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Abstract—The propagation of database parameter uncertainty has been assessed for aqueous and mineral
equilibrium calculations of uranium by Monte Carlo and quasi-Monte Carlo simulations in simple inorganic
solution compositions. The concentration output distributions of individual chemical species varies greatly
depending on the solution composition modelled. The relative uncertainty for a particular species is generally
reduced in regions of solution composition for which it is predicted to be dominant, due to the asymptotic
behaviour imposed by the mass balance constraint where the species concentration approaches the total
element concentration. The relative uncertainties of minor species, in regions where another species com-
prising one or several of the same components is predicted to be dominant with a high probability, also appear
to be reduced slightly. Composition regions where two or several species are equally important tend to
produce elevated uncertainties for related minor species, although the uncertainties of the major species
themselves tend to be reduced. The non-linear behaviour of the equilibrium systems can lead to asymmetric
or bimodal output distributions; this is particularly evident close to equivalence points or solubility boundaries.
Relatively conservative estimates of input uncertainty can result in considerable output uncertainty due to both
the complexity of uranium solution chemistry and the system interdependencies. The results of this study
suggest that for some modelling scenarios, “classical” speciation calculations based on mean value estimates
of the thermodynamic values may result in predictions of a relatively low probability compared to an approach
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that considers the effects of uncertainty propagation. Copyright © 2005 Elsevier Ltd
1. INTRODUCTION

Aqueous speciation modelling is a widely used interdiscipli-
nary activity encompassing, amongst others, the fields of nu-
merical mathematics, chemistry, geochemistry, hydrology and
ecotoxicology. Speciation studies, both analytical and model-
ling approaches, are central to modern geochemistry and other
fields such as ecotoxicology. They have been successfully
applied to a wide range of systems to elucidate the processes
underpinning water quality, transport/retention phenomena
(Van der Lee and De Windt, 2001) and bioavailability or
toxicity of contaminants to the biota (Paquin et al., 2002).
Although analytical techniques to determine speciation are
improving, it is often not practicable or possible to directly
measure the activities of individual solution species, particu-
larly at the low concentrations of environmental interest. There-
fore predictive geochemical speciation models are employed to
estimate the distribution of the total metal concentration
through its various possible species (i.e., solution and surface
complexes or mineral phases).

Equilibrium solution speciation has been extensively stud-
ied, and a robust comprehensive theoretical framework based
on equilibrium thermodynamic principles has been developed.
As for all mathematical models the predictive ability is limited
by both the conceptual uncertainties in the model formulation
and the quality of the data supplied to the model, including both
the modelling scenario and the model constants (Ekberg, 1999).
Within the context of geochemical modelling to calculate the
distribution of the various chemical species of an element in the
* Author to whom correspondence should be addressed (jacqueline.garnier-
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aqueous phase, conceptual uncertainties such as the inclusion
or omission of chemical species and the veracity of the chosen
chemical models (e.g., for activity-concentration relationships
and the assumption of system equilibrium) will generally result
in a systematic bias, although the vector of bias may vary
depending on the particular modelling scenario. In addition to
the potential uncertainty in the structural model of the system
of interest, there is a degree of uncertainty inherent in the
analytical measurement of the required thermodynamic data
that will result in uncertainty in the model predictions. Obvi-
ously, all of these statements are also applicable to the model-
ling of the distribution of an element between solid and liquid
phases.

Quality assessment should be an integral part of the appli-
cation of computer modelling to environmental problems and a
number of authors have underlined the significant variations in
existing thermodynamic data (OECD-NEA, 1996; Unsworth
and Jones, 2002). However with a few exceptions (Cabaniss,
1999; Ekberg, 1999; Smith et al., 1999; Nitzsche et al., 2000;
Tebes-Stevens et al., 2001; Criscenti et al., 1996), systematic
approaches to investigate the effects of this inherent uncertainty
have not been applied. A variety of speciation codes are widely
available which apply one of two distinct, but thermodynami-
cally related, techniques to calculate equilibria in aqueous
systems: Gibbs free energy minimisation methods or the more
commonly applied equilibrium constant method. Both of these
approaches require a reliable and consistent database of accu-
rate thermodynamic values appropriate to the domain of appli-
cation to be provided to the model in some form. Databases that
are sufficiently coherent to be applied to a wide range of
different systems are large, typically containing data for several

