AUC = 1; whereas an AUC> 0.8 and
AUC> 0.9 can be interpreted as good and excellent
classification performance, respectively, in the con-
text of prospectivity modeling (Nykänen et al., 2015;
Airola et al., 2019; Zuo & Wang, 2020; Chudasama
et al., 2022a, b).

Nearest Neighbors

Words with similar meaning correspond to
closely associated numerical vectors (Mikolov et al.,
2013a, 2013b; Pennington et al., 2014). The associa-
tion between two numerical vectors can be evalu-
ated using cosine similarity as implemented in the
‘‘text2vec’’ package (Selivanov & Wang, 2016):

cosðhÞ ¼ A � B
jAjj j jBjj j

where A and B are vectors.
Nearest neighbor analysis based on cosine

similarity can be used to: (1) rank the most closely
associated words to a test word as an intrinsic eval-
uation method (Lawley et al., 2022a); (2) measure
the semantic variability between each word and the
average word embedding for each map polygon
(Fig. 3); (3) search for map polygons that most clo-
sely match a concept included within the geoscience
GloVe model (Fig. 13); and (4) search for the closest
matching map polygons based on its text data and
average numerical vector (Fig. 14). The most closely
matching word vectors will yield cosine similarities
closer to one. Nearest neighbors analysis is a form of
semantic search that has the potential to greatly
improve knowledge discovery from geological map
databases.

RESULTS AND INTERPRETATION

Descriptive Text Statistics

The most frequently used words and word pairs
are presented in Tables 2 and 3, respectively. Rock
type, geochronology, and stratigraphic terms tend to
be the most commonly used words and word pairs
for each of the four geological map databases. The
frequency of these words is due, at least in part, to
the structure of the underlying databases, as rock
types and geological periods are stored as semi-
structured text attributes prior to concatenating with
the unstructured and long-form rock descriptions.
As a result, virtually every map polygon is associated
with one or more rock types and ages (Fig. 2). The
underlying data model for each geological map da-
tabase is also the most likely explanation for the
same word appearing in multiple top word pairs
(e.g., Phanerozoic, sedimentary, sandstone, uncon-
solidated, undifferentiated; Table 2). Geological
databases and text data that are based on interna-
tional data standards (i.e., NADM, GeoSciML, IN-
SPIRE) within structured and semi-structured
attributes are more likely to be impacted by this
frequency effect. The analysis of top words and top
word pairs is a form of intrinsic evaluation to check
that any text errors (e.g., spelling mistakes, stop
words, translation) are limited to rare words.

Network analysis provides some additional in-
sight into text data and processing methods (Fig. 5).
For example, ‘‘siltstone’’, ‘‘sandstone’’, and ‘‘con-
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glomerate’’ plot close together and define a natural
grouping on networks for each of the four geological
databases (Fig. 5). The close association among
these words is expected given that these rock types
represent a continuum of increasing sediment grain
sizes. Similarly, the close proximity between ‘‘fine’’
and ‘‘volcanic’’ in the Canada and Alaska datasets
correctly identifies semantic relationships between
this rock type and its texture. The frequency of
words describing unconsolidated sediments further
suggests that a large proportion of text included
within geological map databases is used to describe
cover rocks. As expected, this word frequency effect
is most obvious for regions with extensive sedi-
mentary cover, such as Australia and Alaska (Ta-
ble 3). Network analysis is a form of intrinsic
evaluation to check for semantic relationships based
on word co-occurrences prior to joining with the
geoscience GloVe model (Fig. 1).

Evaluating the differences between geological
map databases is best handled by TF-IDF scores
(Fig. 6). The calculated TF-IDF scores are a mea-
sure of ‘‘relevance’’ that are widely used by search
engines and for keyword generation (Silge &
Robinson, 2016). The most relevant words from the
Australia geological map databases are exclusively
associated with descriptions of deeply weathered
rocks and soils (e.g., ‘‘duricrust’’, ‘‘calcrete’’, and

‘‘laterite’’). These weathering products are mostly
absent from North America because of its cooler
climate and different geological history. In contrast,
the highest TF-IDF scores for Canada, contermi-
nous U.S., and Alaska correspond to regional for-
mation names, places, and only a few geoscientific
terms (Fig. 6). The analysis of words with high TF-
IDF is a form of intrinsic evaluation to look for the
most important vocabulary differences between map
compilations.

