- Любимова Е.И., Масленников А.И., Ганиев Ю.А. О теплопроводности горных пород при повышенных температуре и давлении в водо- и нефтенасыщенном состоянии // Изв. АН СССР. Сер. Физика Земли. 1979. № 5. С. 87-93.
- Попов Ю.А. Теоретические модели метода измерения тепловых свойств горных пород на основе подвижных источников тепловой энергии // Изв. вузов. Геология и разведка. 1983. № 9. С. 97-103.
- 10. Попов Ю.А., Пименов В.П., Тертычный В.В. Достижения в области геотермических исследований нефтегазовых месторождений // Нефтегазовое обозрение. 2001. № 6 (1). С. 4–11.
- Чекалюк Е.Б. Термодинамика нефтяного пласта. М.: Недра, 1965. 238 с.
- 12. Шашков А.Г., Волохов Г.М., Абраменко Т.Н., Козлов В.П. Методы определения теплопроводности и температуропроводности / Под. ред. А.В. Лыкова М.: Энергия, 1973. 336 с.
- 13. Эмиров С.Н., Цомаева Т.А., Аскеров С.Я. Теплопроводность песчаников в условиях высоких давлений, температур и флюидонасыщения // Геофизический журнал. 1997. № 2. С. 68-71.
- 14. Abdulagatov, I.M., Emirov, S.N., Tsomaeva, T.A., Gairbekov, KH.A., Askerov, S.Ya., Magomedova N.A. Thermal conductivity of fused quartz and quartz ceramic at high temperatures and high pressures. // Journal of Physics and Chemistry of Solids. 2000. N 61, P. 779-787.
- Beck A. E., Darbha D.M., Schloessin H.H. Lattice conductivities of single-crystal and polycrystalline materials at mantle pressure and temperatures // Physics of the Earth and Planetary Interiors. 1977. N17. P. 35-53.
- 16. Burkhardt H., Honarmand H., Pribnow D. Test measurements with a new thermal conductivity borehole tool // Tectonophysics. 1995. N 224. P. 161-165.
 17. Horai K, Susaki J. The effect of pressure on the thermal
- Horai K, Susaki J. The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar // Physics of the Earth and Planetary Interions. 1989. N 55. P. 292-305.
- Kiyohashi H., Okumura K., Sakaguchi K., Matsuki K. Development of direct measurement method for thermophysical properties of reservoir rocks in situ by well logging // Proceedings

World Geothermal Congress 2000, 2000, Kyushu-Tohoku, Japan, May 28 – June 10. Japan, 2000. P. 54–61.

- 19. Kukkonen I., and Huotari T. Measurement of thermal conductivity and diffusivity in situ: Literature survey and theoretical modeling of measurements // Working Report 1999 01. Geological Survey of Finland, Posiva OY. Finland 1999. 69 p.
 20. Kukkonen L. Surda L. Surda J. Surda
- 20. Kukkonen I., Suppala I., Sulkanen K., Koskinen T. Measurement of thermal conductivity and diffusivity in situ: measurements and results obtained with a test instrument // Working Report 2000-25, Geological Survey of Finland, Posiva OY. Finland, 2000. 55 p.
- 21. Popov V.G., Petrunin G.I., Ladygin V.M. Interrelation of thermal characteristics and structural-textural performances of basalts // Proceedings of the International Conference «The Earth's Thermal Field and Related Research Methods». Moscow, 2002. P. 211-214.
- Popov Yu., Pribnow D., Sass J., Williams C., Burkhardt H. Characterization of rock thermal conductivity by high-resolution optical scanning // Geothermics. 1999. N 28. P. 253-276.
- 23. Popov Yu.A., Korobkov D.A., Miklashevskiy, D.E. Thermal diffusivity measurements: new experimental and theoretical background and results // Proceedings of the International Conference «The Earth's Thermal Field and Related Research Methods». Moscow, 2002. P. 214-218.
- Pribnow D., Williams C., Sass J.H., Keating R. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25 to 300 C // Geophysical Research Letters. 1996. N 23 (4). P. 391–394.
- 25. Sass J.H., Stone C., Munroe R.J. Thermal conductivity determinations on solid rock - a comparison between a steady-state divided bar apparatus and a commercial transient line-source device // J. Volcan. Goetherm. Res. 1984. N 20 (1/2). P. 145-153.
- Seipold, U. Depth dependence of thermal transport properties for typical crustal rocks // Phys. Earth Planet. Inter. 1992. N 69. P. 299-303.

Российский государственный геологоразведочный университет Рецензент — В.Б. Свалова

УДК 622.277

В.П. ДРОБАДЕНКО, Н.А. ПУЧКОВ

ИССЛЕДОВАНИЕ ЗАКОНОМЕРНОСТЕЙ НЕЙТРАЛИЗАЦИИ ВЫЩЕЛАЧИВАЮЩИХ РАСТВОРОВ СЕРНОЙ КИСЛОТЫ

Рассмотрено химические взаимодействие выщелачивающих растворов серной кислоты с породообразующими минералами, определяющее в основном расход реагента и солевой состав продуктивных растворов. Для прогнозирования расходов реагента во времени и от удельного объема подачи выщелачивающих растворов предложены соответствующие формулы. Установлено влияние на закономерности протекания процессов нейтрализации выщелачивающих растворов, а также содержания сульфидной серы, концентрации серной кислоты, плотности подачи растворов и реагента, среднего размера рудного материала, коэффициента его фильтрационной анизотропии на нейтрализующую и растворопоглощающую способность руд.

