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Abstract

The dilation of rock under shear gives rise to detectable effects both in laboratory experiments and in field observations.

Such effects include hardening due to reduction in pore pressure and asymmetrical distribution of deformation following strike-

slip earthquakes. In this paper, we examine the nonlinear poroelastic behavior of isotropic rocks by a new model that integrates

Biot’s classic poroelastic formulation together with nonlinear elasticity, and apply it to Coulomb failure criterion and pore

pressure response to a fault slip. We investigate the poroelastic response of two alternative forms of a non-Hookean second-

order term incorporated in the poroelastic energy. This term couples the volumetric deformation with shear strain. Like linear

poroelasticity, our model shows an increase of pore pressure with mean stress (according to Skempton coefficient B) under

undrained conditions. In addition, in our model pore pressure varies also with deviatoric stresses, where rising deviatoric

stresses (at constant mean stress) decreases pore pressure (according to Skempton coefficient A), due to dilatancy. The first

version of our model is consistent with a constant A smaller than 1/3, which is in agreement with the classic work of Skempton,

but does not fit well the measured undrained response of sandstones. The second model allows A and B to vary with shear

stress, and displays the experimentally observed connection between pore pressure and deviatoric stresses under undrained

conditions in Berea and Navajo sandstone samples. Numerical results present in this paper predict dilatancy hardening and

suggest that it should be taken into consideration in Coulomb failure stress calculations. We apply our model to the distribution

of pore pressure changes in response to a fault slip. Results of numerical simulations of coseismic deformation demonstrate that

due to dilatancy regions of decreasing pore pressure are larger relative to regions of increasing pore pressure. The model

predictions have significant implications for coseismic water level changes and post-seismic pore pressure diffusion and crustal

deformation.
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1. Introduction

The mechanical interaction between tectonic

stresses and pore fluids in crustal rocks is essential

for understanding the fundamental processes control-

ling earthquakes and the seismic cycle. Water level

changes induced by an earthquake are a well-known

observation [1], and post-seismic deformation was

found to be consistent with pore pressure variations

in the first period following an earthquake [2,3].

Therefore, the pattern of post-seismic deformation

will be strongly affected by the pore pressure dis-

tribution after an earthquake. Furthermore, in fault

zones pore pressure controls the fault strength [4–7],

thus, it plays an essential role in triggering of an

earthquake. In this paper we investigate the influ-

ence of nonlinear poroelastic behavior of rocks on

the fault strength and on the pore pressure distribu-

tion after an earthquake.

Observations in both the laboratory and in the

earth crust underscore the interaction between devia-

toric stresses and pore pressure in porous rocks [8–

11]. This interaction has been approached by incor-

porating the constitutive relations of anisotropic po-

rous media [12]. Yet the deviatoric stresses–pore

pressure interaction is significant in isotropic rocks

[11]. Therefore, a theoretical study of the interaction

between shear stresses and pore pressure in nonlin-

ear isotropic media is needed.

The nonlinearity of the elastic behavior of rocks

is a well-established observation at varied scales.

Laboratory test on rock samples exhibit nonlinear

elastic properties with elastic moduli that depend on

the confining pressure [13–16]. Nonlinear elastic

behavior of rocks is also reported based on records

of ground motion amplification during earthquakes

[17]. Recently, the pattern of deformation after the

1997 Manyi earthquake was explained by different

elastic moduli for compression and tension [18].

Nonlinear response of brittle rocks, due to the

existence of flaws such as microcracks and micro-

voids, profoundly affects rock strength and elastic

properties [19–23]. Another related observation is

elastic rock dilatancy under shear loading

[11,15,24]. Rock dilation and related pore pressure

reduction under undrained conditions has long been

recognized [25] and recently confirmed in accurate

laboratory experiments [9,11]. In this paper we
present a model that relates the nonlinear elastic

behavior of isotropic porous rocks to dilatancy.

We examine the poroelastic response of two differ-

ent non-Hookean second-order terms incorporated in

the poroelastic potential. Then, we verify these two

models using experimental observations [11]. We

apply the new constitutive relations to Coulomb

failure criteria and undrained pore pressure response

to slip on a strike-slip fault.
2. Theoretical background

2.1. Poroelastic constitutive relations

Pore pressure coupled with matrix deformation

was first introduced by Terzaghi [26] with his

often quoted one-dimensional consolidation equation

that relates the evolution of pore pressure to the

stresses in a solid skeleton. Biot [27] was the first

to formulate a fully three-dimensional poroelastic

theory. His now classic thermodynamic approach

derived constitutive relations for isotropic poroelastic

solid. Significant progress has been made in devel-

oping constitutive and field equations for linear

poroelastic media [28–30].

