Массовая изобарная теплоемкость воды и ее зависимость от плотности при различных параметрах состояния

У.Б. Магомедов, Б.А. Алирзаев *ИПГ ДНЦ РАН*

Представлена формула для расчета коэффициента изобарной теплоемкости воды в интервалах температур $293-473~\rm K$ и давлений $P_s-100~\rm M\Pi a$. Приведены расчетные данные изобарной теплоемкости воды. Погрешность расчетных данных составляет менее $0.42~\rm \%$.

Получена формула для расчета коэффициента изобарной теплоемкости воды в интервалах температур 293.15 – 473.15 К и давлений $P_{\rm s}$ – 100 МПа

$$C_{p}^{H_{2}O}(P,T) = \frac{C_{p_{s}}(P_{s},T)}{\left[\left(1.800 \frac{\rho(P,T)}{\rho(P_{s},T)} - 0.8000\right) - 8.100 * 10^{-7} \frac{PT}{P_{1}T_{1}}\right]},$$

где $C_p^{\ \ H_2O}(P,T)$ – теплоемкость воды при давлении P [МПа] и температуре T [К]; $C_{ps}(P_s,T)$ – теплоемкость воды в состоянии насыщения при давлении P_s и температуре T; $\rho(P,T)$ – плотность воды; $\rho(P_s,T)$ – плотность воды в состоянии насыщения; $P_I=1$ МПа; $T_I=1$ К.

В расчетах по формуле при составлении таблицы 1 были использованы справочные данные о изобарной теплоемкости воды в состоянии насыщения и значения плотности воды в интервалах температур 293.15-473.15 К и давлений $P_{\rm s}-100$ МПа [1]. Для получения расчетных данных по формуле о изобарной теплоемкости воды при P>100 МПа использовались значения плотности [2]. К сожалению, хотя получены расчетные данные о массовой изобарной теплоемкости воды и при более высоких давлениях (P>100 МПа), но эти данные не представлены в работе, т.к. нет возможности их оценки на погрешность.

В табл. 2 приведены теплофизические свойства воды в состоянии насыщения [1], которые были использованы при расчетах по формуле.

Расчетные данные табл. 1 о изобарной теплоемкости воды согласуются с рекомендуемыми справочными [1] в пределах 0.42 %.

В табл. 3 представлены отклонения (в %) расчетных значений табл. 1 от справочных данных [1] при различных температурах и давлениях.

Заключение

Представленная новая формула имеет простой вид и может быть легко реализована на вычислительных машинах. Получены по формуле расчетные данные о изобарной теплоемкости воды для интервалов температур $293 - 473 \; \mathrm{K}$ и давлений $P_s - 100 \; \mathrm{M\Pi}$ а.

По данным давления и температуры можно вычислить по формуле искомое значение изобарной теплоемкости воды в замкнутой однородной системе, т. к. необходимые для формулы значения изобарной теплоемкости в состоянии насыщения воды и значения плотности имеются в [1, 2].

Таблица 1.

	Рассчитанные по формуле значения массовой изобарной теплоемкости воды и данные плотности [1]										
	C_p , кДж/(в	C_p , кДж/(кг 'K) и $ ho$, кг/м ³ при P , МПа H_2 О									
<i>T</i> , K	P_s	P_s 10		20		30		40		5	0
	C_{ps} [1]	ρ×10	C_p	ρ×10	C_p	ρ×10	C_p расч	<i>ρ</i> ×10	C_p расч	<i>ρ</i> ×10	C_p расч
		[1]	расч	[1]	расч	[1]		[1]		[1]	
293.15	4.184	10027	4.160	10072	4.137	10114	4.115	10157	4.093	10199	4.073
313.15	4.179	9965	4.157	10008	4.135	10049	4.115	10090	4.096	10130	4.077
333.15	4.183	9874	4.162	9917	4.141	9958	4.121	9990	4.108	10038	4.084
353.15	4.196	9762	4.174	9805	4.153	9847	4.133	9888	4.113	9929	4.095
373.15	4.217	9629	4.193	9674	4.171	9718	4.149	9761	4.129	9803	4.109
393.15	4.246	9480	4.221	9527	4.196	9573	4.173	9618	4.151	9663	4.129
413.15	4.286	9313	4.257	9364	4.229	9413	4.204	9462	4.179	9508	4.156
433.15	4.338	9129	4.306	9186	4.273	9240	4.244	9292	4.215	9342	4.189
453.15	4.406	8929	4.370	8991	4.331	9051	4.296	9107	4.263	9162	4.232
473.15	4.494	8709	4.453	8780	4.406	8846	4.363	8909	4.324	8969	4.288

Продолжение таблицы 1 (в ширину)