Закономерности нейтрализации технологических растворов определяют не только реагентоемкость, но и кинетику процессов подземного, отвального, кучного выщелачивания, а соответственно и солевой состав продуктивных растворов. Исследования процессов нейтрализации растворов серной кислоты (табл. 1) базировались на результатах выщелачивания смесей урансодержащих руд с различными химическим и литологическим составами. Последний на 64—100% представлен плохо проницаемыми разновидностями пород. При этом учитывали, что 75% и более свободного сульфат-иона в выщелачивающих растворах расходуется на образование сульфатов кальция, магния, железа и алюминия (табл. 2) вследствие протекания следующих химических реакций: 1. При взаимодействии растворов серной кислоты с карбонатами (доломитом, кальцитом), фосфоритом:

$$CaMg(CO_3)_2 + 2H_2SO_4 \rightarrow$$

$$\rightarrow CaCO_{4_{p-p}} + MgSO_{4_{p-p}} + 2CO_2\uparrow + 2H_2O, \qquad (1)$$

если C_{caSO4} $\leq 2,1 - 2,2$ г/л,

или

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_{4_{*,*}} + CO_2 \uparrow H_2O \quad (3)$$

ИЛИ

$$2\text{CaCO}_{3}+2\text{H}_{2}\text{SO}_{4} \rightarrow$$

$$\text{CaSO}_{4_{p-p}}+\text{CaSO}_{4}\downarrow+2\text{CO}_{2}+2\text{H}_{2}\text{O},$$
(4)

$$Ca_{3}(PO_{4})_{2} + 3H_{2}SO_{4} \rightarrow 3CaSO_{4} + 3H_{3}PO_{4}$$
(5)

или

$$Ca_{3}(PO_{4})_{2} + 3H_{2}SO_{4} \rightarrow$$

$$2CaSO_{4} + CaSO_{4} \downarrow 3H_{3}PO_{4}.$$
(6)

2. При взаимодействии растворов серной кислоты с оксидами железа (лимонитом, гематитом) и алюминия (глинозёмом):

$$\operatorname{FeO} + \operatorname{H}_2 \operatorname{SO}_4 \to \operatorname{FeSO}_4 + \operatorname{H}_2 \operatorname{O},$$
 (7)

если pH < 6,5-7,0;

$$2\operatorname{Fe}_2\operatorname{O}_3 + 3\operatorname{H}_2\operatorname{SO}_4 \to \operatorname{Fe}_2(\operatorname{SO})_{3_{p-1}} + \operatorname{Fe}(\operatorname{OH})_3, \quad (8)$$

при значениях 4,0−3,5 ≥ рН ≥ 1,4−1,5;

$$Al_2O_3 + 3H_2SO_{3_{p-p}} \rightarrow Al_2(SO_4)_{3_{p-p}} + 2H_2O,$$
 (9)

если pH < 3,5-4,0.

Из приведенных реакций следует, что кинетика нейтрализации выщелачивающих растворов должна определять в итоге суммарную кинетику извлечения в жидкую фазу кальция, магния, железа, алюминия, а также урана и других металлов, если продуктивные растворы имеют в основном pH < 3,0-3,5 и отсутствует интенсивное осаждение из растворов кальция в виде гипса и трехвалентного железа в виде гидрооксидов. В процессе исследований выявлено, что при содержании в анализируемых рудах суммарной серы более 10 кг/т с преобладанием сульфидной, входящей в состав пирита, заметно снижалась реагентоемкость процесса выщелачивания и существенно изменялась динамика расхода серной кислоты (табл. 1, рисунок) вследствие активного протекания следующих химических реакций:

$$3FeS_2 + 11,25O_2 + 4,5H_2O \rightarrow$$

$$\rightarrow Fe_2(SO_4)_{3_{a_1}} + Fe(OH)_3 + 3H_2SO_4,$$
(10)

если 4,0 - 3,5 > рН ≥ 1,4-1,5;

2FeS₄ + 7,5O₂ + H₂O
$$\rightarrow$$
 Fe₂(SO₄)_{3,,,} + H₂SO₄, (11)
при значениях pH < 1,4–1,5;

$$\operatorname{FeS}_4 + \operatorname{H}_2\operatorname{O} + 3,5\operatorname{O}_2 \rightarrow \operatorname{FeSO}_{4_{p-p}} + \operatorname{H}_2\operatorname{SO}_4$$
 (12)

$$SO_3 + H_2O \rightarrow H_2SO_4.$$
 (13)

Из рисунка следует, что при выщелачивании пробы руды № 2 с концентрациями серной кислоты $C_B 5 и 10 \text{ кг/м}^3$ абсолютный расход реагента интенсивно нарастал до значений 3,4 и 4 кг/т соответственно. Дальнейшая подача выщелачивающих растворов в течение 50—55 суг. привела не к увеличению, а к снижению реагентоемкости процесса выщелачивания до 2,2—2,1 кг/т. В основном за счет протекания реакций (10)—(12), так как содержание серного ангидрида в данной пробе, как и в большинстве других, было незначительным (< 1 кг/т), что указывает также на слабую окисленность руды.