Biot [27,31] wrote the isothermal free energy, F,

for poroelastic isotropic media as a second-order

expansion with regard to the elastic strain and

fluid content:

F ¼ 1

2
kI21 þ lI2 þ

1

2
M d bI1 � f½ �2; ð1Þ

where k, l are the Lame’ drained moduli, M and b
are the Biot’s modulus and coefficient. I1= ekk and

I2= eijeij are two invariants of the elastic strain

tensor, eij (summation notation is used) and f is

the variation fluid volume per unit volume of the

porous material. The total stress tensor, rij, and the

pore pressure, p, are defined as the first derivative

of the energy [32,33]:

rij ¼
BF

Beij
¼ kI1dij þ 2leij þ bM bI1 � f½ �dij; ð2Þ

p ¼ BF

Bf
¼ M � bI1 þ f½ �: ð3Þ
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Eq. (2) for, for b =1, the total stress may be rewrit-

ten in terms of effective stress and pore pressure

rij ¼ re
ij � bpdij; ð4Þ

where the effective stress, rij
e, is

re
ij ¼ kI1dij þ 2leij: ð5Þ

Eq. (4) indicates that the total stress is the differ-

ence between the effective stress and pore pressure.

2.2. Undrained pore pressure response

Linear poroelasticity [27,30] predicts that under

undrained conditions (f =0) the pore pressure change

is proportional only to the change in the mean stress,

rm=�rii / 3

p ¼ Brm; ð6Þ

where B is Skempton’s proportionality coefficient.

Using Eqs. (2) and (3), B can be written as [33]:

B ¼ bM
Ku

; ð7Þ

where Ku=K +b2M is the undrained bulk modulus,

and K =k+(2 /3)l is the drained bulk modulus. How-

ever, based on experiments with clays, Skempton [8]

pointed out that the deviatoric stresses can also affect

pore pressure under undrained conditions. Based on

experimental work, he proposed that the undrained

pore pressure buildup during axial loading tests under

confining pressure (r2=r3, sdu (r1�r3) / 2) can be

written as:

dp ¼ B

�
drm þ 2

�
A� 1

3

�
dsd

�
; ð8Þ

where A is an additional Skempton coefficient, which

relates pore pressure to deviatoric stresses. Henkel

[34] and Henkel and Wade [35] generalized Eq. (8)

for a three-dimensional loading geometry:

dp ¼ B

�
drm þ 3A� 1ffiffiffi

2
p dsoct

�
; ð9Þ

where the octahedral shear stress is given by

soct ¼
ffiffiffi
2

p

3
S21 � 3S2
� �

; ð10Þ

where S1 and S2 are two invariants of the stress

tensor, defined as [36]: S1=3rm and S2=r11r22+
r22r33+r33r11�r12r21�r23r32�r31r13. For axial

loading under confining pressure (r2=r3), soct ¼
2
ffiffi
2

p

3
sd. Note that for triaxial loading tests Eqs. (8)

and (9) reduce to linear poroelasticity (Eq. (6)) for

A=1 /3. For A b1 /3 the pore pressure is lower than

expected from linear poroelasticity (Eq. (6)). This

prediction is reasonable since it accounts for the com-

monly observed dilatation of porous rocks during

shear deformation, also known as dilatancy [11,15,

25,37]. Recently, Lockner and Stanchits [11] experi-

mentally related the change in pore pressure for axial

loading under confining pressure with the mean and

differential stress as:

dp ¼ Bp

Brm

drm þ Bp

Bsd
dsd ¼ Bdrm þ gdsd; ð11Þ

where g is given by

g ¼ 2B

�
A� 1

3

�
: ð12Þ

The experiments of Lockner and Stanchits [11] reveal

that gV0 for rocks, consistent with AV1/3. Moreover,

it was found that for sandstones |g| increases strongly
with sd. In the following section, two different forms

of an additional non-Hookean terms are discussed, the

first provides the dependence of pore pressure on the

deviatoric stresses with constant A p 1/3, while the

second form also accounts for the decrease of A (or,

increase of |g|) with sd.
3. Nonlinear poroelasticity of isotropic solid

In this section we investigate the undrained to

response of a nonlinear isotropic poroelastic material

with energy potential that includes one of the two

alternative non-Hookean second-order terms, N1 or

N2. Nonlinear stress–strain relationships of elastic

and poroelastic rocks can be approximated by includ-

ing higher-order terms of the strain tensor in the

elastic energy expression [38–40]. Such models are

successful for rock deformation under high pressures

[41], but failed explaining nonlinearity for small elas-

tic deformation in shear. The nonlinear elastic moduli

of the Murnaghan model [39] estimated from stress-

induced seismic anisotropy are three to four orders of

magnitude higher then the Lame moduli [42]. These
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results are not realistic in comparison to those

obtained from static experiments. Moreover, the

model with high order terms cannot explain the abrupt

change in the elastic moduli when deformation

changes from compression to tension during experi-

ments on rocks [23,43]. It also fails to provide an

appropriate explanation for experimentally observed

nonlinear resonance of elastic waves in rocks [16]. In

several previous works, the nonlinear elastic behavior

was related to opening and closure of microcracks

under variable loads [20,43,44]. Lyakhovsky and

Myasnikov [45] and Lyakhovsky et al. [43,46]

suggested that this feature might be accounted by

introducing a non-analytical second-order term with

non-integer power of strain invariant in the energy

potential (Eq. (1)). Energy expressions with non-inte-

ger power of state variables are common for many

well-known nonlinear systems, e.g., Hertzian theory

for elastic deformation of a granular media [38] or

Van der Waals energy equation for a non-ideal gas.