thousand chemical species, which creates an obvious potential
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for the introduction of errors and uncertainty. It has long been
recognised that considerable differences exist between different
database compilations, and intercomparison exercises have fre-
quently resulted in widely differing results. These differences
are sometimes the result of errors introduced by data reduction
or conversion (Serkiz et al., 1996) but more generally due to a
lack of consistency in the compilation. Literature values fre-
quently give small confidence limits, if any are given, however
when a number of determinations are compared, much greater
differences are found than these intervals would indicate. This
variability arises from a number of causes including inconsis-
tent treatment of the chemical system and systematic errors of
the applied method. Additionally, as noted by Nitzsche et al.
(2000), the requirements for accuracy and precision of data in
speciation modelling databases are normally much higher than
those that were demanded for the original application.

It is obvious that there is inherent uncertainty in the appli-
cation of speciation modelling, even in conditions where the
conceptual model formulation is ideal. Normally, modelling is
performed using only single values of the thermodynamic data
contained in the database. This approach does not permit any
estimation of the uncertainty associated with the model predic-
tions. Ideally, each thermodynamic value may be characterised
by its expectation value and an assigned uncertainty depending
on the extent and quality of the available data. The propagation
of these input uncertainty distributions can lead to very differ-
ent species concentration output distributions (Cabaniss, 1997).
Consideration of this uncertainty propagation should be inte-
gral to the application of speciation modelling to environmental
studies, including both the interpretation of acquired data and
the predictive modelling for transport, bioavailability or toxic-
ity studies for the studied element.

The objective of this work is to investigate the effect of
database parameter uncertainty, using realistic estimates for the
expectation and uncertainty values, on the output concentration
distributions for the aqueous speciation modelling of uranium
in very simple inorganic solution compositions. Uranium was
selected as the element of interest due to the existence of
generally high quality thermodynamic data resulting from the
OECD-NEA review work and subsequent studies and its rela-
tively complex solution chemistry to highlight the potential for
uncertainty propagation. The calculations were performed us-
ing Monte Carlo (MC) and quasi-Monte Carlo (QMC) meth-
ods, assuming mutually independent gaussian distributions for
the parameter uncertainty. Although derivative methods of
predicting uncertainty exist (Cabaniss, 1997) and are consider-
ably faster than Monte Carlo methods, the requirement of linear
combination of the parameter uncertainties was not satisfied for
the speciation of uranium, and so this method was not applied.
The number of runs required to provide acceptably small pa-
rameter estimate errors was investigated for a number of de-
scriptive parameters. The potential of the different sampling
strategies of quasi-Monte Carlo methods to improve efficiency
over the Monte Carlo method was also assessed. Finally, rec-
ommendations are provided for the proper use of chemical
speciation models, considering the effects of uncertain thermo-

dynamic data.
2. METHODOLOGY

The modelling scenarios selected for the study were deliberately
very simple with restricted ranges of solution compositions. The effects
of varying the partial pressure of CO2 (0–10�2 atm) and the total
concentration of phosphate (0–10�3 mol dm�3) were both investigated
in the pH range 4 to 9. The presence of a non-complexing electrolyte
of 10�2 mol dm�3 was included in all scenarios to maintain a constant
ionic strength.

To assess the effects of database uncertainty on model output,
realistic values for all the database constants and their uncertainties are
required. To realise this, a comprehensive database was compiled,
based mainly on the OECD-NEA data reviews (Grenthe et al., 1992)
and modified where more recent data have become available. New
literature data were added following the NEA recommended proce-
dures as closely as possible and the equilibrium constants were reduced
to standard molar Gibbs energy of formation values for the calculation
of uncertainty values. To eliminate error amplification due to this data
reduction the uncertainty values were calculated relative to a set of
basis species adapted to the solution compositions rather than the NEA
elemental reference states. The thermodynamic data together with the
uncertainties as single standard deviation values are given in Table 1.