Методика анализа фактической динамики расхода серной кислоты и кинетики процесса нейтрализации выщелачивающих растворов во времени и от отношения жидкого к твердому учитывала результаты исследований [1], согласно которым:

$$\in_{\underline{\alpha}} = \frac{\alpha_{\underline{\alpha}}}{\alpha_{\underline{M}}} = \frac{t_{B_{Z}}^{n}}{t_{B_{Z}}^{n} + t_{B}} = \frac{g_{B_{Z}}^{n}}{g_{B_{Z}}^{n} + g_{B}}, \text{ дол. ед.},$$

или

$$\alpha_{0} = \frac{t_{B_{Z}}^{n}}{t_{B_{x}}^{n} + t_{B}} \alpha_{H} = \frac{q_{B_{Z}}^{n}}{q_{B_{x}}^{n} + q_{B}} \alpha_{H}, \text{ KG/T},$$

где ∈₀ — коэффициент остаточного содержания растворяемых веществ в руде, дол. ед.; а и а о содержание в руде растворяемых веществ до (α_u) , в процессе и после их выщелачивания (α_0), кг/т; t_B и t _{в т} — время выщелачивания (t _в) и временная константа (t_{B_a}) , при которой $\in_0 = 0,5$, сут.; q_B — удельная величина отношения жидкой фазы к твердой (ж/т), соответствующая суммарному объему подачи выщелачивающих растворов за время t_в относительно веса выщелачиваемой руды, м³/т; q_в, удельная объемная константа, соответствующая суммарному объему подачи выщелачивающих растворов за время t_в относительно веса выщелачиваемой руды, при котором $\epsilon_0 = 0.5$, м³/т; n — показатель, учитывающий структуру диффузионных потоков, зависящий от фильтрационной анизотропии пород.

С учетом изложенного считали, что формулам (14) должны соответствовать аналогичные формулы, определяющие кинетику процесса нейтрализации и расход реагента при взаимодействии выщелачивающих растворов с рудой:

(14)

Гехнологические показател	и сернокислотного	выщелачивания	различных	проб	руды
---------------------------	-------------------	---------------	-----------	------	------

Параметы	Пробы руды												
	№ 1 / 0,71			№ 2 / 0,76				№ 3 / 0,72		№ 4 / 0,71			
<i>d</i> , мм	<80	<80	<80	<80	<80	<80	<80	<200	<200	<80	<80	<80	<80
$C_{R}, \kappa \Gamma / M^{3}$	2,5	5,0	10,0	1,5	2,5	5,0	10,0	5,0	5,0	5,0	5,0	5,0	5,0
t _R , CYT.	55	55	55	70	70	70	70	100	60	80	80	55	55
$\lambda_{R}, M^3/T \cdot CYT.$	0,08	0,08	0,08	0,07	0,07	0,07	0,07	0,04	0,11	0,01	0,04	0,08	0,12
q_B , M^3/T	4,4	4,4	4,4	4,9	4,9	4,9	4,9	4,0	6,6	0,8	3,2	4,4	6,6
<i>R</i> _{<i>B</i>} , кг/т	11,0	22,0	44,0	7,35	12,25	24,5	49,0	20,0	33,0	4,0	16,0	22,0	33,0
<i>R</i> _p , кг/т	4,75	7,0	10,0	3,05	3,1	2,2	2,1	9,0	10,2	3,05	5,6	7,0	5,7
$\frac{R_p}{R_B}$, дол. ед.	0,432	0,318	0,227	0,415	0,253	0,09	0,043	0,45	0,31	0,7 6 3	0,35	0,32	0,173
$q_{\rm R}$, ${\rm M}^3/{\rm T}$	3,5	2,0	1,3	4,0	2,3	1,4	0,75	3,0	2,05	1,83	1,9	2,1	2,0
q., м ³ /т	1,35	0,05	0,05	1,0	0,9	0,05	0,05	0,5	0,05	0,5	0,2	0,05	0,06
<i>q</i> "", м ³ /т	0,05	0,05	0,05	0,1	0,06	0,05	0,05	0,03	0,05	0,06	0,05	0,05	0,06
t _{я_} , сут.	43,8	25,0	16,2	57,0	32,8	20,0	10,7	75,0	18,6	183,0	47,5	26,2	16,7
Х, дол. ед.	0,978	0,982	0,99	0,975	0,986	0,986	0,987	0,998	0,999	0,99	0,998	0,996	0,995
<i>п</i> , при $\frac{R_{\mu}}{R_{B}} \ge 0,5$	0,8	1,33	1,33	1,5	1,0	1,8	1,6	0,55	0,65	0,82	1,1	1,2	1,75
n , при $\frac{R_p}{R_B} \le 0,5$	0,8	1,0	1,0	1,5	1,0	1,8	1,6	0,55	0,65	0,82	1,1	1,0	1,2