Following a general approach of nonlinear behavior of

the poroelastic isotropic solid [38], the free energy can

be written as

F ¼ 1

2
kI21 þ lI2 þ

1

2
M d bI1 � f½ �2 þ N I2; I2; I3ð Þ;

ð13Þ

where I1= ekk and I2= eijeij are the same two invar-

iants of the elastic strain tensor used in Eq. (1), and

I3=det(eij) is a third invariant of the elastic strain

tensor. N is a non-Hookean term incorporated in

the energy in order to describe nonlinear phenomena.

We assume that the pore pressures remain within the

range of linear compressibility, and therefore, higher-

order terms of f are not included in the free energy

(Eq. (13)). The energy potential (Eq. (13)) is formu-

lated in terms of strain invariants I1, I2, and I3, thus

the material is referred here as isotropic. However,

any non-hydrostatic load leads to a stress-induced

anisotropy and seismic anisotropy [42,47,48]. Simi-

larly to Eq. (2) the stress–strain relation of nonlinear

poroelastic medium is

rij ¼ kI1dij þ 2leij þ bM bI1 � f½ �dij þ
BN

Beij
: ð14Þ

Lyakhovsky et al. [43] discuss two different

forms of a non-Hookean second-order term derived
for the elastic material with non-interacting random-

ly oriented cracks embedded inside a homogeneous

dry matrix. The solution for the elastic energy of

such materials was derived using the self-consistent

scheme of Budiansky and O’Connell [49], account-

ing for the elastic energy change associated with

crack opening and closure in response to a reverse

of the stress component normal to the crack. Two

different forms for non-Hookean second-order terms

were suggested. In one case a two-dimensional

model of the cracked solid was considered, while

in the other, the energy potential was derived for a

three-dimensional solid with randomly distributed

penny-shape cracks. Following Lyakhovsky et al.

[43], we examine the poroelastic response of two

alternative versions of a non-Hookean second-order

term (N1, N2) added to the energy

N1 ¼ � c VI1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 �

1

3
I21

r
; ð15aÞ

N2 ¼ � cI1
ffiffiffiffi
I2

p
; ð15bÞ

where c (or c V) is a non-analytical strain coupling

modulus which accounts for the nonlinearity of

the material. Eq. (15a) was derived from a two-

dimensional solution of the elastic energy change

associated with and crack opening due to a tensile

stress applied perpendicular to the cracks [43]. Eq.

(15b) approximates well empirical energy changes

in a three-dimensional geometry with cracks orient-

ed either perpendicular to the maximum tension

axis or perpendicular to the maximum compression

axis [43]. Each term in Eq. (15) incorporates non-

linear elasticity, even for an infinitesimal strain, and

enable simulating an abrupt change of the apparent

elastic moduli when the loading reverses from com-

pression to tension, a widely reported feature of a

cracked solid [20,43,44]. Eqs. (15a) and (15b) give

rise to two alternative forms of the coupling between

the volumetric strain (I1) and the shear strain, which

contribute to the second strain invariant (I2), and

cause the stress–strain relations to be nonlinear even

for small deformations. This coupling between volu-

metric deformation and shear strain leads, via Eq. (3),

to the connection between pore pressure and shear

stress.
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3.1. Non-Hookean term N1: constant Skempton

coefficients

In this section, we discuss the equations of state and

the poroelastic response of a medium, using the non-

Hookean second-order term N1 Eq. (15a). Similarly to

Eq. (2), the stress–strain relation can be written as

rij ¼
�

k � c V

�
1

n*
� n*

3

��
I1dij

þ 2l � c Vn*ð Þeij þ bM bI1 � f½ �dij; ð16Þ

where n* is a particular invariant of the strain

tensor, n* ¼ I1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � 1

3
I21

q
. For all deformations,

n* varies between n*Y�l for pure compaction

to n*Y+l for pure tension. A value of n*=0
corresponds to pure shear or zero volumetric strain