The chemical equilibrium program CHESS (Van der Lee, 1998) was
used to perform all speciation calculations using the truncated-Davies
model of activity-correction, the modified Newton-Raphson error cri-
terion set to 10�10 and suppressing the formation of mineral phases. To
study the uncertainty propagation Monte Carlo simulations of 10,000
runs were performed, each run drawing input thermodynamic data from
independent normal distributions of given mean value and standard
deviation for each equilibrium equation. For the Monte Carlo simula-
tions the input thermodynamic data were generated using the Box-
Muller (Box and Muller, 1958) algorithm, supplied with uniform
variates by the “Mersenne Prime Twister” random number generator
MT19937 of Matsumoto and Nishimura (1998). For the quasi-Monte
Carlo simulations the samples were generated from a Sobol (1967) low
discrepancy sequence point set, transformed to gaussian variates by
Moro’s (1995) algorithm. Simulations performed using samples gen-
erated from low discrepancy sequences are theoretically more efficient
than simulations using random sampling, i.e., the sample size required
to obtain a sufficiently good representation of the output distribution is
theoretically smaller. A program was written in C using functions from
the GNU-GSL (Galassi, 2002) to provide input data files, extract the
required data from the output files and perform statistical analyses on
the output distributions.

The probabilistic errors of the parameter estimations were calculated
by a jackknife estimate of variance (Efron and Tibshirani, 1993) �2

given by

�2 �
n – 1

n �
i�1

n

(pi – p̄)2

where n is the number of data, p� is the estimated parameter and pi is the
parameter recalculated n times omitting the ith datum.

3. RESULTS AND DISCUSSION

3.1. Evaluation of Simulation Input
Parameter Distributions

The generated input parameter distributions for both the
MC and QMC methods were evaluated by the Kolmogorov-
Smirnov test (Knuth, 1981) and were acceptably gaussian
for n � 100 or greater. The maximum difference between the
distributions’ mean and the assigned mean values of the
equilibrium reactions given in Table 1 was �2% and 0.8%
for n � 100, dropping to 0.2% and 0.02% for n � 104 for the

MC and the QMC methods respectively.
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3.2. Probabilistic Error of the Parameter Estimates for
the Uranium Species Output Distributions

The value of n that was required to obtain acceptable
estimates of the output distributions depended on: the solu-
tion composition, the output species and the parameter(s) of
interest. The coefficient of variance of the jackknife � esti-
mates for a number of different statistical parameters was
calculated for different n values between 102 and 104 for
both the MC and QMC methods, for various different solu-
tion compositions. Some representative results of the jack-
knife � estimates are shown in Figure 1, for a solution
composition of: total uranium concentration 10�6 mol
dm�3, pH 6, pCO2 3.10�4 atm in a hypothetically non-
complexing electrolyte of 10�2 mol dm�3. The coefficient
of variance of the MC and QMC estimates of the mean
values for the output distributions of the species UO 2�,

Table 1. Selected thermodynamic data (mean log equilibrium constan
CO2-PO4

3� at I � 0 and 25°C.

