ОКСИТЕРМОБАРОМЕТРИЯ ПЛАТИНОНОСНЫХ УЛЬТРАМАФИТОВ ГАЛЬМОЭНАНСКОГО МАССИВА КОРЯКИИ (СРАВНЕНИЕ С УРАЛОМ)

Е.В. Пушкарев, И.С. Чащухин, С.Л. Вотяков, Ю.В. Назимова, В.П. Зайцев

Исследования последних лет убедительно показали важную роль разнообразных флюидов (H₂O, CO₂, CH₄, S, O, H, щелочных флюидов и др.) как в петрогенезисе мафит-ультрамафитовых комплексов, так и в формировании сопутствующего им хромитового и платинового оруденения. Наиболее полная информация о компонентном составе флюида и Р-Т параметрах его равновесия связана с изучением газовожидких включений в минералах. Однако чаще всего исследователи ограничиваются констатацией факта присутствия в породах или рудах тех или иных флюидсодержащих минералов, предполагая, что для их образования необходим флюид определенного состава. Оценки параметров флюидного режима часто в таких случаях отсутствуют или носят качественный характер. Исключением из этого правила являются определения температуры и фугитивности кислорода, основанные на распределении Fe^{2+} , Fe^{3+} и Mg между сосуществующими силикатными и оксидными минералами, и их увязка с известными буферными равновесиями. Наибольшего прогресса в оценке редокс-состояния удалось достичь при изучении ультрамафитов благодаря хорошо разработанным эмпирическим и экспериментальным окситермобарометрам, основанным на равновесии оливина и хромистой шпинели, полный обзор которых приведен в [Чащухин и др., 1996]. Эти исследования позволяют дать количественную характеристику окислительно-восстановительных условий формирования пород и руд.

Для определения редокс-условий (T, fO₂) субсолидусного равновесия ультрамафитов в комплексах Урало-Аляскинского типа и связанных с ними хром-платиновых рудах нами были использованы оливин-хромшпинелевые равновесия, рассчитанные по уравнениям Больхауза-Берри-Грина [Ballhaus et al., 1991] с учетом доли трехвалентного железа в структуре хромшпинелида, определенного мессбауэровским методом и с учетом влияния титана в хромите на расчет температуры данного равновесия [Вотяков и др., 1998; Чащухин и др., 1998]. По этой методике на Урале было изучено пять платиноносных дунитовых тел и связанных с ними хромититов, входящих в состав Нижнетагильского, Кытлымского и Уктусского дунит-клинопироксенит-габбровых массивов. Эти исследования показали, что все изученные массивы характеризуются окисленностью, на 2-3 единицы логарифма превышающей буфер FMQ, а платиноносные хромититы обладают еще более высокой окисленностью и существенно более низкой температурой оливин-хромитового равновесия (TOXP) по сравнению с вмещающими дунитами, что отражает их постмагматический генезис [Чащухин и др., 2002].

Используя отработанную на уральских объектах методику, нами были проведены исследования по определению редокс-условий формирования ультрамафитов и хром-платиновых руд Гальмоэнанского массива Корякии, с которым связаны одни из крупнейших на сегодняшний день россыпных платиновых месторождений в России [Корякско-Камчатский регион..., 2002; Назимова и др., 2003]. Гальмоэнанский дунит-клинопироксенитовый массив расположен на юго-западе Ватыно-Вывенского сегмента Олюторской тектонической зоны, занимающей южную часть Корякского нагорья и представляющей собой сложное покровноскладчатое сооружение [Сидоров и др., 2001]. Согласно представлениям большинства исследователей, массив образует бескорневое тело, залегающее в виде крупной тектонической пластины среди верхнемеловых окраинно-морских и островодужных вулканогенно-кремнистых и вулканогенно-терригенных толщ ватынской и ачайваямской свит, надвинутых на терригенные образования Западнокамчатско-Укелаятской зоны. Массив вытянут в северо-северо-восточном направлении на 16 километров при ширине выходов, варьирующей от 2.5 до 4 км (рис. 1). Площадь выходов ультраосновных пород на поверхность составляет около 48 кв. км.