(I1=0). Since we did not modify the dependence of

the energy on the fluid content variable, f, Eq. (3) for
pore pressure is still valid. Similarly to Eq. (4), the

equation for the total stress Eq. (16) may be rewritten in

terms of effective stress and pore pressure, where the

effective stress is given by

re
ij ¼

�
k � c V

�
1

n*
� n*

3

��
I1dij þ 2l � c Vn*ð Þeij:

ð17Þ
The stress–strain relation Eq. (17) can be rewritten to

mimic the usual form of Hooke’s law by introducing

strain dependent effective moduli

ke ¼ k � c V

�
1

n*
� n*

3

�
; le ¼ l � 1

2
c Vn*:

ð18Þ
Note that Eqs. (16) and (17) reduce to the equations of

state developed by Biot [27,31] for linear poroelastic

media (Eqs. (2), (4)) in the limit of vanishing the strain

coupling modulus. (c =0).
Our model predicts that pore pressure depends not

only on the mean stress, as in linear poroelasticity, but

also on the deviatoric stresses. In the present work, we

adopt the format of Eq. (11) as was written by Lock-

ner and Stanchits [11] and generalize it to a three-

dimensional state of stresses:

dp ¼ Bp

Brm

drm þ Bp

Bsoct
dsoct ¼ Bdrm þ AVdsoct:

ð19Þ
Following Henkel [34] and Henkel and Wade [35], AV
can be written as:

AV ¼ 3A� 1ffiffiffi
2

p B: ð20Þ

For axial loading under confining pressure AV reduces
to AV ¼ 3

2
ffiffi
2

p g. In order to find Skempton coefficients,

A (or AV) and B, we differentiate pore pressure with

respect to rm and soct (see Appendix A for details)

AV ¼ Bp

Bsoct jrm

¼ �
ffiffiffi
3

p
bMc V

2lKu � c V2
; ð21Þ

B ¼ Bp

Brm
j
soct

¼ bM

Ku � c V2=2l
: ð22Þ

Unlike linear poroelasticity, the coefficient AV was
found to be non-zero, where in this model with N1

the poroelastic coefficients are constants. Positive c
provides negative AV, which corresponds to a dilatant

response to increasing deviatoric stresses, due to crack

opening. Note that if c =0 then AV=0, and B reduces

to the linear poroelastic form (Eq. (7)). Eqs. (21) and

(22) reveal that AV is proportional to B

AV ¼ �
ffiffiffi
3

p
c V

2l
B: ð23Þ

Using Eqs. (23) and (20), Skempton coefficient, A,

can be written as:

A ¼ 1

3
� c Vffiffiffi

6
p

l
: ð24Þ

This result of constant A, smaller than 1/3, in isotropic

medium is in agreement with the classic work of

Skempton [8], Henkel [34], Henkel and Wade [35],

and is usually assumed in models that takes into

account the effects of deviatoric stresses on pore

pressure response [9,10].

3.2. Non-Hookean term N2: variable Skempton

coefficients

The stress–strain relations of a poroelastic medium,

using the non-Hookean second-order term N2 (Eq.

(15b)), was described by Hamiel et al. [50]. Here

we briefly discuss these relations, and further develop

the poroelastic response to a three-dimensional state



Fig. 1. Exact analytical (Eqs. (26), (30)) versus approximate solu-

tion by interpolation (Eqs. (27), (31)) of Skempton coefficient B (a)

and AV (b) as a function of n ¼ I1=
ffiffiffiffi
I2

p� �
in the present model with

the non-Hookean term N2, and their values from linear poroelasti-

city calculations, using Navajo sandstone poroelastic moduli (for

model coefficients see Table 1).
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of stresses. Using N2 (Eq. (15b)), the stress–strain

relation can be written as

rij ¼
�

k � c
n

�
I1dij þ 2l � cnð Þeij þ bM bI1 � f½ �dij;

ð25Þ

where n is given by a strain invariant ratio I1=
ffiffiffiffi
I2

p
. For

all deformations n ranges between �
ffiffiffi
3

p
VnV

ffiffiffi
3

p
,

where for isotropic compaction n ¼ �
ffiffiffi
3

p
, for iso-

tropic dilation n ¼
ffiffiffi
3

p
, and for pure shear or zero

volumetric strain (I1=0), n =0. Since we did not

introduce any new term depending on fluid content

(f) to the poroelastic energy, expression Eq. (3) for

pore pressure has the same form also in this model.