Reaction

1 H2O � 1 OH� � 1 H�

1 HCO3
� � 1 H� � 1 CO2(g) � 1 H2O

1 HCO3
� � 1 H� � 1 CO2(aq) � 1 H2O

1 HCO3
� � 1 CO3

2� � 1 H�

1 HPO4
2� � 1 PO4

3� � 1 H�

1 HPO4
2� � 1 H� � 1 H2PO4

�

1 HPO4
2� � 2 H� � 1 H3PO4 (aq)

1 UO2
2� � 1 H2O � UO2OH� � 1 H�

1 UO2
2� � 2 H2O � UO2(OH)2(aq) � 2 H�

1 UO2
2� � 3 H2O � UO2(OH)3

� � 3 H�

1 UO2
2� � 4 H2O � UO2(OH)4

2� � 4 H�

2 UO2
2� � 1 H2O � 1 (UO2)2OH3� � 1 H�

2 UO2
2� � 2 H2O � (UO2)2(OH)2

2� � 2 H�

3 UO2
2� � 4 H2O � 1 (UO2)3(OH)4

2� � 4 H�

3 UO2
2� � 5 H2O � (UO2)3(OH)5

� � 5 H�

3 UO2
2� � 7 H2O � (UO2)3(OH)7

� � 7 H�

4 UO2
2� � 7 H2O � 1 (UO2)4(OH)7

� � 7 H�

1 UO2
2� � 1 HCO3

� � 1 UO2CO3(aq) � 1 H�

1 UO2
2� � 2 HCO3

� � 1 UO2(CO3)2
2� � 2 H�

1 UO2
2� � 3 HCO3

� � 1 UO2(CO3)3
4� � 3 H�

3 UO2
2� � 6 HCO3

� � 1 (UO2)3(CO3)6
6� � 6 H�

2 UO2
2� � 1 HCO3

� � 3 H2O � 1 (UO2)2CO3(OH)3
� � 4 H�

3 UO2
2� � 1 HCO3

� � 3 H2O � 1 (UO2)3O(OH)2(HCO3)� � 4 H�

11 UO2
2� � 6 HCO3

� � 12 H2O � 1 (UO2)11(CO3)6(OH)12
2� � 18

1 UO2
2� � 1 HPO4

2� � 1 UO2PO4
� � 1 H�

1 UO2
2� � 1 HPO4

2� � UO2HPO4(aq)
1 UO2

2� � 1 HPO4
2� � 1 H� � UO2H2PO4

�

1 UO2
2� � 1 HPO4

2� � 2 H� � 1 UO2H3PO4
2�

1 UO2
2� � 2 HPO4

2� � 2 H� � UO2(H2PO4)2(aq)
1 UO2

2� � 2 HPO4
2� � 3 H� � 1 UO2(H2PO4)(H3PO4)�

1 UO2
2� � 3 H2O � 1 UO3 · 2H2O(5) � 2 H�

a Grenthe et al. (1992).
b Choppin and Mathur (1991).
c De Stefano et al. (2002).
d Silva (1992).
e Lemire and Tremaine (1980).
f Grenthe et al. (1995).
g Sandino and Bruno (1992).
h Baston et al. (1993).
i Meinrath (1998).
j Palmer and Nguyen-Trung (1995).
k Brendler et al. (1996).
l Mathur (1991).
2

UO2OH�, UO2(OH)2(aq), UO2(OH)3
� and UO2(CO3)2

2�
are shown. The results show the expected reduction in the
probabilistic error of the MC mean estimates as the value of
n increases; the error has probabilistic order O(n�1/2), i.e.,
the probabilistic error reduces proportionally to n�1/2 as the
sample size, n, increases. No improvement in the error
bound was found by using the QMC instead of the MC
method in this range of n, although the convergence of the
error bound was often more regular. The theoretical advan-
tage of using a low-discrepancy sequence for the QMC
method is that the asymptotic error bound rate (as n ¡ �) is
superior to that of the MC method for a fixed dimension, s,
if n is sufficiently large i.e., O(n�1 logs n). However, for
reasonably large values of s, the value of n required to
ensure that the QMC error bound is smaller than that of the
MC can be very large and hence of little practical advantage
(L’Ecuyer and Lemieux, 2002) as appears to be the case

their associated standard deviation values) for the system H2O-UO2
2�-

Log K � References

�14.00 0.005 a
7.83 0.01 a
6.35 0.026 a

�10.33 0.036 a
�12.35 0.14 a

7.21 0.14 a
9.35 0.14 a

�5.36 0.22 a,b,c
�11.75 0.46 b,d,e,f
�19.6 0.46 a,g
�34.23 1.7 a,h
�2.7 0.60 a
�5.7 0.29 a,c,i,j

�11.9 0.50 a
�15.59 0.40 a,c,j
�30.18 2.0 a,c,g,j
�21.9 0.81 a
�0.65 0.16 a
�3.71 0.18 a
�9.38 0.19 a
�7.96 0.72 a