Гальмоэнанский массив сложен дунитами, образующими центральное ядро и занимающими до 80% его площади, верлитами, клинопироксенитами и габброидами. Дуниты в различной степени перекристаллизованы. ПорРис. 1. Схема геологического строения Гальмоэнанского дунит-клинопироксенитового массива [Сидоров и др., 2001].

1 – четвертичные аллювиальные отложения; 2 – терригенно-вулканогенные отложения корякской серии (K₂-P₁); 3 – вулканогенно-кремнистые породы ватынской серии (K₂); 4-8 – породы Гальмоэнанского массива: 4 – дуниты; 5 – верлиты; 6 – клинопироксениты; 7 – габброиды; 8 – серпентинитовый меланж; 9 – тектонические нарушения; 10 – границы аллохтона.

фирокластическими крупнозернистыми дунитами сложен целиком южный блок массива и южная половина северного блока. Эти породы и связанные с ними хромититы являются главным источником наиболее богатых платиновых россыпей района. Среди перекристаллизованных ду-

нитов при проведении поисковых и разведочных работ было выявлено большое количество хромитовых шлиров, обогащенных платиной, что определяет высокую перспективность южного блока на обнаружение коренного платинового оруденения. Мелко-среднезернистые аллотриаморфнозернистые дуниты тяготеют к северной половине массива, где контактируют с верлитами и клинопироксенитами. Подробное описание геологии и петрографии пород гальмоэнанского массива можно найти в многочисленной литературе [Сидоров и др., 2001; Корякско-Камчатский регион..., 2002; Назимова и др., 2003] и здесь опускается.

Образцы и методы исследования. Изучено 15 проб, включающих главные структурные типы дунитов из северного и южного блока, платиноносные и неплатиноносные хромититы и верлиты. Краткая характеристика проб приведена в табл.1, а их положение отражено на рис. 1. Состав хромшпинели и оли-

вина приведен по данным рентгеновского микроанализатора «Camebax» (ГЕОХИ РАН, аналитик Н.Н. Кононкова). Для каждой пробы исследовано не менее трех зерен оливина и хромита, что показало наличие в некоторых случаях заметной дисперсии составов, существенно влияющей на расчетные значения температуры и фугитивности кислорода (табл. 2). Составы оливинов были проконтролированы иммерсионно-теодолитным методом на приборе ППМ-1 и показали хорошую сходимость с микрозондовыми определениями (рис. 2). Состояние ионов Fe²⁺ и Fe³⁺ в структуре хромшпинелидов было изучено с помощью месбауэровской спектроскопии (спектрометр СМ2201, аналитики А.Б. Миронов, В.А. Семенкин) при постоянном ускорении в геометрии пропускания при комнатной температуре; эффективная толщина образцов составляла 10 мг/см² железа в естественной смеси изотопов, что соответствует приближению тонкого поглотителя.

Таблица 1

Блок	№ пробы	Порода, характеристика
	Ю89	Крупнозернистый, перекристаллизованный дунит
	510/1	Крупнозернистый дунит, вмещающий платиноносный хромитит 510
	Ю46	Крупнозернистый дунит, вмещающий платиноносный хромитит Ю46/7
	510	Платиноносный хромитит*
ый	Ю46/7	Платиноносный хромитит
ЖН	910	Платиноносный хромитит
Q	313	Платиноносный хромитит
	411	Платиноносный хромитит
	Ю121/1	Платиноносный хромитит
	344	Платиноносный хромитит
	94	Безрудный хромитит
	Ю577	Дунит среднезернистый из северной части северного блока
iŭ ep	Ю278	Дунит среднезернистый из центральной зоны северного блока
CeB	Ю585	Дунит мелкозернистый, отдельное тело среди верлитов, северная часть массива
Ľ	Ю170	Безрудный хромитит