Примечание. Над чертой — номера пробруды, под чертой — доля плохо проницаемых пород (с Кф ≤5 · 10² м/сут.) в соответ-

Фактические и расчетные зависимости абсолютного (R_p) и относительного (R_p/R_B) расхода реагента от времени подачи (t_B) выщелачивающих растворов с различной концентрацией (C_B) серной кислоты: 1 – 10; 2 – 5; 3 – 2,5; 4 – 1,5 кг/м³

применительно к процессам нейтрализации вышелачивающих растворов

Пробы руды														
	J	№ 5/1,	0		№ 6 / 0,76			№ 7 / 0,74		№ 8/1,0	№ 9/1,0	№ 10/0,64	№ 11/ 0,78	
<80	<80	<80	<80	<80	<5	+5 -10	+5 -25	+25 -80	<63	+63 -200	<80	<80	Зб/к	Зб/к
5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,1
20	20	20	20	20	60	61	60	61	70	75	70	70	86	95
0,4	0,2	0,133	0,1	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,07	0,07	0,08	0,082
8,0	4,0	2,66	2,0	1,6	4,8	4,88	4,8	4,88	5,6	6,0	4,9	4,9	6,88	7,8
40,0	20,0	13,3	10,0	8,0	24,0	24,4	24,0	24,4	28,0	30,0	24,5	24,5	34,4	39,8
3,3	4,2	4,1	3,8	3,8	10,7	4,95	4,3	3,0	13,0	4,2	5,2	8,2	4,8	5,0
0,082	0,21	0,31	0,38	0,48	0,446	0,205	0,18	0,125	0,467	0,14	0,21	0,335	0,14	0,125
0,4	0,65	1,15	1,35	1,5	4,18	0,96	0,88	0,31	5,0	0,125	1,2	2,87	0,16	0,15
0,1	0,2	0,3	0,4	0,5	0,18	0,1	0,08	0,06	0,5	0,01	0,07	0,7	0,02	0,02
0,01	0,01	0,04	0,05	0,05	0,18	0,1	0,08	0,06	0,07	0,01	0,07	0,05	0,0	0,0
1,0	3,2	8,6	13,5	18,8	52,3	12,0	11,0	3,9	62,5	1,56	17,1	41,0	2,0	1,83
0,999	0,999	0,995	0,992	0,99	0,985	0,988	0,99	0,99	0,993	0,999	0,98	0,982	1,0	1,0
0,85	0,85	1,25	1,2	1,0	1,6	0,85	0,9	0,6	0,8	0,5	0, 9	1,2	0,5	0,5
0,8	0,6	0,9	0,95	1,0	1,6	0,85	0,9	0,6	0,8	0,5	0,9	1,0	0,5	0,5

ствующих пробах; 36/к — руда забойной крупности, добытая при проходке горных выработок в блоках подземного выщелачивания.

Таблица 2

Фактические концентрации сульфат-иона и ее расчётные значения с учётом солевого состава продуктивных растворов

рН раствора		Концентрация в растворах, г/л												
	$\sum SO_4^{-2}$	Ca ²⁺	Mg ²⁺	∑Fe	Fe ³⁺	Al ³⁺	к фактической							
1,4	<u>12.6</u> 9,4	<u>0.43</u> 1,04	<u>0.14</u> 0,56	<u>4.53</u> 7,8	<u>4.53</u> 7,8	н/о	0,75							
1,5	92.2 89,3	<u>0.55</u> 1,32	<u>22.0</u> 88,0	<u><0.05</u> <0,13	<u><0.05</u> <0,13	н/о	0,97							
1,7	<u>10,9</u> 8,45	<u>0.38</u> 0,91	<u>0.144</u> 0,58	<u>4.04</u> 6,96	<u>3.77</u> 6,5	н/о	0,775							
2,0	<u>8.97</u> 7,41	<u>0.564</u> 1,354	<u>0.41</u> 1,64	<u>1.72</u> 4,42	<u>1.72</u> 4,42	н/о	0,826							
2,3	<u>4,2</u> 4,04	$\frac{0.3}{0,72}$	0.23 0,92	$\frac{1,4}{2,4}$	<u><0.05</u> <0,13	н/о	0,96							
K.C	$\frac{1.64}{1,224}$	<u>0.26</u> 0,624	<u>0.049</u> 0,196	<u>0.143</u> 0,34	$\frac{0.11}{0,283}$	<u>0.012</u> 0,064	0,75							
K.C	2,73 2,63	<u>0.608</u> 1,412	<u>0.058</u> 0,232	<u>0.275</u> 0,59	$\frac{0.135}{0,347}$	<u>0.009</u> 0,048	0,96							
K.C	<u>2.27</u> 2,18	<u>0,238</u> 0,571	<u>0.063</u> 0,252	$\frac{0.188}{0.481}$	<u>0.186</u> 0,478	<u>0.165</u> 0,88	0,96							
2,6	$\frac{2.16}{2,18}$	<u>0.4</u> 0,96	0 <u>,3</u> 1,2	<u><0.05</u> <0,13	<u><0.05</u> <0,13	н/о	1,0							
2,7	<u>98.8</u> 93,3	0.38 0,91	<u>22.9</u> 91,6	0.34 0,87	<u>0.33</u> 0,85	н/о	0,945							
3,0	2.85 2,85	<u>0.27</u> 0,65	<u>0.53</u> 2,12	<u><0.1</u> <0,22	<u><0.05</u> <0,13	н/о	1,0							
K.C	<u>0,444</u> 0,381	<u>0.018</u> 0,043	<u>0.012</u> 0,048	<u>0.030</u> 0,077	<u>0.030</u> 0,077	$\frac{0.04}{0,213}$	0,86							