�11.18 0.40 a
�9.67 0.54 a

�25.54 2.0 a
0.88 0.22 a
7.3 0.24 a,g,k

10.43 0.34 a,k,l
10.11 0.22 a
20.2 0.88 a,k,l
20.35 0.33 a

�4.81 0.15 a
ts and

H�
here. The error bounds of other statistical parameters of the
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distributions, such as the standard deviation, higher mo-
ments or quantiles are greater than those of the mean values,
sometimes very much so. The value of n required to obtain
acceptable estimates of some parameters for some (usually
minor) species can be prohibitively large. However in the
case of UO2

2� for the conditions investigated (pH 5– 8,
pCO 0 –10�2 atm, [UO ] � 10�6 mol dm�3), the maxi-

Fig. 1. Coefficient of variance of distribution mean estimates by the
MC and QMC methods for selected output species. [UO2

2�]T � 10�6

mol dm�3, pH � 6, pCO2 � 3.10�4 atm.
2 2 T

mum error bound of the jackknife estimates of standard
deviation for the mean, median, standard deviation and a
number of arbitrary quantiles was �10% of the parameter
value for n � 103, dropping to �2% for n � 104. This
demonstrates the principal limitation of the MC methods,
i.e., it is not possible to determine a priori the value of n
required to provide acceptable estimates of the output dis-
tributions, additionally the value of n can vary greatly de-
pending on the particular modelling scenario and output
species of interest. In cases where the value of n required is
large, alternative strategies to improve the sampling effi-
ciency of the parameter space could be advantageous.

3.3. Concentration Output Distributions

Just as the concentrations of individual solution species of
uranium can change dramatically for quite small changes in the
solution composition, so can the forms of the output distribu-
tions. The output distributions are generally not gaussian (or
log gaussian) and the forms of the distributions (dispersion,
skewness, kurtosis) can change significantly on changing the
solution composition. This is best shown by the skewness
values, a measure of the distribution’s asymmetry calculated
from the third moment of the data. Symmetrical distributions
have a small skewness value, whilst asymmetric distributions
have large either positive or negative values. Figure 2 shows
MC estimates of the skewness values of the output distributions
of four species as functions of pH and for several different
values of pCO2. One consequence of these asymmetric distri-
butions is that summarising the distributions using parametric
statistical functions can be misleading. Additionally, the distri-
bution mean value estimates are often significantly different
from the mean-value database calculations. This suggests that
“classical” speciation calculations based on mean value esti-
mates of the thermodynamic values may result in predictions of
a relatively low probability compared to an approach that
considers the effects of uncertainty propagation.

3.4. The Effect of Solution Composition on the
Output Distributions

To investigate the effects of changing solution composition
on the concentration output distributions and the relative un-
certainties of model predictions, three parameters that strongly
influence the speciation of uranium were selected and varied
within realistic ranges. All calculations were performed using
the MC method with n � 104, total uranyl concentration was
fixed at 10�6 mol dm�3, the ionic strength was maintained
constant by including a hypothetically non-complexing electro-
lyte of 10�2 mol dm�3 and the formation of solid phases was
suppressed. Typical output distributions are shown for selected
species at several pH values and a CO2 partial pressure of
3.10�4 atm in Figure 3, the areas under the probability density
curves are unity. The distributions for each species can vary
considerably between different pH values, and the concentra-
tion distributions for some species can cover several orders of
magnitude. To summarise the effect of database uncertainty on
the relative uncertainty of output concentrations as functions of
varying solution composition, interquantile ranges normalised
with respect to the distribution mean were calculated. Figure 4

shows the effect of varying pH and pCO2 on the interdecile
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(Q0.1–Q0.9) distribution intervals as a percentage of the mean
for the species UO2

2� and UO2(CO3)2
2�. Figure 5 shows the

effect of varying pH and phosphate concentration on the spe-
cies UO2

2� and UO2HPO4(aq). In all cases, the relative uncer-
tainty varies considerably as a function of the solution compo-
sition. In general, in solution compositions for which the mean-
value database predicts a species to be dominant, the output
uncertainty of that species is relatively low compared to other
composition regions. This can be seen for the species UO2

2� at
low pH and phosphate concentration, the species
UO2HPO4(aq) at moderately high phosphate concentrations
and low pH and also for the local minima of the species
UO (CO ) 2�. The dominant species predicted by the mean-