Характеристика изученных проб Гальмоэнанского массива

Примечание. *Платиноносный хромитит – содержание платины превышает 0.5 г/т

Мессбауэровская спектроскопия железа широко используется для анализа кристаллохимии природных минералов из группы шпинелей ^{IV}($A_{1-r}B_{r}$)^{VI}($A_{r}B_{2-r}$)O₄, где $A=Me^{2+}(Mg, Fe u$ $др.), B=Me^{3+}$ (Cr, Al, Fe и др.), r=0÷1 – доля катионов A в октаэдрических позициях структуры (степень ее обращения). Однако приводимые результаты (см., например, подробный обзор в одной из последних работ [Li, Ping, 2002]) зачастую противоречивы, что, в частности, связано со сложным переменным составом минерала, его микрозональностью и дефектностью (природные шпинели могут быть отнесены к типичным локально-неоднородным системам), частичным обращением структуры – перерасп-

ределением ионов Me²⁺ и Me³⁺ между тетра-(^{IV}А) и октапозициями (^{VI}В), предраспадным состоянием. Как следствие отмеченного в минерале реализуется большое число неэквивалентных ядерных состояний железа и соответствующих мессбауэровских центров. Интерпретация их спектров в зависимости от характеристик локальной атомной и электронной структуры сталкивается со значительными сложностями, в особенности при традиционно используемой модельной расшифровке экспериментальных данных - их описании достаточно малым дискретным набором парциальных спектров. Перспективным представляется использование для обработки мессбауэровских данных по природным шпинелям компьютерных программ, позволяющих восстанавливать функции распределения сверхтонких параметров спектров. В настоящей публикации впервые выполнен анализ экспериментальных данных на ос-

Рис. 2. Соотношение железистости оливина в породах Гальмоэнанского массива, рассчитанной по данным микрозондового анализа и по данным иммерсионных определений.

Сплошная линия – линия равных значений, пунктирная линия – средняя по выборке.

HIG	И
Lab	rav
5	eH
	HO
	UW
	KO
	Ю
	BIN
	ΡН
	IaJ
	Ш
	Iap
	IK
	eM
	đ
	0B
	dry
	Пе
	S
	BK6
	lod
	łфј
	I
	Dac
	йГ
	OH
	E C
	оде
	М
	hц
	ЦX
	дау
	ЛИ,
	He
	ИΠ
	ΠI
	NO
	Хŗ
	ав
	Ie3
	Kel
	ВЗ
	ОН
	ИО
	Ы
	етŗ
	aM
	lap
	еп
	КИ
	BC
	ode
	ayc
	çõ
	lec
	Σ

~1	
(1	
53	
E	
-	
-	

X ²		0.850	0.886	0.809	0.522	0.489	0.821	1.439	1.273	0.600	0.442	2.528	1.277	1.067	1.043	1.001
	S	10.4	11.1	8.7	15.8	7.9	23.3	19.7	17.9	13.2	14.4	12.4	20.2	20.0	24.7	21.6
٩ ٩	W	0.306	0.356	0.323	0.403	0.279	0.458	0.434	0.371	0.372	0.343	0.325	0.416	0.478	0.475	0.432
Fe ²⁻	SQ	1.700	1.610	1.648	1.377	1.674	1.389	1.356	1.379	1.610	1.616	1.717	1.352	1.300	1.356	1.430
	IS	1.058	1.050	1.067	1.115	1.039	1.148	1.140	1.145	1.029	1.040	1.055	1.132	1.139	1.143	1.141
	S	46.2	48.6	49.4	37.1	48.1	36.6	36.3	38.4	44.4	44.8	48.9	38.6	27.2	30.0	36.1
a	W	0.539	0.543	0.585	0.489	0.576	0.484	0.495	0.473	0.553	0.518	0.550	0.476	0.432	0.479	0.494
Fe ²⁺	QS	0.938	0.874	0.918	0.832	0.923	0.829	0.817	0.829	0.882	0.878	0.939	0.834	0.788	0.858	0.895
	IS	1.104	1.102	1.102	1.076	1.097	1.100	1.094	1.093	1.088	1.074	1.100	1.070	1.081	1.059	1.081
	S	43.4	40.3	41.9	47.2	44.0	40.1	44.0	43.7	42.4	40.8	38.7	41.2	52.8	45.3	42.3
e ³⁺	W	0.310	0.311	0.339	0.317	0.313	0.302	0.313	0.308	0.332	0.374	0.316	0.308	0.316	0.331	0.314
H	QS	0.491	0.483	0.491	0.511	0.480	0.520	0.514	0.522	0.481	0.486	0.495	0.527	0.501	0.530	0.533
	IS	0.569	0.562	0.568	0.543	0.560	0.571	0.567	0.563	0.559	0.578	0.569	0.548	0.565	0.541	0.541
Проба		313	344	411	510	910	HO46	HO46/7	68OI	HO94	HO121/1	HO170	HO278	HO510	HO577	HO585