Similar to the model in Section 3.1, Eq. (25) reduces

to the equations of state developed by Biot [27,31] for

linear poroelastic media when nY0�c =0. In the

same manner as Section 3.1 (Eqs. (21) and (22)), we

calculated each poroelastic coefficient in Eq. (19) (see

Appendix A for details). Unlike the previous section,

AV varies with n

AV ¼ Bp

Bsoct jrm

¼ �
ffiffiffi
3

p
bM

2

�
l � 1

2
cn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n2
� 1

3

s
þ

6l � cn3
� ��

Ku � c

�
1

n
þ n

3

��

3cn3
�

1

n2
� 1

3

�3
2

;

ð26Þ

where for pure compaction n ¼ �
ffiffiffi
3

p� �
, AV=0, and

AV ¼ �
ffiffi
3

p
bMc

2lKu�c2 for small mean stresses relative to devia-

toric stresses (nY0). AV can be estimated by a linear

interpolation with respect to n between n=0 and

n ¼ �
ffiffiffi
3

p
:

AVi
� bMc

2lKu � c2
n þ

ffiffiffi
3

p	 

: ð27Þ

In the case of small nonlinearity, i.e. KuNNc, Eq. (27)
can be expressed as:

AVi
� cB
2l

n þ
ffiffiffi
3

p	 

: ð28Þ

|AV| in this model strongly increases with n, and

therefore pore pressure decreases concomitantly.

This reduction in pore pressure occurs by dilatancy

represented by the non-analytical term (N2) in the
poroelastic energy. Owing to the relation between AV
and A (Eq. (20)) and using Eq. (28) Skempton coef-

ficient, A, can be written as:

Ai
1

3

�
1� cffiffiffi

2
p

l
n þ

ffiffiffi
3

p	 
�
: ð29Þ

In the present model AV vanishes (or, A=1/3) in the

linear limit (c =0), or for pure compaction n ¼ð
�

ffiffiffi
3

p
Þ. Since AV depends on the strain diagonality

n, then for triaxial loading (with initial conditions of

pure compaction) |AV| increases with n until failure.

Similarly to Eq. (26) we write Skempton coeffi-

cient B, as

B ¼ Bp

Brm
j
soct

¼ bM

Ku�c

��
1

n
þ n

3

�
�
6n3

	
l � 1

2
cn

	

1

n2
� 1

3


2

6l � cn3

� :

ð30Þ



Fig. 2. Measured poroelastic coefficients B and AV (symbols) for

Navajo sandstone [11] compared with the calculated curves using

the non-Hookean terms N1 (dashed line) and N2 (thick line), for

different values of sdð¼ 1
2

r1 � r3ð ÞÞ. In these calculations r3
e=17

MPa (initial pore pressure p =3 MPa) and we used the poroelastic

moduli listed in Table 1.

Fig. 3. Measured poroelastic coefficients B and AV (symbols) fo

Berea sandstone [11] compared with the calculated curves using the

non-Hookean terms N1 (dashed line) and N2 (thick line), for differ

ent values of sdð¼ 1
2

r1 � r3ð ÞÞ. In these calculations r3
e=17 MPa

(initial pore pressure p =3 MPa) and we used the poroelastic modul

listed in Table 1. Thin lines in (b) indicate calculations with differen

values of c (5000 and 6600 MPa). Note that AV decreases with c.

Y. Hamiel et al. / Earth and Planetary Science Letters 237 (2005) 577–589 583
The denominator of Eq. (30) equals Ku þ 2ffiffi
3

p c for

pure compaction n ¼ �
ffiffiffi
3

p� �
, and Ku � c2

2l for pure

shear (n =0). Therefore, by interpolation of B�1 with

respect to n between n =0 and n ¼ �
ffiffiffi
3

p
, B can be

estimated as

Bi
bM

Ku � c

��
2

3
þ c

2
ffiffiffi
3

p
l

�
n þ c

2l

� : ð31Þ

B in our model is found to be almost constant, in-

creasing slightly with n. Again, if nonlinearity is

assumed to be small, i.e., KuNNc, then B from linear

poroelasticity is retrieved as

Bi
bM
Ku

: ð32Þ

Fig. 1 shows the exact analytical solution (Eqs. (26),

(30)) and interpolation (Eqs. (27), (31)) for B (Fig. 1a)

and AV (Fig. 1b), and their values from linear poroe-

lasticity, with Navajo sandstone poroelastic moduli

(see Section 4).
4. Comparison with experimental data

Rock dilation under shear and the related pore

pressure reduction under undrained conditions has

long been recognized, but only recently confirmed

in laboratory experiments [11] with complete descrip-

tion of the experimental setup and the results needed

for model verification. Lockner and Stanchits [11]

measured the undrained response of Berea and Navajo

sandstones to changes in mean and deviatoric stresses

for triaxial loading. Similarly to Lockner and Stan-

chits [11], we examine the change of pore pressure

under undrained conditions at different deviatoric

stresses. We present here simulations using the two

different forms of the non-Hookean terms (Eqs. (15a),

(15b)) for triaxial loading under undrained conditions

(r2=r3=const., f =0). Each poroelastic coefficients

in Eq. (19) were calculated, using the non-Hookean

terms N1 and N2. In the first case (N1) the poroelastic

coefficients depend only on the material properties

and are not related to the applied load (Eqs. (21)

and (22)). In the second case the poroelastic coeffi-
r

-

i

t
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cients depend on the load through the strain invariant,

n (Eqs. (26) and (30)), that for a given stress tensor is

obtained by numerical solution of a polynomial equa-

tion (Eq. (3) in [46]).