Fig. 2. Skewness of selected output distributions as
2 3 2

value database for the region of pH values between 7 and 8 and
pCO2 values between 10�4 and 10�2 atm changes from the
species (UO2)2CO3(OH)3

� to UO2(CO3)2
2� to UO2(CO3)3

4�

on increasing pH and pCO2; the relative uncertainties of all
three of these species exhibit local minima in the regions where
they are predicted to be dominant with a high probability. The
relative uncertainties of minor species, in regions where an-
other species comprising one or several of the same compo-
nents is predicted to be dominant with a high degree of cer-
tainty, also appear to be reduced slightly (e.g., the behaviour of
the relative uncertainty of UO2

2� in the region of pH and pCO2

where the dominant uranyl species changes). Similarly, equiv-
alence points between two species dominant in different re-
gions tend to produce elevated uncertainties for related minor

tion of pH and at several CO2 partial pressures.
species, although the uncertainties of the major species them-
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selves tend to be reduced. This type of behaviour has been
observed before, for example simulations of base titration’s of

Fig. 3. Probability density functions of concentration ou
pH values and a pCO2 of 3.10�4 atm.
simple acids performed by Cabaniss (1997) produced large
uncertainties in the pH output distributions near to the equiv-
alence points, the distributions being bimodal with minima at or

stributions from n � 104 Monte Carlo simulations at four
tput di
close to the equivalence points.
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3.5. Effect on Solubility Equilibria

The effect of database uncertainty on calculations involving
equilibrium with a solid phase was investigated, by performing
simulations involving equilibrium with UO3 · 2H2O(s)
(schoepite). Total uranyl concentration was fixed at 10�2 mol
dm�3 and a range of solution compositions varying both pH
and pCO2 were modelled. Calculations using the mean-value
database indicated that an equivalence point between the solid
and aqueous uranium fractions, at atmospheric pCO2, is located
at a pH value of �8.7. As stated earlier, composition regions
near to equivalence points are often sensitive to parameter
uncertainty and this was again found to be the case. Because the
total uranyl concentration was constrained, the output distribu-
tions of the soluble uranium fraction close to the equivalence
point are bimodal, as the concentration output distribution
traverses the total concentration constraint. Figure 6 shows the
output distributions of the soluble uranium fraction at pH 8.7
and three CO partial pressures close to the equivalence point.

Fig. 4. Relative uncertainty of output concentrations of selected
species as a function of pH and pCO2.
2

The distributions cover over an order of magnitude in concen-
tration and obviously predictions of dissolved uranium concen-
trations under these sensitive conditions would be quite uncer-
tain. A contour plot of the probability densities as a function of
the pH at atmospheric pCO2 is shown in Figure 7, again the
soluble uranium concentration distributions are broadly spread
over a large range of pH values with bimodal concentration
distributions in some regions of solution composition. A dis-
continuity at elevated pH near to the dissolution boundary can
be clearly seen.

3.6. Processing Time

The principal limitation of the Monte Carlo and quasi-Monte
Carlo methods is the time required to perform the simulations.
The choice of the program CHESS was decided by these
concerns, due to its superior computational speed compared to
other available programs. The method of coupling the program
written to perform the simulations and calculate the statistical
parameters of the output distributions with CHESS was decided
by the ease of development and was not very efficient, however

Fig. 5. Relative uncertainty of output concentrations of selected
species as a function of pH and phosphate concentration.
the processing time required for the presented simulations was
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not prohibitive. For example a simulation of n � 104 samples
took �5 s using an AMD Athlon 1700� processor. There is
considerable scope to reduce processing time by either improv-
ing the method of coupling the two programs, or integrating the
Monte Carlo and speciation codes. However the application of
the Monte Carlo approach to some speciation modelling appli-
cations, such as reactive transport modelling, will obviously be
constrained by the processing time. Attempts to reduce the

Fig. 6. Probability density functions of the total aqueous uranium
fraction in equilibrium with schoepite at pH 8.7 and three different CO2

partial pressures.

