- 29. Хитров В.Г., Котельников Д.Д., Зинчук Н.Н. Непараметрический кластер-анализ горных пород. Статья 1. Основы метода. Магматические породы // Бюл. МОИП.
- Отд. геол. Т. 78. В. 5. 2003. С. 78–87. Хитров В.Г., Котельников Д.Д., Зинчук Н.Н. Непараметрический кластер-анализ горных пород. Статья 2. Коры выветривания. Метаморфические и осадочные поро-ды // Бюл. МОИП. Отд. геол. Т. 79. В. 1. 2004. С. 65-76.
- 31. Экзогенные рудообразующие системы кор выветривания / Ю.Ю. Бурельский, И.В. Витовская, А.П. Никитина и др. М .: Наука, 1990. 244 с.
- 32. Япаскурт О.В., Карпова Е.В., Ростовцева Ю.В. Литология. Краткий курс (избранные лекции). Учебное по-собие. М.: Изд-во МГУ, 2004. 228 с.
- 33. B o c h k o R.A. Types of microtextural clements and microposity in clays (based on scanning electron microscopy stadies) // Lntern. Symp on Soil Structure, Gothenburg. Swedich, 1973. P. 97-103.

УДК 552.321.5

- 34. Grabowska Olszewska B., OsIpovV., Soko-lovV. Atlas of the Microstructure of Clay Soil, Panstov wydawniet wo naucowe. Warszawa, 1984. 414 p. 35. O b e r l i n A. Alteration des cristaux de determition par micro-
- difraction electronique de la structure des products altires // Comp. Rend. Acad. Sci. Vol. 244. N 12. 1957. P. 1658–1661.
 36. O b e r l i n A. T c h o u b a r C. Etude en microscopie electroni-que de l'alteration des cristaux kaolinite // Comp. Rend. Acad.
- Sci. 1957. V. 24, N 11. P. 1524–1526.
 37. O b e r l i n A. T c h o u b a r C. Etude en microscopie electroni-
- que de l'alteration des cristaux kaolinite parinesolution magnesi-enne // Comp. Rend. Acad. Sci. 1958. V. 247. N 3. P. 308–311.

Якутский научный центр АН Республика Саха (Якутия) Институт проблем нефти и газа РАН Рецензент — Ĥ.А. Скибицкая

А.В.ЧИСТЯКОВ

ПЕТРОЛОГИЯ КРУПНЕЙШЕЙ АВДЕЕВСКОЙ ДАЙКИ В СОСТАВЕ РАННЕПРОТЕРОЗОЙСКОГО БУРАКОВСКОГО МАФИТ-УЛЬТРАМАФИТОВОГО КОМПЛЕКСА (ЮЖНАЯ КАРЕЛИЯ)

На основе петролого-геохимических данных по одной из крупнейших на Балтийском щите Авдеевской габброноритовой дайке подтверждена ее принадлежность к раннепротерозойскому бураковскому комплексу. Sm-Nd минерально-изохронными исследованиями доказана синхронность формирования дайки (возраст 2436+46 млн. лет при е_{Nd} -1,5) и Шалозерско-Бураковского тела Бураковского расслоенного плутона (2433±28 млн. лет при г_{Nd} -3,14) в составе одноименного комплекса. Геохимически обоснована принадлежность Авдеевской дайки к образованиям кремнеземистой высокомагнезиальной серии, широко представленной на Балтийском щите в раннем палеопротерозое.

Раннепалеопротерозойский бураковский комплекс основных и ультраосновных пород (рис. 1) развит к востоку от Онежского оз., на территории. практически полностью перекрытой четвертичными отложениями. Помимо крупнейшего в Европе Бураковского расслоенного плутона в состав комплекса предположительно включаются относительно слабо изученные ультрамафитовая Копполозерская и крупная габброноритовая Авдеевская дайки. Выявленный в начале 1950-х гг. при разбуривании крупной магнитной аномалии бураковский комплекс с 1964 г. изучается Карельской геолого-разведочной экспедицией. Параллельно исследования ведутся сотрудниками институтов РАН Петрозаводска, Москвы и Санкт-Петербурга с целью изучения строения, условий формирования и геохимических особенностей комплекса, а также оценки его рудоносности. Представления о строении комплекса базируются главным образом на материалах бурения неглубоких (200-500 м) и неравномерно распределенных по площади скважин. Несмотря на многочисленные исследования, остается много вопросов, связанных с формированием данного комплекса.