Примечание. Надчертой — фактические, подчертой — расчетные показатели; н/о — не определялась; к. с — кислая среда.

$$e_p = \frac{R_B - R_n}{R_B} = \frac{R_p}{R_B} = \frac{(t_{B_Z} - t_{n,p})^n}{(t_{B_Z} - t_{n,p})^n + (t_B - t_{n,p})^n}, \text{ дол. ед.},$$
(15)

или

$$R_{p} = \frac{C_{B}\lambda_{B}t_{B}(t_{B_{x}} - t_{n,p})^{n}}{(t_{B_{x}} - t_{n,p})^{n} + (t_{B} - t_{n,p})^{n}}, \text{ KI/T},$$
(16)

$$\epsilon_{p} = \frac{R_{p}}{R_{g}} = \frac{(q_{B_{Z}} - q_{n,p})^{n}}{(q_{B_{Z}} - q_{n,p})^{n} + (q_{B} - q_{n,p})^{n}}, \text{ дол. ед.}, \quad (17)$$

или

$$R_{p} = \frac{C_{B}q_{B}(q_{B_{Z}} - q_{n,p})^{n}}{(q_{B_{Z}} - q_{n,p})^{n} + (q_{B} - q_{n,p})^{n}}, \text{ Kr/T},$$
(18)

где \in_0 — степень или коэффициент нейтрализации выщелачивающих растворов, дол. ед., $R_{p} = C_{B} \lambda_{B} t_{B}$ – количество реагента в выщелачивающих растворах. кг/т, $R_n = C_n \lambda_n t_n$ — количество реагента в продуктивных растворах, кг/т, $R_p = R_B - R_n$ — количество израсходованного (нейтрализованного) реагента в процессе выщелачивания руды, кг/т, Св и Сп концентрации реагента в выщелачивающих и продуктивных растворах, кг/м³, λ_{B} и λ_{A} – плотности подачи выщелачивающих и дренажа продуктивных растворов, м³/т.сут, t_B и t_n – продолжительность выщелачивания или подачи выщелачивающих и дренажа продуктивных растворов, сут, $q_B = \lambda_B t_B$ и $q_n = \lambda_n t_n$ — величины ж/т, для выщелачивающих и продуктивных растворов, соответствующие суммарному объему подачи и дренажа указанных растворов относительно веса выщелачиваемой руды, м³/т, t_{в.} – время полурасхода (полунейтрализации) реагента в выщелачивающих растворах, соот-ветствующее отношению $\frac{R_p}{R_p} = 0.5$ сут = 0,5, сут., ветствующее отношению R_B $q_{B_z} = \lambda_B t_{B_z} -$

удельная объемная константа для выщелачивающих растворов, при которой отношение $\frac{R_p}{R_g} = 0.5$, сут, $t_{n,p} = t_{p,y} + q_H$ — время полного расхода реагента в выщелачивающих растворах, когда $\frac{R_p}{R_g} = 1.0$, сут, $q_{-} = q_{-} + q_H$ — улельная величина полачи выше-

 $q_{p,p} = q_{p,y} + q_H$ — удельная величина подачи выщелачивающих растворов, при которой отношение $\frac{R_p}{R_B} = 1,0, \text{ м}^3/\text{т}, t_{p,y}$ и $q_{p,y}$ — время и удельная вели-

чина подачи выщелачивающих растворов, при которых в начальной стадии процесса выщелачивания дренаж продуктивных растворов отсутствует, так как выщелачивающие растворы полностью расходуются на насыщение пористой среды рудоносных пород, сут. или м³/т, t_H и q_H дополнительное время и удельная величина подачи выщелачивающих растворов, при которых в начальной стадии процесса выщелачивания отношение R_p

 $\frac{n}{R_B}$ остается равным 1,0, сут. или м³/т., *n* — пока-

затель, учитывающий, согласно (14), как особенности диффузионного массопереноса растворенных веществ в виде сульфатных комплексов в пористых средах выщелачиваемых руд, так и особенности химических взаимодействий выщелачивающих растворов с рудой, дол. ед.