	C_p , кДж/(кг · K) и ρ , кг/м ³ при P , МПа H_2 О										
<i>T</i> , K	P_s	60		70		80		90		100	
	C_{ps}	<i>ρ</i> ×10	C_p расч	<i>ρ</i> ×10	C_p расч	<i>ρ</i> ×10	C_p расч	ρ×10	C_p расч	ρ×10	C_p расч
	[1]	[1]		[1]	-	[1]		[1]		[1]	-
293.15	4.184	10241	4.053	10281	4.034	10320	4.016	10358	3.998	10396	3.981
313.15	4.179	10170	4.058	10208	4.041	10246	4.024	10283	4.008	10319	3.994
333.15	4.183	10078	4.066	10115	4.049	10153	4.033	10189	4.018	10226	4.003
353.15	4.196	9968	4.077	10007	4.060	10044	4.044	10082	4.028	10118	4.015
373.15	4.217	9843	4.091	9883	4.073	9923	4.056	9960	4.041	9998	4.026
393.15	4.246	9705	4.110	9747	4.091	9788	4.073	9827	4.056	9866	4.041
413.15	4.286	9554	4.134	9598	4.113	9641	4.093	9682	4.075	9724	4.058
433.15	4.338	9391	4.165	9437	4.141	9483	4.120	9527	4.099	9571	4.081
453.15	4.406	9215	4.204	9266	4.177	9315	4.153	9362	4.130	9409	4.109
473.15	4.494	9028	4.254	9083	4.224	9137	4.195	9188	4.168	9237	4.145

Теплофизические свойства волы в состоянии насышения [1]

геплофизические своиства воды в состоянии насыщения [1]									
ΤK	P_s	$ ho_{s}$	C_{ps}						
	МПа	$\kappa \Gamma / M^3$	кДж/(кг К)						
293.15	0.0023	998.203	4.185						
313.15	0.0074	992.162	4.179						
333.15	0.0200	983.187	4.183						
353.15	0.0474	971.817	4.196						
373.15	0.1014	958.313	4.217						
393.15	0.1987	943.129	4.246						
413.15	0.3615	926.097	4.286						
433.15	0.6181	907.441	4.338						
453.15	1.0026	886.997	4.406						
473.15	1.5547	864.678	4.494						

Таблица 3.

Отклонение (в %) расчетных значений табл. 1 от справочных данных [1] при различных температурах и давлениях

P	<i>T</i> , K									
МПа	293.15	313.15	333.15	353.15	373.15	393.15	413.15	433.15	453.15	473.15
$P_{\rm s}$	-0.02	0	0	0	0	0	0	0	0	0
10	+0.12	+0.05	+0.02	0	-0.02	-0.02	-0.02	0	+0.07	+0.13
20	+0.24	+0.05	0	-0.02	-0.05	-0.07	-0.07	-0.02	+0.07	+0.18
30	+0.32	+0.10	-0.02	-0.02	-0.10	-0.10	-0.07	-0.02	+0.07	+0.18
40	+0.37	+0.10	+0.12	-0.10	-0.15	-0.14	-0.12	-010	+0.02	+0.18
50	+0.42	+0.10	-0.05	-0.12	-0.19	-0.19	-0.17	-0.12	0	+0.16
60	+0.42	+0.05	-0.10	-0.15	-0.22	-0.22	-0.19	-0.15	-0.02	+0.12
70	+0.42	0	-0.12	-0.20	-0.27	-0.27	-0.24	-0.19	-0.07	+0.12
80	+0.40	0	-0.15	-0.22	-0.29	-029	-0.29	-0.22	-0.10	+0.07
90	+0.35	-0.05	-0.17	-0.27	-0.32	-0.34	-0.32	-0.27	-0.15	+0.02
100	+0.30	-0.05	-0.22	-0.27	-0.35	-0.34	-0.34	-0.27	-0.15	+0.02

Литература

- 1. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. Справочник. М.: Изд-во МЭИ. 1999. 168 с.
- 2. Александров А.А. Скелетная таблица удельного объема воды и водяного пара. Справочный материал // Теплоэнергетика. 1987. № 3. С. 71 77.

Вариация изотопного состава углерода и кислорода в газах геотермальных месторождений Дагестана

Ш.А.Магомедов ИПГ ДНЦ РАН

Подземные термальные, минеральные и промышленные воды представляют собой сложные многокомпонентные физико-химические системы, включающие минеральные и органические вещества, газы, микроорганизмы формирующиеся в определенных структурно-тектонических, литологостратиграфических и термодинамических условиях. Воды эти сформированы преимущественно за счет поверхностных (атмосферных и морских) и глубинных (магматических, вулканогенных и метаморфических) растворов,

претерпевших различные преобразования в земной коре, в результате взаимодействия за длительное геологическое время система «вода- порода –газ» при высоких термодинамических условиях происходит формирование химического состава подземных вод [1].

Комплексное изучение вариаций изотопного состава углерода, кислорода, водорода и других стабильных изотопов легких элементов позволяет получить информацию о генезисе подземных вод и углеводородов, выявить области питания подземных горизонтов и зоны разгрузки вод и газов, объяснить природу вариаций геохимических параметров в периоды активизации сейсмического режима недр, и т.д.

Широкий диапазон изменений изотопных вариаций углерода (δ^{13} C=0÷-120‰) и кислорода (δ D=-20÷+22‰) позволяет на масс-спектрометрах с высокой точностью определять величины естественных изотопных вариаций элементов.

Изотопный состав углерода и кислорода определялся масс-спектрометрическим методом по методике предложенной в [2]. Результаты изотопного анализа приводятся в промиллях величины δ^{13} С относительно стандарта PDB с погрешностью 0,5% и δ^{18} О относительно стандарта SMOW с погрешностью 0,5%.

Изотопный состав земного углерода в целом, по-видимому, следует оценивать на основании расчета геохимического баланса и данных об изотопном составе углерода в главных его резервуарах. В осадочных карбонатных породах содержится около 73% общего количества углерода земной коры. Остальные 27% углерода находятся в основном в форме горючих ископаемых и рассеянного аморфного углерода в осадочных породах.