Примечание. IS – изомерный сдвиг относительно нитропруссида натрия (в мм/с); QS – квадрупольное расщепление (в мм/с); W – ширина линии (в мм/с); S – площадь соответствующего дублета в спектре (в %).

ПЕТРОЛОГИЯ

новании одновременной реставрации функций распределения квадрупольного расщепления $P(\varepsilon)$ и сдвига $P(\delta)$ мессбауэровских спектров с использованием программы DISTRi [Русаков, 1999].

Типичные спектры хромитов из дунитов южного дунитового тела и платиноносных хромититов Гальмоэнанского массива (рис.3а-б) представляют суперпозицию двух несколько ассимметричных квадрупольных дублетов, связанных с ионами как двух, так и трехвалентного железа. О наличии двух валентных форм железа однозначно свидетельствует вид восстановленных функций распределения $P(\varepsilon)$ и $P(\delta)$ (рис. 3 в-е). По оценкам площадей дублетов степень окисления железа в пробах варьирует от 38.7 до 53.0%, при этом относительная ошибка ее определения не превышает 1%. Для ионов Fe³⁺ функция распределения сдвига Р(δ) отлична от нуля в области значений δ=0.45÷0.50 мм/с, вследствие чего можно предполагать, что для ионов характерно координационное число (к.ч.), равное шести. Напротив, для ионов Fe²⁺ к.ч., по-видимому, должно быть равно четырем, так как функция P(δ) отлична от нуля при δ=1.0÷1.1 мм/с. Таким образом, полученные данные свидетельствуют о том, что внутрикристаллическое распределение ионов Fe³⁺ и Fe²⁺ близко к нормальному: параметр г близок к 0. При этом ширина функций распределения сдвигов P(δ), составляющая для проб величину порядка 0.05-0.08 мм/с, достаточно явно указывает на локальную неоднородность позиций как двух, так и трехвалентного железа. На восстановленной функции распределения квадрупольного расщепления P(ε) ионов Fe²⁺ выделяются два-три (в отдельных пробах четыре) перегиба (максимума); функция $P(\varepsilon)$ ионов Fe^{3+} также характеризуется наличием перегибов (рис. 3 в-е). Эти особенности связаны с вариациями размеров и степени искажения тетраэдров и октаэдров, состава и структуры второй координационной сферы позиций ионов железа, а также с особенностями химического связывания ионов Fe^{2+, 3+} с окружающими катион ближайшими кислородами. Форма огибающей и ширина функций распределения достаточно значимо меняется в рамках исследованной выборки хромшпинелей (рис. 3 в-е); эффект уширения функции Р(δ) может быть использован при оценках локальной неоднородности (микрозональности) и дефектности проб. Заметим, что при аппроксимации спектров дискретными компонентами с использованием программы Univem-4 (НИИ Физики Ростовского госуниверситета) удовлетворительного согласия расчетных и экспериментальных данных удавалось достичь при использовании трех или четырех (в ряде случаев даже пяти) дублетов (см. рис. 3 а-б, табл. 2), соответствующих разнозарядным ионам железа. Однако при подобной модельной расшифровке информация о вариациях по пробам степени их локальной неоднородности и дефектности полностью теряется.