Цель автора — на основе комплексных петролого-геохимических и изотопно-геохронологических исследований подтвердить, что Авдеевская дайка является составной частью бураковского комплекса.

Геолого-петрографическая характеристика бураковского комплекса

Бураковский комплекс установлен в юго-восточной части Балтийского щита в пределах древнейшего в Карельской гранит-зеленокаменной области Водлозерского блока, образованного преимущественно архейскими тоналитовыми гнейсогранитами с сетью зеленокаменных поясов.

Основу комплекса составляет наиболее изученный Бураковский плутон, достигающий 50 км в длину, 13-17 км в ширину при мощности от 5-7 до 10 км и площади более 600 км². Ранее предполагалось, что плутон представляет собой единый интрузив, разбитый в позднем протерозое на три тектонических блока [1, 2]. Однако комплексные геолого-петрографические, геохимические и изотопные исследования последних лет позволили установить, что плутон образован двумя самостоятельными однотипными интрузивами — Аганозерским (АТ) и Шалозерско-Бураковским (ШБТ) [1, 3, 7].

Ранее в [3] для двух проб, отобранных из верхних частей разрезов расслоенных серий в обоих телах Бураковского плутона, были построены Sm-Nd

Рис. 1. *А* – схема геологического строения бураковского комплекса: *I* – краевая зона, 2–7– зоны расслоенных серий: 2 – Дунитовая и 3 – Перидотитовая подзоны УЗ, 4 – Пироксенитовая, 5 – Габброноритовая, 6 – Пижонитовых и 7 – Магнетитовых габброноритов),

Б – строение расслоенных серий Аганозерского и Шалозерско-Бураковского тел Бураковского плутона: ГХГ – главный хромитовый горизонт, МГ – перидотитовые маркирующие горизонты

минеральные (Pl, Cpx, Opx и порода в целом) изохроны. При этом для образца из АТ по наклону изохроны установлен возрасту 2372+22 млн. лет $(\varepsilon_{Nd} = -3,22\pm0,13)$, а для образца из ШБТ Sm-Nd изохронный возраст составил 2433+28 млн. лет (є_{мd} = -3,14+0,14). Данный интервал в формировании двух тел плутона, а также их геолого-геохимические различия предполагают автономное формирование тел из единого долгоживущего и эволюционирующего во времени источника [3]. Необходимо отметить, что в пределах ошибки полученный Sm-Nd возраст ШБТ близок к возрасту 2449+1,1 млн. лет, определенному для габброидов из данного тела U-Pb методом по циркону [6].

В строении обоих тел Бураковского плутона выделяют краевую и расслоенную серии. В разрезах расслоенных серий снизу вверх наблюдается следующая смена главных типоморфных кумулятивных парагенезисов: Ol±Chr (Ультраосновная зона) \rightarrow Opx±Cpx±Ol±Chr (Пироксенитовая зона) \rightarrow Opx + Cpx + Pl ± Ol (Габброноритовая зона) \rightarrow Pig + Pig-Aug + Pl (Зона Пижонитовых габброноритов) \rightarrow Pig + Pig-Aug + Pl + Mag (Зона Магнетитовых габбронорит-диоритов). Однако по количественному соотношению минералов кумулуса и по мощностям выделяемых зон, оба тела существенно отличаются (рис. 1).