Unsupervised Machine Learning Results

Principal Component Analysis (PCA) results
are presented in Fig. 7. Points are color-coded to the
generalized rock-type classification system described
in Lawley et al. (2022b). Rock types were further
collapsed to five classes for visualization purposes
(i.e., metamorphic, igneous extrusive, igneous
intrusive, sedimentary, and other). The PCA meth-
od does not require sample labelling prior to anal-
ysis. As a result, the natural groupings of generalized
rock types along the first (PC1) and second (PC2)
principal components demonstrate that lithology is
the primary source of data variance for each of the
geological map compilations (Fig. 7a, b, c, and d).
The clustering of generalized rock types makes

Table 3. Top word counts for each geological map database

Canada Conterminous U.S Alaska Australia

Word Counts (n) Word Counts (n) Word Counts (n) Word Counts (n)

Sedimentary 273,853 Phanerozoic 562,882 Deposit 251,789 Sand 125,854

Volcanic 211,603 Formation 336,503 Rock 146,737 Sandstone 106,288

Limestone 140,023 Limestone 320,275 Surficial 112,465 Regolith 102,734

Sandstone 125,788 Shale 277,116 Unconsolidated 98,345 Sedimentary 91,279

Grey 125,517 Cenozoic 265,313 Quaternary 97,546 Ferruginous 88,285

Formation 119,770 Sandstone 256,059 Gray 92,878 Minor 82,727

Shale 118,308 Paleozoic 221,601 Unit 90,693 Deposit 76,792

Gabbro 98,171 Sedimentary 210,588 Formation 82,450 Igneous 76,100

Mafic 95,792 Rock 202,363 Sand 71,958 Intrusive 75,103

Siltstone 95,499 Gray 180,312 Locally 69,245 Felsic 69,976

Intrusive 83,032 Unit 170,476 Include 67,770 Quartz 69,532

Biotite 74,680 County 155,074 Sandstone 65,510 Plain 66,447

Gneiss 74,204 Quaternary 154,764 Volcanic 65,012 Include 64,914

Conglomerate 73,178 Include 143,126 Silt 64,851 Calcrete 64,722

Minor 70,940 Undifferentiated 141,472 Lake 64,690 Rock 64,246

Basalt 70,321 Tertiary 141,248 Chert 61,880 Siliciclastic 63,037

Fine 65,618 Sand 134,178 Limestone 57,729 Colluvium 62,653

Locally 64,177 Feet 121,552 Stream 56,268 Siltstone 61,852

Metamorphic 61,446 Cretaceous 117,840 Shale 54,662 Gravel 60,461

Bedded 61,202 Siltstone 115,284 Quartz 54,435 Mafic 54,392

1518 C. J. M. Lawley et al.



intuitive sense, but is important to demonstrate be-
cause it suggests that the PCA-transformed word
vectors preserve the essential elements of the
unstructured rock descriptions even after informa-
tion loss. Because the correct lithological relation-
ships are also observed on the combined PCA biplot
(Fig. 7e), we suggest that any differences in geosci-
entific terminology between Canada, the U.S., and
Australia are less important than the semantic dif-
ferences between the generalized rock types.

Ternary maps of the PCA results are presented
in Fig. 8 based on the combined PCA results. Each
ternary color represents one of the three most
important linear combinations of word vectors after
PCA (i.e., PC1, PC2, and PC3). These maps high-
light the large number of map polygons containing
descriptions of multiple rock types. Map units with
two or more rock types are common during regional
mapping and are difficult to visualize on conven-
tional geological maps (Fig. 2). Grouping similar
rocks together using classification hierarchies is the
usual solution to this problem (Fig. 2). However,
here we demonstrate how the ternary NLP maps
capture the basic elements of the generalized geo-
logical maps, such as the predominantly igneous and
metamorphic rocks comprising the Canadian Shield
(Fig. 8a), partly covered basement rocks in North
America (Fig. 8a), complex mixtures of sedimentary
and igneous rocks exposed along the Australian
shoreline (Fig. 8b) and unconsolidated sediments
covering most of the Australia interior (Fig. 8b).
The PCA-transformed word embeddings are used to
train the classification models below.