Оценки редокс-условий и температуры. Температура оливин-хромитового равновесия (ТОХР) была рассчитана нами по модифицированному уравнению О'Нейла-Уолла-Больхауза-Берри-Грина [Ballhaus et al., 1991]. В основу геотермометра O'NWBBG положены результаты экспериментального изучения распределения Fe и Mg между оливином и ульвошпинелью при температурах 1070-1170 °С, которые были распространены на ассоциацию оливина с хромшпинелидом. Было показано, что на коэффициент распределения Fe и Mg между этими фазами заметное влияние оказывает входящий в структуру хромита титан, и на этой основе была рассчитана соответствующая поправка в уравнение геотермометра. Применение этого геотермометра к дунитам Платиноносного пояса и ультрамафитам массива Южный Крака при допущении равенства температур оливинхромитового равновесия в пределах конкретных дунитовых тел показало, что величина поправки на титан, по сравнению с данными К. Больхауза, численно выше и для разных массивов (а иногда и их частей) непостоянна [Вотяков и др., 1998; Чащухин и др., 2002]. Занижение величины титанового множителя в уравнении О'NWBBG обусловлено, вероятно, тем, что положенные в его основу результаты экспериментов проводились при иных, чем в природных ультрамафитах, значениях летучести кислорода. В связи со сказанным, мы внесли изменения в уравнение O'NWBBG, оценивающие эмпирическим путем реальное влияние титана на коэффициент распределения Fe и Mg между фазами. На уральских объектах, таким образом, удалось установить наличие зависимостей между Ті и ТОХР и рассчитать поправочные коэффициенты для коррекции геотермометра. Кроме того, в связи с отклонением составов природных хромшпинелидов от стехиометрии, мы использовали прямое определение соотношений в них Fe²⁺ и Fe³⁺, рассчитанных из данных ЯГР-спектроскопии [Чащухин и др., 1996].

Рис. 3. Типичные мессбауэровские спектры хромитов из дунитов южного дунитового тела (Ю-46, а) и платиноносных хромититов (Ю-46-7, б) Гальмоэнанского массива и результаты восстановления функций распределения сверхтонких параметров спектров – квадрупольного расщепления P(е) (б, г) и сдвига P(d) (в, д).

Все изученные образцы Гальмоэнанского массива характеризуются сравнительно невысокими содержаниями титана в хромшпинелиде, варьирующими в пределах 0.36-0.59 % ТіО, (табл. 3). Эти вариации близки к таковым в дунитах и хромититах г. Соловьевой Нижнетагильского массива на Среднем Урале. Однако, в отличие от уральского материала, в изученных пробах не выявлено обратной корреляции Ті и ТОХР (рис. 4). Более того, не просматривается заметных различий между дунитами северного и южного блока, а также между хромититами обогащенными платиной и «пустыми» хромититами. Вероятно, это связано с очень высокой дисперсией составов хромшпинелида, выявленной в некоторых образцах, а также с присутствием оливина двух генераций (прозрачный Fa₂ и мутный с многочисленными включениями Fa_{5.6}).

Присутствие двух генераций оливина связано с высокотемпературным окислительным распадом и сбросом части железа из оливина в оксидную фазу. Наличие в одной пробе хромшпинелидов разного состава, возможно, связано с объемным методом опробования, которое применялось при поисково-разведочных работах (бороздовое и гнездовое опробование), когда в одну пробу попадали образцы из различных мест рудного тела или дунита, которые, как мы знаем, могут существенно различаться по составу шпинели [Пушкарев, Аникина, 2001]. Это привело к тому, что вариации температуры для некоторых образцов перекрывают вариации температуры для выборки в целом. Поэтому расчет температуры был выполнен нами без учета эмпирической поправки на титан. Полученные температуры оливин-хромитового равновесия в платиноносных ультрамафитах и хроРис. 4. Зависимость температуры оливинхромшпинелевого равновесия от концентрации титана в хромшпинелиде.