В кумулятивных парагенезисах с преобладанием оливина в интерстициях наблюдаются клинопироксен, реже ортопироксен, плагиоклаз и флогопит в количестве от нескольких процентов (дуниты) до 50 об.% (пойкилитовые перидотиты). В ортопироксен- и двупироксен-кумулятивных породах обычно присутствует интерстициальный плагиоклаз в количестве до 30—40 об. % породы. При этом минералы интеркумулуса могут образовывать крупные ойкокристаллы (до нескольких сантиметров), хадакристами в которых выступают субидиоморфные минералы кумулуса. Пироксены пижонитового ряда (Pig и Pig-Aug) в соответствующих парагенезисах представлены как нераспавшимися зернами, так и зернами со структурами распада твердого раствора. В породах верхних двух зон в интеркумулусе (до 10—15 об.%) присутствуют графические сростки калиевого полевого шпата и кварца, небольшое количество биотита, редко сульфиды.

Авдеевская дайка протягивается параллельно юго-восточному контакту Бураковского плутона на расстоягии 2-5 км (рис. 1). Ее длина не менее 50 км при мощности до 500 м. Истинная протяженность дайки не известна, так как ее южное продолжение скрыто под акваторией Онежского оз. Как и плутон, дайка в значительной мере перекрыта четвертичными отложениями, и основными источниками информации о ее строении и морфологии служат техногенные горные выработки и данные геофизических исследований. Дайка сложена массивными породами без выраженной внутренней структуры, имеет субвертикальное падение и сложную морфологию, связанную как с многочисленными разрывными нарушениями сдвигового характера (рис. 1), так и, возможно, с дополнительными внедрениями расплава (или расплавов ?),

как это наблюдается в плутоне. Данные расплавы могут несколько отличаться от исходного, что связано с длительной эволюцией магматической системы. На всем своем протяжении она сложена габброноритами. Дайка сечется многочисленными жилами гранитов мощностью от нескольких сантиметров до нескольких метров.

Пижонитовые габбронориты Авдеевской дайки в обнажениях представлены темно-серыми мелкосреднезернистыми породами, которые по структурным характеристикам практически аналогичны пижонитовым габброноритам одноименной зоны ШБТ Бураковского плутона. Главные минералы представлены пироксенами и плагиоклазом, образующими как субпризматические, так и неправильной формы выделения размером от нескольких долей до 1—2 мм. Составы минералов приведены в табл. 1 и отражены на рис. 2.

Состав пироксенов дайки отличается значительными колебаниями. Здесь наблюдаются авгит (25—20 об.% породы) с широким диапазоном изменения содержаний энстатитовой составляющей (En) от 37,0 до 45,3% (при содержании волластони-

Рис. 2. Составы пироксенов (А) и плагиоклазов (Б) из габброноритов Авдеевской дайки: 1 – обр. 5а, 5с, 5е; 2 – обр. Ш1

та Wo от 29,3 до 38,6%). В меньших количествах (до 10 об.% породы) присутствуют зерна претерпевшего инверсию пижонит-авгита, содержащие тонкие ламелли ортопироксена (иногда наблюдается «твидовая» структура распада), состав которого вследствие малого размера пластин определить не удалось. В единичных случаях наблюдаются зернераспавшегося субкальциевого на авгита (Pig-Aug) состава Wo24,5En41,2Fs34,3. В подчиненном количестве (до 10 % объема породы) отмечается инвертированный пижонит, который содержит как пластинчатые, так и «каплевидные» структуры распада твердого раствора (рис. 3), что указывает на относительно быстрое охлаждение расплава в про-