Для всех технологических проб руды (табл. 1) установили, что зависимости $q_n = f(q_B)$ соответствовала формула:

$$q \simeq q_B X \left(1 - \frac{q_{p,y_{.}}}{q_B} \right) \simeq X(q_B - q_{p,y_{.}}), \, \mathrm{M}^3/\mathrm{T},$$
 (19)

из которой следует:

$$q_{p.y.} = q_B - \frac{1}{X} q_n, \quad M^3/T,$$
 (20)

$$t_{p,y_n} \equiv \frac{Xq_B - q_n}{X\lambda_B}, \quad \text{cyr.},$$
(21)

где X — коэффициент, учитывающий дополнительные относительно $q_{p,y}$ потери выщелачивающих растворов, связанные в основном с продолжающимся насыщением пористых сред пород жидкой фазой, дол. ед.

В зависимости от исходной влажности и гранулометрического состава руды фактические значения $q_{p,y}$ находились в пределах от 0,0 до 0,18 м³/т, а значения коэффициента X — от 0,978 до 1,0 (табл. 1).

Согласно (15)-(18), анализ процессов нейтрализации выщелачивающих растворов (табл. 1) проводили в диапазоне классов крупности руды от d < 5 мм до d забойной крупности, вовлекаемой в процессы кучного выщелачивания. Плотности подачи выщелачивающих растворов (λ_R) при этом изменялись от 0,01 до 0,4 м³/т · сут, а концентрации в ней серной кислоты (Св) — от 1,5 до 10,0 кг/м3. Продолжительность подачи выщелачивающих растворов (t_B) составляла 20—100 сут. За это время расходы серной кислоты (R_n) достигали 2,1-13 кг/т. В лабораторных технологических пробах (№ 1-9) вес выщелачиваемой руды находился в пределах 50-300 кг. Пробы № 10 и 11 представляли собой опытно-промышленные кучи высотой 4 м, в которых на площадках 100×25 м были заскладированы по 10 тыс. т руды.

В результате исследований установлено, что закономерности изменения расхода реагента во времени и от отношения жидкой среды к твердой при указанных значениях C_B , λ_B и d полностью соответствуют (15)—(18) при абсолютных величинах временной константы t_B , 1,0—183 сут, объемной константы q_B , 0,125—5,0 м³/т и показателя n 0,5—1,8. При этом кинетические кривые процесса нейтрализации растворов, определяемые величинами показателя n, имели одну или две кинетических области. Границей раздела последних были временные t_{B_a} или объемные q_{B_z} константы, соответствующие отношению $\frac{R_p}{R_B} = 0,5$. Отметим, что аналогичные

кинетические области выявлены также при анализе процессов выщелачивания урана из этих руд. Основная цель последующего анализа процессов нейтрализации выщелачивающих растворов заключалась в выявлении применительно к (15)—(18) влияния концентрации серной кислоты (C_B), плотности подачи растворов (λ_B) и реагента ($C_B \lambda_B$), класса крупности руды (d) на временную t_{B_x} и объемную q_{B_x} константы, на степенной показатель n, а также на нейтрализующую ($q_{n,p}$ или $t_{n,p}$) и растворопоглощающую ($q_{n,p}$ или $t_{n,p}$) способность руд.

Анализ процессов выщелачивания руды, представленной пробами \mathbb{N}_{2} 1 (содержание $\Sigma S \approx 5 \text{ кг/т}$) и № 2 ($\Sigma S \approx 10,5 \text{ кг/т}$), при различных концентрациях серной кислоты показал (табл. 1, 2, рисунок), что динамика расхода реагента математически соответствовала (16) и (18), а с позиции кинетики процесса выщелачивания — (15) и (17). В последнем случае она представляла собой одну или две кинетических области со значениями степенного показателя *n* от 0,8 до 1,8. С позиции химических взаимодействий более низкая реагентоемкость руды в пробе № 2 относительно пробы № 1, при практически одинаковом или близком химическом и литологическом составах, связана, как уже отмечалось, с более интенсивным продуцированием серной кислоты. При этом относительное время, после которого практически прекращалось (для C_B 1,5 и 2,5 кг/м³) или происходило снижение (для C_B 5 и 10 кг/м³) расхода реагента в пробе руды № 2, соответствовало отношению ${t_B/t_B_z} > 1,0$, т. е. наибо-

лее интенсивное продуцирование серной кислоты относительно расходуемой происходило в кинетической области, где отношение $\frac{R_{p}}{R_{B}} < 0.5$. Анализ фактических зависимостей $t_{B_{x}}$ и $q_{B_{x}} = f(C_{B})$ при λ_{B} = const позволил получить следующие расчетные

формулы:

$$q_{B_{Z}} = q_{B_{Z(\min)}} + \Delta q_{B_{Z}} = \lambda_{B} t_{B_{Z(\min)}} + \frac{R}{C_{B}}, \ M^{3}/T,$$
 (22)

$$t_{B_Z} = t_{B_{Z(\min)}} + \Delta t_{B_Z} = t_{B_{Z(\min)}} + \frac{R}{C_B \lambda_E}, \quad \text{cyr.}, \quad (23)$$

где q_{B_x} — минимальная величина объемной константы, равная 0,55 для пробы № 1 и 0,16 м³/т для пробы № 2, к которым стремится q_{B_x} при концентрации реагента $C_B \rightarrow \kappa$ ее предельной величине, t_{B_x} — минимальная величина временной константы, равная 6,9 сут. для пробы № 1 и 2,3 сут. для пробы № 2, к которым стремится t_{B_x} при концентрации $C_B \rightarrow \kappa$ ее предельной величине, R — константа реагентоемкости, равная 7,4 кг/т для пробы №1 и 5,76 кг/т для пробы №2 и определяющая требуемую концентрацию реагента для достижения соответствующего q_{B_x} или t_{B_x} при λ_B = const.