Supervised Machine Learning Results

Predictive modeling results are reported in Ta-
ble 1 and presented in Figs. 9, 10, 11, and 12.
Overall, classification models that predict whether
map polygons are ‘‘pegmatitic’’ (AUC = 0.962) and
‘‘alkalic’’ (AUC = 0.938) rock types yield the best
performance (Fig. 9). Up- and down-sampled ver-
sions of these models, which address the relatively
minor class imbalance of the training sets, slightly
improve the predictive performance for the ‘‘peg-
matitic’’ (i.e., up-sampled AUC = 0.967 and down-
sampled AUC = 0.966) and ‘‘alkalic’’ (i.e., up-sam-
pled AUC = 0.940 and down-sampled AUC =
0.941) model test sets. The good agreement be-
tween test and training set performance for ‘‘peg-
matitic’’ (train AUC = 0.966; up-sampled train

AUC = 0.972; down-sampled train AUC = 0.970)
and ‘‘alkalic’’ (train AUC = 0.938; up-sampled train
AUC = 0.939; down-sampled train AUC = 0.939)
models further suggests that over-training was not
an issue for this down-stream task. The excellent
performance for these predictive models was some-
what expected as the text data were already known
to contain terms corresponding to ‘‘alkalic’’ and
‘‘pegmatitic’’ rocks. Nevertheless, this type of data-
driven approach represents a significant improve-
ment over the manual creation of custom vocabu-
laries for applications where sufficient training data
are available (Lawley et al., 2022b). Classification
results can also be visualized to highlight map
polygons that are more likely to contain pegmatitic
and alkalic rocks that are prospective for critical raw
materials using the available rock descriptions
(Fig. 10). Model predictions are based on the avail-
able text descriptions, rather than actual presence or
absence of ‘‘alkalic’’ and ‘‘pegmatitic’’ rocks. Map
polygons with missing descriptions for these rock
types will be wrongly assigned low probabilities.
Similarly, it is possible that these rock types may be
included in rock descriptions even when they are
known to be absent. The model performance de-
scribed above does not test for either of those sce-
narios (i.e., missing and incorrect rock descriptions).
As a result, text-based models should be combined
with external sources of training data or combined
with other datasets to improve classification perfor-
mance (discussed below).

Test sets for the MVT and CD models yield an
AUC of 0.868 and 0.809, respectively (Fig. 9). Up-
and down-sampled versions of these models, which
address the extreme class imbalance for these
training sets, slightly improve the predictive perfor-
mance for the MVT (i.e., up-sampled AUC = 0.874
and down-sampled AUC = 0.870) and CD (i.e., up-
sampled AUC = 0.802 and down-sampled AUC =
0.819) model test sets. The similar AUC for the test
and training sets for the MVT (AUC = 0.838; up-
sampled AUC = 0.843; down-sampled AUC =
0.859) and CD (AUC = 0.841; up-sampled AUC =
0.842; down-sampled AUC = 0.843) models further
suggests that model overfitting was relatively minor.
The relatively few true positives examples, and the
absence of true negatives examples, available for
training represents a major challenge for this clas-
sification task. The lower classification performance
for MVT and CD models is also expected because
deposits and mineral occurrences were not explicitly
mentioned in the text data used to train the pre-
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dictive models. Instead, the mineral potential for the
MVT and CD models is completely based on the
favorability of the host rock descriptions (i.e., rock
type, geological periods, and other characteristics).
Nevertheless, the AUC for the text-based MVT and
CD models are promising because they are compa-
rable to previously published prospectivity modeling
results for other mineral systems (e.g., AUC = 0.69–
88; Nykänen et al., 2015; Chudasama et al., 2022a,
2022b) and represent an improvement over the grid-
based and geophysics-only models for the same de-
posit and mineral occurrence training data
(MVT = 0.640 and CD = 0.826; Lawley et al.,
2022b). Examples of how these text-based models
correctly predict the most favorable host rocks for
MVT and CD deposits in the U.S. midcontinent and
northern Canada are presented in Figs. 11 and 12.

Finally, nearest neighbor analysis is an alter-
native form of supervised machine learning that is
based on the cosine similarities between two or
more word vectors. Here we apply cosine similarities
to search for the closest analogues of the giant
Mount Isa Zn-Pb deposit based on the description of
its host rocks (Fig. 14a). The available descriptions
for Mount Isa include age (i.e., Stratherian) and
lithological information (e.g., siltstone, shale, dolo-
mite, sandstone, conglomerate; Online Supplemen-
tary Table), which was combined into a mean vector
before predicting the closest neighbors across Ca-
nada, the U.S., and Australia. The cosine similarity
results show map polygons with the closest matching
description using all of the available text data,
revealing favorable host rocks for this deposit type
that are consistent with previously published
prospectivity models (Fig. 14b; Lawley et al., 2022b).