Таблица 1

Contract of the local division of the local												
Номер образца	Минерал	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма	Состав
5a	Pl 1	55,32		28,38	0,37			12,29	4,49	0,16	101,01	Or0 9Ab39 4An59.6
5a	P1 2c	53,14		29,42	0,39			12,02	4,83	0,16	99,96	Or0.9Ab41 7An57.4
5a	Pl 2r	53,94		29,72	0,40			11,53	5,11	0,19	100,89	Or1 1 Ab44 0 An54 9
5a	Fsp	65,32		19,50	0,00			0,06	1,11	14,68	100,67	Or _{89.4} Ab _{10.3} An _{a.3}
5a	Px 1	51,56	0,35	2,21	14,20	0,31	14,26	18,20	0,16	0,00	101,25	Wo36.9En40.2Fs22.9
5a	Px 2	52,01	0,40	0,91	25,06	0,48	19,70	1,97	0,00	0,00	100,53	Wo4_0En55.6Fs40 4
5a	Px 3L	51, 96	0,35	2,12	9,43	0,25	15,09	19,50	0,23	0,00	98,93	Wo40,6En43,7Fs15,7
5a	Px 3m	55,30	0,15	1,32	18,05	0,35	23,80	2,10	0,00	0,00	101,07	Wo42En668Fs290
5c	Pl	55,17		29,04	0,45			10,45	5,16	0,48	100,75	Or _{2.8} Ab _{45.9} An _{51.3}
5c	Fsp	64,97		19,80	0,00			0,13	0,59	14,24	99,73	Or _{93.4} Ab _{5.9} An _{0.7}
5c	Px 1L	52,57	0,27	2,08	10,48	0,23	14,36	20,69	0,13	0,08	100,89	Wo42.2En40.7Fs17.1
5c	Px 1m	53,95	0,15	1,00	20,89	0,46	22,80	1,94	0,00	0,00	101,19	Wo3.9En63.0FS33.1
5c	Px 2	51,80	0,50	1,25	15,80	0,39	16,25	14,62	0,15	0,00	100,76	Wo29 3 En45 3 FS25 3
5c	Px 3	52,54	0,45	1,89	11,94	0,32	14,66	18,82	0,11	0,00	100,73	Wo386En418Fs196
5c	Px 3	51,36	_0,17	1,40	11,12	0,32	13,13	23,10	0,40	0,00	101,00	Wo45.9En36.3FS17.8
5e	Pl 1	53,21		29,49	0,55			12,03	4,54	0,29	100,11	Or _{1.7} Ab _{39.9} An _{58.4}
5e	Pl 2c	51,39		29,15	0,66			12,03	7,40	0,29	100,92	Or1 3Ab52 0An46 7
5e	Pl 2r	55,86		28,08	0,75			9,84	6,12	0,17	100,82	Or0.9Ab52 5An46 6
5e	P1 3	53,50		28,98	0,51			11,03	5,18	0,35	99,55	$Or_{2.0}Ab_{45.0}An_{53.0}$
5e	Px 1	51,01	0,43	1,30	11,06	0,30	13,71	22,77	0,30	0,00	100,88	Wo449En37.6FS17.5
5e	Px 1	47,87	0,33	2,08	18,59	0,44	14,78	14,83	0,07	0,00	98,99	Wo29 5 En40 9 FS29.6
5e	Px 2	51,73	0,30	2,10	12,58	0,31	16,00	17,74	0,32	0,00	101,08	Wo354En445Fs20.1
<u>5</u> e	Px 3	51,88	0,20	1,47	23,75	0,49	19,90	1,86	0,16	0,00	99,71	Wo _{3.8} En _{57.1} Fs _{39.0}
Ш 1	Pl 1c	52,37		28,87	0,57			12,41	4,95	0,27	99,44	Or1 ,Ab41 3An57.2
Ш1	Pl 1r	51,37		29,51	0,39			11,77	5,19	0,20	98,43	Or1 Ab43 Anss.0
Ш1	Fsp	63,84		19,22	0,13			0,23	1,78	13,17	98,37	Or _{81.9} Ab _{16.9} An _{1.2}
Ш 1	Px 1	49,74	0,23	1,61	27,93	0,58	17,81	2,49	0,15	0,00	100,54	WosoEnsooFs450
Ш1	Px 2	50,34	0,45	4,18	19,70	0,44	13,60	11,24	0,46	0,00	100,41	Wo245En412Fs343
Ш1	Px 3	49,40	0,45	3,42	17,82	0,39	12,54	15,55	0,40	0,00	99,97	Wo32.9En37.0Fs30.1

Составы минералов из габброноритов Авдеевской дайки

Примечание. Анализы выполнены в ИГЕМ РАН на микроанализаторе MS-46 Cameca; в графе FeO отражено суммарное содержание железа. К названию минерала добавлен номер зерна (с – центр, r – край зерна, m – матрица, L – ламелли)