Согласно (23), для достижения продолжительности кинетической области (стадии) нейтрализации с отношениями $\frac{R_p}{R_B} > 0,5$, соответствующей значению $t_{B_x} = t_{B_x}$ (так) + 10 сут., выщелачивающие раство-

ры должны иметь концентрацию серной кислоты $C_B = \frac{7,4 \text{ кг/т}}{10 \text{ сут.} \times \lambda_B = 0.8 \text{ м}^3/\text{т} \cdot \text{сут}} = 9,25 \text{ кг/м}^3$ для пробы № 1 и $C_B = \frac{5,76 \text{ кг/т}}{10 \text{ сут.} \times \lambda_B = 0,07 \text{ м}^3/\text{т} \cdot \text{сут}}$ кг/м³ для

пробы № 2. Для уменьшения временной константы до значения $t_{B_z} = t_{B_{z,(max)}} + 3$ сут. концентрацию серной кислоты необходимо увеличить до $C_B = \frac{7,4 \text{ кг/т}}{3 \text{ сут. x } 0.8 \text{ м}^3/\text{т. сут.}} = 30,8 \text{ г/м}^3$ и

$$C_{B} = \frac{5.76 \text{ Kr/r}}{3 \text{ cyr.} \times 0.07 \text{ m}^{3}/\text{T} \cdot \text{cyr}} = 27.5 \text{ Kr/m}^{3} \text{ cootBetter}^{-1}$$

венно, вследствие того, что $\frac{R}{C_B \lambda_B} = \Delta t_{B_Z}$.

Для выявления влияния на объемную q_{B_z} и временную t_{B_z} константы плотности подачи выщелачивающих растворов λ_B при $C_B = \text{const}$ проанализированы процессы вышелачивания руды, представленной пробами № 3, 4 и 5 (табл. 1). В результате установлено, что фактическим закономерностям изменения q_{B_z} и $t_{B_z} = f(\lambda_B)$ соответствуют следующие формулы:

$$q_{B_Z} = q_{B_{Z(\text{max})}} + \Delta q_{B_Z} = q_{B_{Z(\text{max})}} + q_x \left[\frac{\lambda_{B_{(\text{max})}} - \lambda_B}{\lambda_{B_{(\text{max})}}} \right], \text{ M}^3/\text{T}, (24)$$

ИЛИ

$$q_{B_{Z}} = q_{B_{Z(\text{mun})}} + \Delta q_{B_{Z}} = q_{B_{Z(\text{min})}} + C_{B}q_{x} \left[\frac{\lambda_{B_{(\text{max})}} - \lambda_{E}}{C_{B}\lambda_{B_{(\text{max})}}} \right], \text{ M}^{3}/\text{T}, \quad (25)$$

$$t_{B_{z}} = t_{B_{z(\min)}} + \Delta t_{B_{z}} = t_{B_{z(\min)}} + q_{x} \left[\frac{\lambda_{B_{(\max)}} - \lambda_{B}}{\lambda_{B_{(\max)}} \lambda_{B}} \right], \text{ CyT.}, \quad (26)$$

или

$${}_{\mathcal{B}_{Z}} = t_{B_{Z(\min)}} + \Delta t_{B_{Z}} = t_{B_{Z(\min)}} + C_{B} q_{x} \left[\frac{\lambda_{B_{(\max)}} - \lambda_{B}}{C_{B} \lambda_{B_{(\max)}}} \right], \text{ cyr.}, \quad (27)$$

где $\lambda_{B_{(max)}}$ — максимальная плотность подачи выщелачивающих растворов при $C_B = \text{const}$, превышение которой не будет приводить к дальнейшему снижению объемной $q_{B_{Z}}$ или временной $t_{B_{Z}}$ констант, расчетные $\lambda_{B_{(max)}}^2 \ge 0,25 \text{ м}^3/\text{т} \cdot \text{сут.}; q_x - \text{по-стоянная удельная величина подачи выщелачивающих растворов (ж/т) для конкретного минерально-химического, литологического и гранулометрического составов руды, определяющая интенсивность прироста или снижения <math>t_{B_{Z}}$ или $q_{B_{Z}}$ за счет разности $\Delta\lambda_{B} = \lambda_{B} - \lambda_{B}$ при $C_{B} = \text{const, расчетные } q_x \approx 3,54 \text{ м}^3/\text{т}$ для пробы № 3, ≈2, 1 м³/т для пробы № 5, ≈ 1,86 м³/т для пробы № 4.