1-3 – дуниты и хромититы Гальмоэнанского массива: 1 – северный блок, 2 – южный блок, 3 – дунитовое тело среди верлитов; 4, 5 – дунит-хромититовая серия г. Соловьевой Нижнетагильского массива: 4 – периферическая часть дунитового тела, 5 – центральная часть дунитового тела. Расчет температуры по [Ballhaus et al., 1991] без учета титана.

мититах Гальмоэнанского массива в целом совпадают с таковой, установленной для Нижнетагильского массива на Урале, и соответствуют интервалу 1000-650°С (табл. 3). При этом ТОХР платиноносных хромититов и перекристаллизованных дунитов южного блока в среднем несколько выше по сравнению с «пустыми» хромититами и дунитами северного блока – картина, противоположная уральской.

Высокая дисперсия состава хромшпинелида и, как итог, значительные вариации ТОХР существенно не сказались на результатах расчетов летучести каилорода.. Однако зависимость между железистостью хромшпинелида и величиной фугитивности кислорода в Гальмоэнанском массиве скорее имеет обратный характер по сравнению с установленной прямой корреляцией этих параметров в уральских массивах (рис. 5). В целом летучесть кислорода для всех типов изученных пород и руд существенно превышает фугитивность, определенную для массивов Платиноносного пояса Урала [Чащухин и др., 2002]. Например, по сравнению с наиболее окисленными дунитами Нижнетагильского массива, величина фугитивности кислорода в ультрамафитах и хром-платиновых рудах Гальмоэнана на 1 единицу логарифма выше (рис. 6) и сопоставима с уровнем fO_2 , характерным для хром-платиновых руд Урала в целом. При этом не обнаруживается никаких значимых различий в редокс-состоянии безрудных хромититов и хромитовых шлиров, обогащенных платиной. Это также является характерной особенностью Гальмоэнанского массива, поскольку данные по Уралу показывают, что fO, платиноносных хромититов на 1-2 порядка выше, чем у безрудных хромитовых сегрегаций.

Таблица 3

Химический состав хромшпинелида, оливина (мас.%) и расчетные параметры (T°C, D2) оливин-хромитового равновесия для пород и хромплатиновых руд Гальмоэнанского массива

	0 MgO		BII	ересчете на	а 3 катиона			хромит,	ВИН	(BBG)	5
		Ti	Al	Cr	Fe ³⁺	Fe^{2+}	Mg	%			
9 0	0.58 8.58	0.013	0.277	1.222	0.461	0.577	0.433	57.09	0.09	837.48	-10.04
0	0.67 6.38	0.012	0.274	1.130	0.583	0.657	0.325	66.89	0.08	708.87	-12.16
0	9.50 9.70	0.014	0.251	1.225	0.473	0.534	0.490	52.13	0.08	872.61	-9.14
0	0.59 8.04	0.013	0.262	1.177	0.528	0.595	0.408	59.33	0.08	788.37	-10.55
0	0.90 5.79	0.011	0.291	1.219	0.463	0.692	0.297	69.69	0.09	681.94	-13.45
0	0.44 10.45	0.013	0.263	1.227	0.508	0.454	0.523	46.49	0.06	846.00	-9.02
0	0.44 10.45	0.013	0.263	1.227	0.508	0.454	0.523	46.49	0.08	954.72	-7.73
0	9.61 8.11	0.013	0.269	1.200	0.480	0.610	0.411	59.78	0.09	809.63	-10.49
0	0.49 10.66	0.010	0.268	1.276	0.396	0.504	0.533	48.62	0.05	741.59	-11.21
0	9.51 9.77	0.011	0.295	1.271	0.398	0.520	0.490	51.45	0.06	758.86	-11.17
0	0.62 8.06	0.011	0.268	1.237	0.443	0.615	0.408	60.10	0.08	763.12	-11.38
0	0.81 5.98	0.012	0.253	1.222	0.496	0.688	0.305	69.27	0.08	676.72	-13.24
0	0.43 10.13	0.011	0.283	1.251	0.391	0.542	0.509	51.58	0.08	852.29	-9.83
0	9.54 9.48	0.012	0.254	1.155	0.443	0.642	0.479	57.28	60.0	837.97	-10.00
0	0.94 5.82	0.009	0.254	1.309	0.443	0.656	0.301	68.56	0.08	659.31	-13.83
0	0.43 10.46	0.010	0.251	1.321	0.355	0.526	0.526	50.01	0.08	852.12	06.6-
0	9.69 8.14	0.010	0.253	1.315	0.398	0.590	0.415	58.73	0.08	755.25	-11.65
0	0.38 10.30	0.011	0.276	1.259	0.392	0.533	0.518	50.73	0.05	718.16	-11.75
0	0.53 8.30	0.013	0.334	1.120	0.495	0.604	0.419	59.08	60.0	801.44	-10.59
0	0.55 7.21	0.011	0.276	1.204	0.462	0.664	0.368	64.36	0.09	748.34	-11.84
0	0.62 6.27	0.015	0.343	1.125	0.495	0.684	0.320	68.17	0.10	723.21	-12.48
0	0.91 6.24	0.011	0.362	1.150	0.438	0.694	0.318	68.56	0.09	660.63	-13.97
0	0.43 10.41	0.010	0.296	1.272	0.346	0.548	0.517	51.41	0.09	861.37	-9.99