Рис. 3. Структуры габброноритов Авдеевской дайки (обр. 5а и Ш1): A — общая структура породы; Б — зерно инвертированного пижонита (iPig) с ортопироксеновой матрицей и пластинчатыми включениями (ламеллями) авгита; В и Г — интеркумулус, сложенный кварц-калиевошпатовыми сростками

цессе формирования интрузивного тела. Состав ортопироксеновой матрицы изменчив: $W_{0_{3,9-4,2}}$ $En_{63,0-66,8}$ $Fs_{29,0,33,1}$, а авгитовые ламелли наиболее магнезиальны для Срх из пород дайки — $Wo_{40,6-42,2}$ $En_{40,7-43,7}Fs_{15,7-17,1}$. Плагиоклаз, составляющий до половины объема породы, обычно отвечает лабрадору, но варьирует от $An_{46,7}$ до $An_{59,6}$. Иногда наблюдается слабая прямая зональность, выраженная в снижении основности плагиоклаза от центра к краю зерна на 2—3 % Ал. Интерстициальный материал, количество которого достигает 10—15 об.%, состоит главным образом из сростков калиевого полевого шпата и кварца (рис. 3). Ограниченно в интерстициях развиты магнетит и биотит.

Геохимические и изотопно-геохронологические исследования

Для геохимических исследований пород дайки были отобраны пробы габброноритов из ее центральной и южной частей. Проведено сопоставление полученных данных с результатами детальных исследований в пределах Бураковского плутона [3, 7].

Методика геохимических исследований. Определения валового состава пород Авдеевской дайки, а также содержаний в них редких и рассеянных компонентов проводились рентгено-флюоресцентным методом на приборе X-RAY SPECTROMETER PW 2400 фирмы PHILIPS. Содержания редкоземельных элементов (РЗЭ) определялись методом ICP-MS на квадрупольном масс-спектрометре Plasma Quad PQ2+Turbo фирмы VG Instruments. Все исследования проведены в ЦХЛ ИГЕМ РАН.

Изученные габбронориты характеризуются высокими содержаниями SiO₂ (52,6—54,8 мас.%) при Составы габброноритов из Авдеевской дайки

Таблина 2

	Joe ranne r	acobonob		пдеевене		
Номер образца	5	5a	5e	5c	Ш1	Ш3
SiO ₂	52,73	52,81	52,72	5 2,6 0	54,55	54,82
TiO ₂	0,39	0,52	0,49	0,43	0,94	0,91
Al_2O_3	19,19	17,74	17,46	17,60	16,48	17,21
Fe ₂ O ₃	1,17	1,38	1,41	1,39	1,59	1,57
FeO	6,69	7,90	8,06	7 ,9 0	9,09	8,95
MnO	0,13	0,16	0,16	0,16	0,16	0,15
MgO	5,08	5,49	5,60	5,70	4,07	3,39
CaO	11,60	10,82	10,98	11,23	9,10	8,88
Na ₂ O	2,40	2,41	2,39	2,35	2,68	2,71
K ₂ O	0,56	0,72	0,67	0,60	1,22	1,29
P ₂ O ₅	0,06	0,05	0,06	0,04	0,12	0,12
Cr	126	75	79	60	31	22
Sc	34	34	33	39	32	32
V	131	167	140	144	216	195
Со	33	41	41	40	40	34
Ni	116	130	137	140	93	80
Cu	61	103	108	127	134	137
Zn	64	68	70	61	82	80
Rb	20	25	3	21	41	46
Sr	260	239	210	244	221	255
Y	5	9	16	7	21	26
Zr	72	71	62	73	116	110
Nb	4	0	3	1	6	10
Ba	161	228	219	171	351	354

П р и м е ч а н и е. Содержания главных компонентов в мас, % и приведены к 100%, содержания редких и рассеянных компонентов в ррт.