DISCUSSION

Natural Language Processing for Knowledge
Discovery

National geological maps represent compila-
tions of smaller surveys collected over many decades
and at great financial expense (Ramdeen, 2015).
Geological maps also provide a high value to soci-
ety, with an estimated 4:1 to 100:1 benefit-to-cost
ratios (Berg et al., 2019). The observations and
technical knowledge encoded in these databases
over many decades represents a massive human ef-
fort, with contributions from hundreds of geoscien-
tists, and are probably the most important

contribution of geological survey organizations to
society (Howard et al., 2009; Lebel 2020; Culshaw
et al., 2021). Most geological map databases, and
geoscience more generally, contain an untapped
wealth of information in the form of unstructured
and semi-structured text data. Very few, if any, re-
search studies have provided descriptions of the text
data contained within these important sources of
geological information or their application to
prospectivity modeling (Mantovani et al., 2020).

Simple text statistics demonstrate remarkable
similarity in the terminology and use of geoscientific
language across all three countries, at least for the
most used words (Fig. 5; Tables 2 and 3). This result
is promising since the further adoption of GeoSciML
and other data standards will likely accelerate the
interoperability and accessibility of text data within
geological map databases in the future (Sen &
Duffy, 2005; Reitsma et al., 2009; Lombardo et al.,
2018; Mantovani et al., 2020). Here, we demonstrate
that the co-occurrence of these commonly used
words embeds semantic information that can be
extracted and used to visualize the connections be-
tween disparate geoscientific concepts (Fig. 5). For
example, network analysis of the most used words
correctly differentiates sedimentary rocks (e.g.,
conglomerate, sandstone, siltstone) from nodes
representing unconsolidated sediments (e.g., gravel,
sand, and silt). This result is important and some-
what surprising because it correctly identifies
meaningful semantic differences between otherwise
very similar words (e.g., sand versus sandstone).
Training language models on domain-specific text is
particularly important for this type of knowledge
discovery in a geoscience context (Lawley et al.,
2022a). Other examples of semantic information
encoded by the simple co-occurrence of words in-
clude: (1) geochronological relationships (e.g.,
Cenozoic and Quaternary versus Paleozoic and
Carboniferous); (2) stratigraphic terms (e.g., sedi-
mentary and formation); (3) igneous rock types and
textures (e.g., fine and volcanic; Fig. 5); and (4)
associations between non-geoscientific terms (e.g.,
lake, ocean, water, stream). The critical assessment
of word nodes in a geoscientific context is an
important validation method of the text processing
method (Fig. 1).

Because the geoscience GloVe model was
trained on a much larger corpora, even deeper levels
of semantic information are encoded in the word
vectors (Lawley et al., 2022a). Analogy tests are a
classic method for exploring text semantics and can

1520 C. J. M. Lawley et al.



be calculated by simple vector arithmetic (e.g.,
addition and subtraction), such as the famous
examples of countries and their capital cities
(Ottawa�Canada + Canberra = Australia; Miko-
lov et al., 2013a, 2013b). The geoscience equivalent
to this form of analogy test could include ‘‘igneous is
to granite as metamorphic is to gneiss’’ (i.e.,
igneous� granite + gneiss = metamorphic), which
tests for the conceptual association between rock
types and their process of formation. Whether these
types of analogies can be correctly answered by a
language model, depends on the proximity of word
vectors in the embedding space (Lawley et al.,
2022a).