оливина, в долях единицы. Т^oC (BBG) – температура равновесия оливин-хромитового парагенезиса, расчитанная по [Ballhaus et al., 1991], без учета содержаний виде FeO. Fe[#], хромит – железистость хромшпинелида, равная 100*Fe²⁺/(Fe²⁺+Mg), рассчитанная по данным ЯГР-спектроскопии. Fe[#], оливин – железистость

титана в хромите. $fO_2 - фугитивность кислорода.$

ПЕТРОЛОГИЯ

Рис. 5. Величина относительной летучести кислорода как функция железистости хромшпинели Гальмоэнанского массива в сопоставлении с уральскими данными.

Дунитовые тела Гальмоэнанского массива: 1-3 – Северное, 4-6 – Южное, 7 – блок в клинопироксенитовом обрамлении Северного тела. 1, 4, 7 – дуниты, 2, 5 – безрудные хромититы, 3, 6 – Рt-хромититы. 8-9 – Урал: 8 – Рt-хромититы г. Соловьевой, 9 – дуниты Косьвинского тела Кытлымского массива. Эллипсы: Безрудные хромитит-дунитовые серии Урала: 1 – г. Соловьевой, 2-3 – Кытлымский массив: 2 – Иовское тело, 3 – Сосновское тело, 4 – Уктусский массив. Тонкие кресты – величина вариаций железистости хро-

мита и фугитивности кислорода, определенной по образцам с высокой дисперсией составов минералов. Толстый крест – величина аналитической ошибки в определении параметров.

Выводы. 1. Впервые на основе мессбауэровского исследования ионов Fe в природных хромшпинелях Гальмоэнанского массива, реставрации и анализа функций распределения квадрупольного расщепления $P(\varepsilon)$ и сдвига $P(\delta)$ спектров показано, что пробы характеризуются практически нормальным внутрикристаллическим распределением ионов Fe³⁺ и Fe²⁺, значительной локальной неоднородностью позиций и высокой степенью дефектности микрокристаллов.

2. Показано, что редокс-состояние оли-

вин-хромитового равновесия в дунитах и платиновых рудах можно использовать как геохимический индикатор продуктивности ультраосновных массивов на коренное платиновое оруденение и, как следствие, на их потенциальную россыпеобразующую роль. В первом приближении это выражается прямой зависимостью между степенью окисленности дунитов и хромититов и продуктивностью массивов. Можно утверждать, что Гальмоэнанский массив, как наиболее окисленный из всех известных нам дунит-клинопироксенитовых тел, является и

наиболее перспективным в плане обнаружения связанного с дунитами коренного

Рис. 6. Величина летучести кислорода как функция температуры оливин-хромшпинелевого равновесия.

Условные обозначения те же, что на рис. 5. Жирными линиями показаны погрешности определения, тонкими – пределы вариаций температуры и летучести кислорода для крайних составов хромшпинелей и оливинов в образце.