Рис. 5. Распределение редких, рассеянных и редкоземельных элементов в габброноритах Авдеевской дайки, нормированное к составам: (А) примитивной мантии (по [8]), (Б) N-MORB (по [9]) и (В) хондриту С1 (по [8]); вынесены поля для пород расслоенных серии Шалозерско-Бураковского и Аганозерского тел Бураковского плутона

La Ce Pr NdSmEu GdTb DyHoEr TmYbLu

Таблица 3

Содержания гээ (ррш) в гаоороноритах Авдеевской дайки									
Номер образца	5	5a	5c	5e	шı				
La	7,92	9,47	7,47	9,70	17,64				
Ce	16,07	19,31	15,23	20,61	36,11				
Pr	1,91	2,41	1,91	2,59	4,41				
Nd	7,69	9,16	7,21	10,06	16,79				
Sm	1,61	1,69	1,57	2,03	3,15				
Eu	0,57	0,65	0,51	0,68	0,96				
Gd	1,72	1,94	1,63	2,27	3,54				
Tb	0,25	0,33	0,30	0,38	0,56				
Dy	1,58	1,97	1,49	2,19	3,07				
Но	0,32	0,42	0,34	0,46	0,58				
Er	0,97	1,17	0,92	1,22	2,33				
Tm	0,40	0,16	0,14	0,2	0,27				
Yb	0,94	1,13	0,91	1,24	1,78				
Lu	0,12	0,20	0,14	0,18	0,25				
Сумма	42,07	50,01	39,77	53,81	91,44				
(Ce/Yb) _n	4,35	4,35	4,26	4,23	5,16				
(La/Nd)"	1,97	1,98	1,98	1,85	2,01				

4-6 мас.% MgO и низких концентрациях титана $(TiO_2 \le 1 \text{ мас.}\%)$ (табл. 2). На бинарных диаграммах (рис. 4) составы пород дайки ложатся в поля составов габброноритов расслоенных серий Бураковского плутона. Исключение - несколько повышенные содержания TiO₂ в некоторых изученных дайковых породах.

Диаграммы нормирования образцов к составам примитивной мантии и N-MORB (рис. 5) показали относительную обогащенность габброидов дайки некоторыми крупноионными литофильными элементами (Ba, Rb, Zr) и легкими РЗЭ.

В изученных породах наблюдается обогащение РЗЭ, особенно легких РЗЭ, по отношению к хондриту (рис. 5, табл. 3). При этом как по $\Sigma P3\Theta$ (около 40-90 ppm), так и по характеру спектров распределения ((Ce/Yb), 4-5) данные породы близки к пижонитовым габброноритам верхней части разреза расслоенной серии, а также к составу эндоконтактового габброида ШБТ плутона (рис. 6). Можно предположить, что содержания редких и РЗЭ в последнем наиболее близко к таковым в исходном расплаве, сформировавшем главный объем ШБТ.

Согласно данным Sm-Nd минерально-изохронных исследований (рис. 6, табл. 4), выполненных Б.В. Беляцким в ИГГД РАН (г. Санкт-Петербург), возраст Авдеевской дайки 2436±46 млн. лет $(\varepsilon_{Nd} - 1, 5)$, что соответствует возрасту шбт (2433±28 млн. лет при є_{Nd} -3,14). Таким образом, внедрение дайки, судя по полученным изотопно-геохронологическим данным, было близко по времени к формированию ШБТ.

Обсуждение и выводы

Авдеевская дайка — одна из крупнейших в Карелии, протягивается на 50 км, при мощности до 500 м, параллельно ШБТ крупнейшего в Европе

Рис. 6. Sm-Nd минеральная изохрона для тижонитового габбронорита (обр. Ш1) Авдеевской дайки

Таблица 4

Sm-Nd изотопные данные для габбронорита Ш1 (Авдеевская дайка)

Проба Ш1	Возраст	[Sm]	[Nd]	147Sm/144Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	Б
Вал	2400	3,485	17,435	0,12086	0,511338	6.	-1,97
Плагиоклаз	2400	1,371	8,772	0,09450	0,510920	3	-1,99
Пироксен	2400	6,632	30,524	0,13136	0,511514	6	-1,77

Примечание. Величина є (2400 млн. лет) вычислена относительно состава однородного хондритового резервуара (CHUR) с современными характеристиками, $^{147}Sm/^{144}Nd = 0,1967$ и $^{143}Nd/^{144}Nd = 0,512638$. соответствующими современными

Бураковского плутона. Дайка сложена пижонитовыми габброноритами, сопоставимыми с пижонит-содержащими породами верхней части расслоенной серии ШБТ.