The experimental data reported by Lockner and

Stanchits [11] showed that Skempton coefficients

vary with the deviatoric stresses, suggesting that

our second model with N2 (Section 3.2) is more

appropriate in describing the experimental data.

Figs. 2 and 3 show the measured poroelastic coeffi-

cients AV and B for Navajo (Fig. 2) and Berea (Fig. 3)

sandstones samples from Lockner and Stanchits [11]

compared with the calculated curves with the non-

Hookean terms N1 (Section 3.1) and N2 (Section 3.2).

In these calculations we have adopted Terzaghi’s as-

sumption (b =1) and used the poroelastic moduli

listed in Table 1. Similar results can be obtained by

choosing different values of b and M. Figs. 2 and 3

reveal that Skempton coefficient, B, in our model is

about constant or slightly increases with shear stress,

while AV strongly decreases with shear stress. We

study the sensitivity of the calculated poroelastic coef-

ficients AV and B to the nonlinear strain coupling

modulus, c. The calculations show that, while B is

only slightly affected by nonlinearity (not shown

here), AV strongly decreases with c (Fig 3b). Figs. 2

and 3 demonstrate a good agreement between the

measured values of undrained poroelastic coefficients

for Navajo and Berea sandstones samples and the

theoretical curve with the non-Hookean term N2.

Lockner and Stanchits [11] estimated that g0 (the

value of g at zero differential stress) for Berea sand-

stone sample is �0.075. This might be due to anisot-

ropy inherent in the Berea sandstone samples [11].

The non-zero value of g0 is equivalent to non-zero

value of AV. This could be the reason that our model

with N2 does not accurately match the measured AV
for the Berea sandstone at very low deviatoric stres-
Table 1

Model coefficients for the different simulations

Sandstone type Non-Hookean

term

k l c (or cV) M

(MPa) (MPa) (MPa) (MPa)

Navajo sandstone N1 8000 8500 2950 11000

N2 8000 8500 4800 14700

Berea sandstone N1 8000 8500 4200 11000

N2 5000 8500 5800 12000
ses, since our model assume isotropic poroelasticity

and AV=0 for pure compression.
5. Model applications

5.1. Coulomb failure criterion

In this section we explore the influence of the

undrained response of the model with the non-

Hookean term N2 (Section 3.2) on the Coulomb

failure criterion. Rock failure can be predicted by

the Coulomb failure criterion [36]. Using this criteri-

on, the change in proximity to failure is defined as

[51,52]:

DCFS ¼ Ds � ls Drn � Dpð Þ; ð33Þ

where DCFS is the change in Coulomb failure stress,

Ds is shear stress change on the fault plane, Drn is the

normal stress change across the fault plane, Dp is pore

pressure change, and ls is the coefficient of static

friction. Positive values of DCFS imply that the rock

is closer to failure, whereas, negative values imply that

the rock is farther away from failure. Substituting Eq.

(19) into Eq. (33), DCFS can be written as

DCFS ¼ Ds � laDrn; ð34Þ

where the apparent friction coefficient, la, is given by:

la ¼ ls

�
1� B

Drm

Drn

þ jAVj Dsoct
Drn

�
: ð35Þ

The last term in Eq. (35) accounts for an increase in

the apparent friction coefficient due to dilatancy

expressed by the shear-dilation coupling term in the

poroelastic energy (Eqs. (15a), (15b)). Fig. 4 shows

the increase in the apparent friction coefficient with c,
the modulus of the non-Hookean term N2. In the

calculations presented in Fig. 4 we used the poroelas-

tic coefficients of Berea sandstone (for model coeffi-

cient see Table 1), and assume representative value of

ls=0.75 [36,51,53]. We also assume that Drn=Drm.

This assumption which leads to constant apparent

friction coefficient, la=ls(1�B), in linearly poroe-

lastic rock, has been widely discussed in studies of

rock failure using the Coulomb failure criterion

[51,52,54]. As shown in Fig. 4, the apparent friction



Fig. 5. Distribution of pore pressure change (Dp, in MPa) due to a

right lateral slip of 1 m on a strike-slip fault (thick black line) o

100 km long in Berea sandstone using linear poroelasticity (a) and

the present model (for poroelastic moduli of Berea sandstone see

Table 1). Pore pressure changes along section A–AV (dashed line

are presented in Fig. 6.

Fig. 4. Apparent coefficient of friction, la, versus the non-Hookean

term (N2) moduli, c. In these calculations we used the poroelastic

moduli of Berea sandstone (for poroelastic moduli see Table 1) and

ls=0.75. We also assumed that Drn=Drm. In Berea sandstone the

apparent strengthening by dilatancy in the present model is about

25% compared to linear poroelasticity.
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coefficient of Berea sandstone is higher by about 25%

than that calculated from linear poroelasticity. This

increase corresponds to dilatancy hardening in un-

drained conditions.