156

ПЕТРОЛОГИЯ

хром-платинового оруденения. Ограничением в этом может явиться только то, что массив представляет собой сравнительно маломощную субгоризонтальную тектоническую пластину, в которой все протоструктуры также ориентированы субгоризонтально. Это обстоятельство, возможно, определяет его высокую россыпеобразующую роль, в связи с тем, что были вскрыты и эродированы наиболее продуктивные рудные зоны Это же обстоятельство затрудняет поиск коренного оруденения, поскольку теперь необходимым является поиск невскрытых эрозией рудных тел, что требует применение геофизических, поисково-геохимических и буровых работ.

Авторы благодарят руководство компании «Корякгеолдобыча» за предоставленный каменный материал и за финансирование аналитических работ по микрорентгеноспектральному и мессбауэровскому изучению хромшпнелидов.

Работа выполнена при финансовой поддержке РФФИ (гранты: 04-05-64436, 04-05-64346, 04-05-96009-р2004урал_а), гранта Президента РФ «Поддержка ведущих научных школ»: НШ-85.2003.5, а также по программе ОНЗ №10 «Экспериментальные исследования физико-химических проблем геологических процессов».

Список литературы

Вотяков С.Л., Чащухин И.С., Уймин С.Г., Быков В.Н. Окситермобарометрия хромитоносных ультрамафитов (на примере Урала). І. ЯГР-спектроскопия хромшпинелидов и проблемы оливин-хромшпинелевой геотермометрии // Геохимия. 1998. № 8. С. 791-802.

Корякско-Камчатский регион – новая платиноносная провинция России / Вильданова Е.Ю., Зайцев В.П., Кравченко Л.И. и др. Санкт-Петербург: ВСЕГЕИ, 2002. 383 с.

Назимова Ю.В., Зайцев В.П., Мочалов А.Г. Минералы платиновой группы габбро-пироксенитдунитового массива Гальмоэнан южной части Корякского нагорья (Россия) // Геология рудных месторождений. 2003. Т. 45. № 6. С. 547-565.

Пушкарев Е.В., Аникина Е.В. Первые данные о зональности эпигенетических хромит-платиноидных рудных тел в дунитах Нижнетагильского массива // Ежегодник-2000. Екатеринбург: ИГГ УрО РАН, 2001. С. 174-179.

Русаков В.С. Восстановление функций распределения сверхтонких параметров мессбауэровских спектров локально-неоднородных систем // Изв. РАН. Сер. Физ.Т.6. №7. 1999. с.1389-1396.

Сидоров Е.Г., Козлов А.П., Ланда Э.А. и др. Петрохимические особенности пород Гальмоэнанского базит-гипербазитового массива, Корякия // Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.: Научный Мир, 2001. С. 14-30.

Чащухин И.С., Вотяков С.Л., Пушкарев Е.В. и др. Окситермобарометрия ультрамафитов Платиноносного пояса Урала // Геохимия. 2002. № 8. С. 846-863.

Чащухин И.С., Вотяков С.Л., Уймин С.Г. и др. ЯГР-спектроскопия хромшпинелидов и проблема окситермобарометрии хромитоносных ультрамафитов Урала. Екатеринбург: УрО РАН, 1996. 136 с.

Чащухин И.С., Вотяков С.Л., Уймин С.Г., Быков В.Н. Окситермобарометрия хромитоносных ультрамафитов (на примере Урала). II. Состояние окисленности ультрамафитов и состав рудообразующих флюидов // Геохимия. 1998. № 9. С. 877-885.

Ballhaus C., Berry R., Green D. High pressure experimental calibration of the olivine-orthopyroxenespinel oxygen geobarometer: implication for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27-40.

Li Z., Ping J. Y. Distribution of Fe^{2+} and Fe^{3+} and next-nearest neighbour effects in natural chromites: comparison between results of QSD and Lorentzian doublet analysis // Phys. Chem. Miner. V. 29. 2002. P. 485-494.