Nearest neighbor analysis based on cosine
similarities and PCA represent two methods for
visualizing the proximity relationships between word
vectors directly. The results presented in Figs. 8 and
13 represent examples of semantic geological maps
(Brodaric & Gahegan, 2001; Lombardo et al., 2018;
Mantovani et al., 2020). However, unlike previously
proposed semantic ontologies that need to be man-
ually created and updated (i.e., top-down), the
clustering of word vectors and relationships between
rock types are emergent from the input text data
(i.e., bottom-up). The agreement between these
NLP maps and the generalized geology for Canada,
the U.S., and Australia is remarkable, as it demon-
strates, for the first time, how the semantic rela-
tionships between rock types can be extracted from
the unstructured text data within geological map
databases (Fig. 8). Moreover, unlike traditional
geological maps that reflect a preferred interpreta-
tion of the dominant lithology (Fig. 2), the new NLP
maps reflect all the available text data for each map
polygon (Fig. 8). Map polygons containing words
with complex semantics, measured here as the
standard deviation of cosine similarities between
each word and the mean vector of each polygon
(Fig. 3), are interpreted to have higher uncertainty.
Quantifying this type of geological map uncertainty
has previously represented a major knowledge gap
for geological survey organizations (Brodaric et al.,
2004). In theory, these NLP maps can be easily up-
dated with new geological surveys or combined with
other sources of text data (e.g., publications, drill
data, field notes) to improve on these results.
Lithostratigraphic and lithodemic databases, such as
WEBLEX in Canada and the Australian Strati-
graphic Units Database (ASUD), represent impor-
tant external sources of text data for discovering

semantic relationships between map polygons
(Holden et al., 2019; Enkhsaikhan et al., 2021a,
2021b). With appropriate training data, the NLP
maps suggest that geoscience language models could
readily be expanded to generate predictive bedrock
geology maps across all three countries using unsu-
pervised (e.g., clustering) and/or supervised methods
(e.g., classification).

However, it is also clear from the cosine simi-
larities that most rock descriptions represent mix-
tures of geoscientific concepts, with relatively few
map polygons corresponding to pure ‘‘igneous’’,
‘‘metamorphic’’, or ‘‘sedimentary’’ end-members
(Fig. 13). Map descriptions containing mixtures of
unconsolidated sediments are particularly difficult to
interpret, with some plotting as outliers on PCA
biplots (Fig. 7) and/or corresponding to map poly-
gons with large standard deviations. (Fig. 3). In
Australia, non-geoscientific words or words with
multiple meanings outside of a geoscientific context
(e.g., ‘‘pipeclay’’, ‘‘dunk’’, ‘‘astrea’’) appear to be
the largest source of uncertainty for map polygons
containing unconsolidated sediments (Fig. 3). The
inclusion of words with complex semantics are the
most likely explanation for unconsolidated sedi-
ments in Australia that plot as muted ternary colors
because the calculated word vectors for these map
polygons are dissimilar to the concepts of ‘‘igneous’’,
‘‘metamorphic’’, and ‘‘sedimentary’’ (Fig. 13). In
Canada and the U.S., TF-IDF scores (e.g., ‘‘freeze’’,
‘‘yellowknife’’, ‘‘glaciation’’, ‘‘county’’, and forma-
tion names; Fig. 6) and tokens that yield dissimilar
cosine similarities (e.g., ‘‘boxer’’, ‘‘butcher’’, ‘‘bap-
tism’’) point to other words that likely contribute to
the uncertainty of the NLP results (Fig. 3). Most of
these rare words have multiple meanings depending
on their context.

Unfortunately, despite re-training on geoscien-
tific text, simple language models like GloVe are not
able to unravel these multiple meanings using the
sentences or paragraphs before and after each word.
Instead, to address polysemy, words with multiple
meanings could be added to the list of English stop
words to exclude non-geoscientific words from fur-
ther analysis. Continued progress on automated
methods for identifying domain-specific stop words
have the potential to greatly improve this type of
analysis in the future (Ayral & Yavuz, 2011; Al-
shanik et al., 2020). The list of stop words should
also be expanded to include words that do not ap-
pear in English dictionaries to limit the impact of
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any spelling errors and/or acronyms remaining in the
language model (Lawley et al., 2022a). Word order
and/or word importance could also be addressed
using more advanced pooling methods (e.g., max
pooling; hierarchical pooling, neural networks;
Mitchell & Lapata, 2010; Shen et al., 2018) rather
than the simple average vector, potentially improv-
ing the performance of down-stream tasks for map
polygons with high uncertainty (Fig. 3). Alterna-
tively, contextual language models may be better
suited for dealing with complex text semantics for
mapping applications (Vaswani et al., 2017; Devlin
et al., 2019; Floridi & Chiriatti, 2020; Li et al., 2021;
Ma et al., 2021). Large language models based on
transformers represent the current state-of-the-art
because they are able to generate multiple vectors
for each word depending on its context (Devlin
et al., 2019; Dale, 2021; Li et al., 2021; Ma et al.,
2021; Lawley et al., 2022a). Unfortunately, text data
in this study were concatenated from multiple fields,
removing meaningful context in most cases (Fig. 1).
Rock descriptions also tend to use short sentences
with mostly scientific terms that are unlike the gen-
eral internet text that more advanced language
models are trained on (Devlin et al., 2019). Ideally,
the training data for language models should closely
match the text data being modeled.