5.2. Undrained pore pressure response to a slip on a

strike-slip fault

The nonlinear poroelastic model (Section 3.2) is

now applied to simulate the undrained pore pressure

change in response to a slip event on a strike-slip

fault. In order to simulate this response, we used the

numerical code developed by Hamiel et al. [55],

which is based on an explicit finite element method

similar to the Fast Lagrangian Analysis of Continua

(FLAC) algorithm [56,57]. We examine the behavior

of high-porosity rock at shallow depth, using the

poroelastic properties of Berea sandstone that where

presented in the previous section. These simulations

indicate that the non-Hookean term in the free energy

is significant in the calculation of pore pressure

changes after slip. Fig. 5 shows a comparison between

simulation of coseismic pore pressure changes for a

right lateral slip of 1 m on a strike-slip fault of 100
km long, using linear poroelasticity (Fig. 5a) and

the present model (Fig. 5b). Under linear poroelas-

ticity, the map of pore pressure change contains

four symmetrical quadrants alternating in their

sign (Fig. 5a). This symmetry is broken when

cN0. Due to dilatancy (c N0), the areas where

pore pressure decreases are enlarged compared to

linear poroelasticity (Fig. 5b). As a result, different

patterns of fluid flow and poroelastic rebound, fol-

lowing an earthquake, are expected from linear

poroelasticity and the present model. This may

potentially affect the spatial and temporal distribu-

tion of aftershocks.

A first step to incorporate deviatoric stresses–pore

pressure interaction in solving pore pressure response

to a slip event on a fault was made by Wang [9] and

Ge and Stover [10]. These authors argued that the

coseismic water level changes observed near the fault

trace associated with the Parkfield, December 20,

1994, earthquake can be explained better by calcula-
f

)



Fig. 6. Calculated pore pressure and hydraulic head changes in linear poroelasticity, our model, and Wang’s [9] model, along a section marked in

Fig. 5 (A–AV). Head change was calculated using Dh =Dp /qg.
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tions with Skempton coefficient A b1/3 than with by

those predicted by linear poroelasticity (A=1/3).

However, the solution adopted by Wang [9] and Ge

and Stover [10] neglects the relation between devia-

toric stresses and pore pressure in the poroelastic

constitutive relations [10], possibly a sufficient ap-

proximation for small coupling of shear and pore

pressure. Here we took a further step toward an

internally consistent theory of poroelasticity. Fig. 6

compares calculated pore pressure and hydraulic head

changes in linear poroelasticity, our model, and

Wang’s [9] model, along a section marked in Fig. 5.

Head change was calculated by Dh =Dp /qg where h is

the hydraulic head, q is the density of water, and g is

the gravitational acceleration. As shown in Fig. 6, the

linear elastic solution predicts a higher response at all

simulated distances from the fault tip, a manifestation

of dilatancy. The far field solutions of the two other

models are indistinguishable. However, Wang’s [9]

approximate solution overestimates pore pressure in-

crease and underestimates pore pressure decrease

around the fault. To summarize, we argue that the

solution given by Wang [9] and Ge and Stover [10]

can approximate well pore pressure response to slip

relatively far from the fault tips, whereas near the

fault tips (in the present simulation, ~20% from the

fault length) pore pressure increase should be detec-

tably lower (and pore pressure decrease should be

detectably higher).
6. Discussion

We have presented here a model that integrates

the classic poroelasticity theory of Biot [27] together

with nonlinear elasticity. Our formulation provides

an internally consistent solution for coupling of

shear and pore pressure. In the present paper, we

derived general constitutive poroelastic relations so

that we can take into account the connection be-

tween pore pressure and deviatoric stresses. We

investigated the poroelastic response of two different

non-Hookean second-order terms, N1 (Eq. (15a)) and

N2 (Eq. (15b)) added to the energy potential (Eq.

(13)). These terms couple the shear strain with the

volumetric deformation. As in linear poroelasticity,

both models show an increase of pore pressure with

mean stress (according to Skempton coefficient B)

under undrained conditions. However, unlike linear

poroelasticity, in our models, pore pressure varies also

with deviatoric stresses, where rising deviatoric stres-

ses (at constant mean stress) depress pore pressure due

to dilatancy. We showed that the model with N1 leads

to constant Skempton coefficients, A and B, with A

smaller than 1/3. This result in isotropic medium is in

agreement with the classic work of Skempton [8],

Henkel [34], and Henkel and Wade [35], but does

not fit well with the measured undrained response of

sandstones (Figs. 2 and 3). The model version with

N2, which leads to non-constant Skempton coeffi-
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cients, can accommodate the experimentally observed

variation of pore pressure with shear stress. Our pre-

dictions on pore pressure were found to agree with

undrained triaxial experiments on Berea and Navajo

sandstones (Figs. 2 and 3). Nonlinear poroelastic

response of Berea and Navajo sandstones was also

observed in hydrostatic experiments [11,58]. Howev-

er, in this paper we focus on the nonlinear poroelastic

response to shear.