Геохимическая характеристика изученных пород (высокие содержания Si, Mg, LILE при низком Ti) определяет принадлежность данной дайки к образованиям кремнеземистой высокомагнезиальной серии, широко представленной в раннем палеопротерозое на Балтийском щите [4]. Ранее такая принадлежность была обоснована для обоих тел Бураковского плутона [3, 7].

формирования Время Авдеевской лайки (2436±46 млн. лет назад) близко к времени образования ШБТ Бураковского плутона. Установлена геохимическая близость пород дайки с составом приконтактового габброида ШБТ. Возможно, дайка является составной частью подводящего канала при формировании ШБТ.

Таким образом, по пространственному положению, вещественному и геохимическому составам, а также по изотопным определениям возраста Авдеевская дайка близка к Бураковскому плутону и, очевидно, является составной частью раннепалеопротерозойского бураковского комплекса.

Работа выполнена при поддержке гранта РФФИ № 04-05-64581, гранта Президента НШ-4437.2006.5

- 1. Берковский А.Н., Семенов В.С., Корнеев С.И., Яковлева С.З., Беляцкий Б.В., Гриневич Н.Г. Строение бураковско-аганозерского расслоенного комплек-са, петрологические выводы // Петрология. 2000. Т. 8. № 6. C. 650-672
- Николаев Г.С., Коптев Дворников Е.В., Ганин В.А., Гриневич Н.Г. Пространственная струк-2. тура Бураковско-Аганозерского расслоенного массива и распределение петрогенных компонентов в его разрезе // Отечественная геология. 1995. № 10. С. 56-64.
- Чистяков А.В., Богатиков О.А., Грохов-ская Т.Л., Шарков Е.В., Беляцкий Б.В., Овчинн и к о в а Г.В. Бураковский расслоенный плутон (Южная Карелия) как результат пространственного совмещения двух интрузивных тел: петрологические и изотопно-геохи-мические данные // Докл. РАН. 2000. Т. 372. № 2. С. 228-235.
- 4 ШарковЕ.В., БогатиковО.А., ПчелинцеваН.Ф., Коптев - Дворников Е.В., Семенов В.С., Грохов-ская Т.Л., Николаев Г.С., Чистяков А.В. Перспек-тивы платиноносности раннепротерозойского Бураковско-го расслоенного интрузива в Южной Карелии // Платина России. Т. 2. Кн. 2. М.: Гсоинформмарк, 1995. С. 10–19.

- 5. ШарковЕ.В., СмолькинВ.Ф., КрасивскаяИ.С. Раннепротерозойская магматическая провинция высокомагнезиальных бонинитоподобных пород в восточной части Балтийского щита // Петрология. 1997. T. 5. № 5. C. 503-522.
- Amelin Yu.V., Heaman L.M., Semenov V.S. U-Pb geo-6. chronology of layeredmafic intrusions in the eastern Baltic Shield: Implicationsfor the timing and duration of Paleoproterozoic
- continental riffing. // Precamb. Res. 1995. V. 5. P. 31–46. ChistyakovA.V., SharkovE.V., GrokhovskayaT.L., BogatikovO.A., MuravitskayaG.N., Grinevich N.G. 7. Petrology of the Europe-largest Burakovka early Paleoproterozoic layered pluton (Southern Karelia, Russia) // Russian Journal of Earth Sciences. 2002. V.4. N 1. P. 35–75. M c D o n o u g h M.F., S u n S.-s. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223–253. W i l s o n M. Igneous petrogenesis. London: UNWIM HYMAN,
- 8
- Q 1989. 552 p.

ИГЕМ РАН Рецензент — Л.Н. Липчанская