Ternary NLP maps also highlight map bound-
ary artifacts that reflect differences in the quality,
level of detail (Figs. 8 and 13), and other aspects of
rock descriptions across political boundaries. The
southern Canada-U.S. border and Alaska-Yukon
border provide clear examples of this effect with a
marked difference in the proportion of unconsoli-
dated sediments on both the generalized geology
(Fig. 2a) and NLP ternary map (Fig. 13a). These
NLP results reflect, in part, how unconsolidated
sediments are treated as part of the bedrock map-
ping process. Unconsolidated glacial sediments are
rarely described in the Canadian source datasets
even where present. The ternary NLP maps smooth
out the boundary artifacts in the U.S. and Canada to
some extent (Fig. 13a) but do not completely ad-
dress differences in the underlying text data. More-
over, map boundary artifacts also likely reflect
differences in the quantity and quality of text data
between jurisdictions, as demonstrated by the stan-
dard deviations of word vectors (Fig. 3). These text
differences are not related to the processing
methodology, since the same boundary effects are
not observed for the seamless national Australia
geological map (Figs. 8b and 13b).

Natural Language Processing for Prospectivity
Modeling

The discussion above focused on natural clus-
ters and proximity relationships between word vec-
tors to extract knowledge from unstructured text
data. However, word embeddings, coupled with
supervised machine learning methods, can also be
used for multiple down-stream tasks and to assess
mineral potential more directly. For example, our
Naive Bayes classification models (Figs. 9, 10, 11,
and 12) can correctly predict the locations of ‘‘peg-
matitic’’ and ‘‘alkalic’’ rocks from unstructured text
data (Fig. 10), marking a significant improvement
over approaches that required manual searching
(Lawley et al., 2022b), or previously published re-
search that used simple regex operations (Pollock
et al., 2012). The excellent classification perfor-
mance of these models (i.e., pegmatitic AUC =
0.962 and alkalic AUC = 0.938) is due to the rela-
tively large number of training data available (Ta-
ble 1). Moreover, the models were trained using
words that were already known to exist in the text
data and will be inaccurate if rocks are misidentified
or are missing from the rock descriptions (Lawley
et al., 2022b). Critically, the classification model re-
sults can be used to search for partly covered ig-
neous intrusions based on all the available rock
descriptions. In the future, we expect that text data
from boreholes could also be included (Fuentes
et al., 2020), which would likely improve classifica-
tion performance for parts of Canada, the U.S.
(Fig. 10b), and Australia that are buried by uncon-
solidated sediments.

Expanding this approach to include mineralized
pegmatite locations from other databases (Burke &
Khan, 2006; Woolley & Kjarsgaard, 2008; McCauley
& Bradley, 2014), or to include other types of sup-
porting data (e.g., geophysics, geochemistry, remote
sensing; Eberle et al., 2012; Kesler et al., 2012), are
some of the required elements for a more rigorous
assessment of mineral potential. These other data-
sets are essential for separating ‘‘permissive’’ and
‘‘barren’’ rocks within a mineral system framework
(Wyborn et al., 1994; London, 2005; McCuaig et al.,
2010; Huston et al., 2016; González-Álvarez et al.,
2021). Continued progress on the accurate predic-
tion of these rare rock types, which often occur as
small igneous intrusions that are poorly exposed, is
important because they are major sources of lithium,
rare earth elements, tantalum, niobium, beryllium
and other critical raw materials (Kesler et al., 2012).
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Supervised machine learning methods and text
data can also be used more directly to identify
prospective regions for sediment-hosted Zn-Pb
mineral systems (Figs. 11 and 12). The good classi-
fication performance reported herein (MVT
AUC = 0.868; CD AUC = 0.809) using text data
and more simple machine learning methods (Figs. 11
and 12), provides yet another demonstration of the
importance of geological information for assessing
mineral potential in areas with exposed bedrock.
The quality and availability of text used to train
these simple models will likely grow as the methods
for digitally acquiring field observations improve
and as geological survey organizations continue to
link geological map databases with external publi-
cations (Schetselaar, 1995; Brodaric et al., 2004;
McCaffrey et al., 2005; Pavlis et al., 2010). This text-
based approach contrasts with that of Lawley et al.
(2022b), who relied on up to 26 different datasets to
predict the potential for finding new MVT and CD
deposits. Their data-driven prospectivity models
produced excellent classification performance
(AUC> 0.98) and are less impacted by surface
sampling bias because they included seismic, mag-
netic, and gravity data that can penetrate uncon-
solidated sediments to map relevant geological
features at depth. Evaluating mineral potential in
covered areas (e.g., much of Alaska and Australia),
or areas with sparse field observations (e.g., Cana-
da�s north), depends more heavily on geophysical
datasets to map the preferred source rocks, path-
ways, and traps (e.g., carbonaceous and calcareous
sedimentary rocks; Online Supplementary Table) of
these mineral systems. Prospectivity models that
include mappable proxies for the drivers, sources,
pathways, and traps of mineral systems support
mineral exploration by significantly reducing the
search space (Figs. 11b and 12b). Ternary NLP maps
can be used to identify where these partly covered
rocks occur, which can be used to guide new geo-
physical surveys (Fig. 8).