Fig. 7. Contour plot of the probability density function of the total

aqueous uranium fraction in equilibrium with schoepite as a function of
pH at a CO2 partial pressure of 1 atm.
number of runs required to obtain acceptable parameter esti-
mates were not successful for the considered scenarios. The use
of a low discrepancy sequence and also Latin Hypercube sam-
pling (McKay et al., 1979), results not presented, did not reduce
the error of the parameter estimates compared to the Monte
Carlo method, however these different sampling strategies may
be more successful when applied to different scenarios. If the
modelled system is suitable then the derivative method of
estimating the uncertainty proposed by Cabaniss (1997) would
be preferred due to the greatly reduced processing require-
ments. Large ranges of input conditions used together with the
randomised parameter values can lead to convergence prob-
lems in the modified Newton-Raphson algorithm of CHESS.
Judicious selection of the scenario basis species was sufficient
to overcome this problem for the scenarios presented.

4. CONCLUSIONS

Uncertainty is inherent in the application of geochemical spe-
ciation modelling and this is especially the case where there is
uncertainty regarding the model formulation, for example the
chemical equilibrium model, the assumption of equilibrium con-
ditions and the models used to describe concentration-activity
relationships as well as the model constants. Only this second
aspect has been investigated in this study, and it is clear that there
is the potential for very considerable uncertainty in model predic-
tions from this alone. Model output is only as reliable as the input
data and the magnitude and consequences of this uncertainty is
specific to the modelling scenario. Due to the very large number of
potential applications it is difficult to generalise what the impact of
the uncertainty will be. The results of this study illustrate the
importance of very high quality thermodynamic data to minimise
the effects of uncertainty propagation.

This study is, by necessity, of limited scope and based on a
number of simplifying assumptions. The mean and uncertainty
values assigned to the thermodynamic parameters are obvi-
ously of fundamental importance to the results, as is the as-
sumption of independent gaussian distributions. For a truly
coherent database compilation this assumption of mutual inde-
pendence will be invalid for certain combinations of interde-
pendant parameters, for example the successive hydrolysis
products of uranium. However establishing the correlation re-
lationships between different input parameters would be a very
significant task. The quality of available databases is highly
variable, and there are few that approach the ideal of being both
internally consistent and sufficiently coherent to be applied to a
wide range of different systems. Hence, although the assump-
tion of mutual independence may be theoretically limited, it is
probably justified for many databases in routine use. The issue
of uncertainty needs to be considered in all stages of the
modelling process to enable valid estimates of a model’s pre-
dictive ability for a particular scenario, from the experiments
performed to determine the chemical equilibrium model and
parameter constants to the application of the model. The appli-
cation of uncertainty and sensitivity analyses to the interpreta-
tion of experimental data would serve a number of useful
purposes. These include a more robust probabilistic interpreta-
tion of the chemical system (and avoidance of the temptation to
obtain perfect model fits with the particular database employed

by proposing increasingly elaborate chemical systems). Obvi-



2191Uncertainty of U(VI) speciation calculations
ously physical evidence for the existence of the proposed
species is always to be preferred. Sensitivity analysis can lead
to the establishment of interparameter relationships, which can
subsequently be used to both improve uncertainty estimates for
the model applications, and also facilitate the maintenance of
database consistency. Uncertainty and sensitivity analysis of
modelling scenarios can provide information about which pa-
rameters are the most sensitive for a particular scenario and
allow better targeting of data gathering requirements, although
frequently the most sensitive parameters are intuitive with a
good understanding of the chemical system.

The focus of this work has been the uncertainty of uranium
equilibrium calculations, which was motivated by its environmen-
tal relevance and the availability of high quality data reviews.
However the aqueous speciation of uranium is complex compared
to many other elements, undergoing very large changes over
relatively small ranges of solution composition with a consider-
able number of species that may be significant for various ranges
of solution composition. The complexity of uranium aqueous
speciation leads to elevated propagation of uncertainties due to the
interdependencies of the system (or conversely to a higher require-
ment for input parameter precision to obtain an acceptable level of
output uncertainty). Less complex systems can be expected to
result in reduced propagation of input uncertainty, although in
particular composition regions, for example near to equivalence
points or solubility boundaries, relatively elevated output uncer-
tainties can still be expected.
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