Pore pressure affects rock failure and plays an

essential role in the seismic cycle. Hence, a mechanism

of pore pressure increase was suggested for weakening

major fault zones [4,5]. By contrast, pore pressure

decrease increases the Coulomb stress, and therefore

acts to strengthen fault zones. The behavior of pore

pressure presented in this paper can explain dilatancy

hardening observed in undrained experiments of high-

porosity rocks [11]. Hence we propose that dilatancy

hardening should be taken into consideration in pre-

dictions of Coulomb failure stress of these rocks (Fig.

4). This behavior of pore pressure can also increase

Coulomb failure stress of high-porosity gouge, a sig-

nificant component of major fault zones.

We have presented an application to coseismic

distribution of pore pressure changes around a

strike-slip fault. The pattern of pore pressure changes

calculated using our model in high-porosity rocks is

quite different from that predicted by linear poroelas-

ticity (Fig. 5). Owing to the shear-dilation coupling

term (N2) in the poroelastic potential (Eq. (13)), the

area of pore pressure decrease in our model is signif-

icantly larger than expected from linear poroelasticity.

Therefore, shear-dilation coupling may be the reason

for the observed pore pressure changes that cannot be

explained by linear poroelasticity [9,10], and for the

observed coseismic water level changes in regions of

high shear but small volumetric strain expected from

linear poroelasticity [1,59]. This calculation shows

that the incorporation of nonlinear poroelastic cou-

pling can have important consequences for estimating

coseismic water level changes and crustal deformation

driven by pore pressure diffusion.
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Appendix A

In this appendix we present the basic equations

used to calculate Skempton coefficients A (or AV)
and B. In order to evaluate the poroelastic coefficients

we differentiate the pore pressure with respect to rm

and soct (Eq. (11)). Since the nonlinear free energy

(Eq. (13)) is expressed in terms of the strain invariants

we write rm and soct as function of these invariants.

Using the definitions for rm (text before Eq. (6)) and

soct (Eq. (10)), they can be written as

rm ¼ �
�
K � c V

n*

�
I1 þ bM � bI1 þ fð Þ; ðA1Þ

s2oct ¼
4

3

�
l � 1

2
c Vn*

�2�
I2 �

1

3
I21

�
; ðA2Þ

for the model with the non-Hookean term N1 (Eq.

(15a)); and,

rm ¼ �
�
K � c

�
1

n
þ n

3

��
I1 þ bM � bI1 þ fð Þ;

ðA3Þ

s2oct ¼
4

3

�
l � 1

2
cn

�2�
I2 �

1

3
I21

�
; ðA4Þ

for the model with the non-Hookean term N2 (Eq.

(15b)). Under undrained conditions (z =0) the state of
our system is completely defined by the two strain

invariants I1 and I2. Therefore, using (Eq. (11)) AV and
B can be written as

AV ¼ Bp=BI1ð ÞdI1
Bsoct=BI1ð ÞdI1 þ Bsoct=BI2ð ÞdI2 jrm

; ðA5Þ

B ¼ Bp=BI1ð ÞdI1
Brm=BI1ð ÞdI1 þ Brm=BI2ð ÞdI2 jsoct : ðA6Þ
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In the case of constant rm, dI2 is given as

dI2 ¼ � Brm=BI1ð Þ
Brm=BI2ð Þ dI1: ðA7Þ

Whereas, constant soct leads to

dI2 ¼ � Bsoct=BI1ð Þ
Bsoct=BI2ð Þ dI1: ðA8Þ

Combining Eqs. (A5) and (A7) yields

AV ¼ Bp=BI1ð Þ

Bsoct=BI1ð Þ � Bsoct=BI2ð Þ Brm=BI1ð Þ
Brm=BI2ð Þ

; ðA9Þ

Similarly to Eq. (A9), combining Eqs. (A6) and (A8)

yields

B ¼ Bp=BI1ð Þ

Brm=BI1ð Þ � Brm=BI2ð Þ Bsoct=BI1ð Þ
Bsoct=BI2ð Þ

: ðA10Þ

Using Eqs. (A9) and (A10), and the expressions for rm

(Eqs. (A1), (A3)), soct (Eqs. (A2), (A4)), and p (Eq.

(3)), AV and B can be written as Eqs. (21) and (22) for

the model with the nonlinear term N1, and as Eqs. (26)

and (30) for the model with the nonlinear term N2.
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