Prospectivity models are also negatively im-
pacted by the limited number of mineral deposits
and occurrences available for training (Table 1). The
CD models presented herein are based on 418
training points (Table 1). Generally, the extreme
class imbalance for the training data are a major
issue for most classification methods because they
tend to overestimate the majority class. An alter-
native to classification methods is to locate the
nearest neighbors of favorable host rocks using the

cosine similarity of word vectors (i.e., semantic
search; Fig. 14a). This form of nearest neighbor
analysis only requires one example for ‘‘training’’
and has been previously applied to geochemical
surveys (Chen et al., 2019) and to improve fuzzy
prospectivity modeling methods (Parsa et al., 2017).

Semantic search is entirely dependent on the
training example used and the level of detail avail-
able in the text data, but, in theory, can be extended
to find the nearest neighbors for any rock type or
geoscientific concept (Fig. 13). Alternatively, cosine
similarities can be as an intrinsic evaluation method
with domain knowledge to make sure that nearest
neighbors make geoscientific sense. For example,
the nearest neighbors of ‘‘pegmatite’’ are meaning-
ful, and include closely associated words that were
not considered in the original training data (i.e.,
aplite, granite, gneiss, biotite, granitic, muscovite,
beryl, dike). Semantic search is used extensively in
modern search engines and greatly expands the
capabilities of geological bedrock map databases,
even for cases with limited training data.

CONCLUSIONS

The volume of unstructured, geoscientific text
data are rapidly expanding as digital technologies to
record field observations continue to improve and as
publication databases are increasingly made avail-
able for free on the internet. Geological map data-
bases are also growing in sophistication by
improving linkages with these external sources of
text data, and by including long-form descriptions of
rocks and their geological histories. These forms of
unstructured text data are critical for the interpre-
tation and application of geological map databases,
but are difficult to represent on geological maps and
much of the conceptual knowledge embedded in
field observations is rarely used in practice. Herein,
we address that knowledge gap using open-source
NLP tools to extract meaningful semantic relation-
ships between rock types from geological map da-
tabases across Canada, the U.S., and Australia. First,
rock descriptions and associated text data were
processed and tokenized before translating each
map polygon to an average word vector using a
geoscience GloVe model. The calculated vectoral
representations of the original text data were then
used to: (1) predict igneous rock-types (i.e., ‘‘peg-
matitic’’ and ‘‘alkalic’’) that are important host rocks
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for critical minerals; (2) assess the mineral potential
for CD and MVT Zn-Pb deposits based on the
descriptions of favorable rock types; and (3) apply
nearest neighbor analysis to search for analogues of
the giant Mount Isa Zn-Pb deposit. Each of these
applications have the potential to support mineral
exploration for critical raw materials by targeting
the most prospective rock types. The results further
demonstrate how NLP can be used to extract
knowledge from previously ‘‘inaccessible’’ text data,
expanding the potential applications of unstructured
text data within geological map databases. Directly
utilizing the expertise encapsulated within geologic
documents and maps coupled with machine learning
techniques has the potential to transform how geo-
scientific analysis can be conducted.
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