Согласно (26), для достижения продолжительности кинетической области (стадии) нейтрализации выщелачивающих растворов с отношениями $\frac{R_{p}}{R_{B}} > 0,5$ до величин $t_{B_{Z}} = t_{B_{Z}(\text{min})} + 10$ сут. и

$$\begin{split} t_{B_Z} &= t_{B_Z} + 3 \text{ сут. плотность подачи растворов } \\ (при условии, что <math>\lambda_{B_{(max)}} = 0,25 \text{ м}^3/\text{т} \cdot \text{сут, } q_x = 2 \text{ м}^3/\text{т} \\ \text{и } C_n &= \text{const} \right)$$
должна составлять $\lambda_B \approx 0,07 \text{ и} \\ \approx 0,111 \text{ м}^3/\text{т} \cdot \text{сут соответственно, вследствие того, } \\ \text{что } q_x \left[\frac{\lambda_{B_{(max)}} - \lambda_B}{\lambda_{B_{(max)}} \lambda_B} \right] = \Delta t_{B_Z} = 10 \text{ или 3 сут.} \end{split}$

Анализ влияния различных классов крупности руды d на удельную объемную q_{B_x} , временную t_{B_x} константы и на степенной показатель n базировался на результатах выщелачивания руды, представленной пробой № 6 (табл. 1). Полученные фактические значения перечисленных параметров проанализированы затем в функции от средних размеров кусков d_{cp} в соответствующих классах крупности, вычисленных с учетом гранулометрического состава руды в данной пробе. В результате получены следующие формулы:

$$q_{B_z} = q_{B_{x(\text{min})}} + \frac{A_q}{d_{cp}}, \ \text{M}^3/\text{T},$$
 (28)

$$t_{R_{Z}} = t_{R_{Z(\text{min})}} + \frac{A_{t}}{d_{cp}}, \text{ cyr.},$$
 (29)

$$n = n_{(\min)} + \frac{A_d}{d_{cp}}$$
, дол. ед.. (30)

В (28)—(30) расчетные значения $q_{B_r} \approx 0,16 \text{ м}^3/\text{т}$, $t_{B_r} \approx 2 \text{ сут}, n_{(\min)} \approx 0,54$. Коэффициенты пропорциональности $A_t \approx 100 \text{ мм} \cdot \text{сут.}, A_q \approx 8,04 \text{ м}^3/\text{т} \cdot \text{мм}$, $A_d \approx 2,1 \text{ мм}$. Их абсолютные значения зависят от литологического состава руды.

В свою очередь анализ зависимостей $q_{n,p}$ и $t_{n,p} = f(\lambda_B \, \mathrm{u} \, C_B)$ показал, что математически их также можно представить в виде формул:

$$q_{n.p.} = q_{\mu} \left[1 - \frac{\lambda_B}{\lambda_{B(m)}} \right], \quad M^3, \quad (31)$$

или

$$q_{n,p_{*}} = \frac{R_{n,p_{*}}}{C_{B}} \left[1 - \frac{C_{B}}{C_{B(m)}} \right], \quad M^{3}/T,$$
 (32)

$$t_{n.p.} = \frac{q_n}{\lambda_{B(m)}} \left[1 - \frac{\lambda_B}{\lambda_{B(m)}} \right], \text{ cyr.}, \qquad (33)$$

или

$$t_{n.p.} = \frac{R_{n.p.}}{C_B \lambda_B} \left[1 - \frac{C_B}{C_{B(m)}} \right], \quad \text{cyr.}, \quad (34)$$

¹ Пучков Н.А., Фонберштейн Е.Г. Исследование закономерностей растворо- и массопереноса при насыщении и выщелачивании руд скального типа // Избранные научные труды Московского государственного геологоразведочного университета им. Серго Орджоникидзе. М.: Экос, 2004. С. 199–218.

В (31)—(34) q_и — постоянная удельная величина подачи выщелачивающих растворов для конкретных руд, ее расчетные значения, равные 1,18 м³/т для пробы № 3, 0,7 м³/т для пробы № 5 и 0,62 м³/т для пробы № 4, в три раза меныше соответствующих значений q_x в формулах (24)—(27). Константа реагентоемкости R_{np}, определяющая выбор необходимой концентрации реагента для достижения соответствующего $t_{n,p}$, и $q_{n,p}$, при $\lambda_B = \text{const}$, имела, например, для пробы № 1 расчетное значение $R_{n,p} = 7,4 \text{ кг/т}$, которое соответствовало значению R в (22) и (23). При обосновании численных значений q_в и R_{п.в} учитывали, что предельные плотности подачи выщелачивающих растворов $\lambda_{B(m)} =$ = 0,06-0,25 м³/т · сут., а предельные концентрации реагента в выщелачивающих растворах для данных смесей руды соответствовали величине $C_{B(m)} \approx 5$ кг/м³. Поэтому при $C_B > C_{B(m)}$ и $\lambda_B > \lambda_{B(min)}$ снижения значений $q_{n,p}$ и $t_{n,p}$ не происходит. Из изложенного следует, что при исключении из процесса выщелачивания $\frac{\tilde{R}_{p}}{R_{B}} = 1,0$ плотность попроцесса выщелачивания стадий нейтрализации

дачи реагента применительно к анализируемым смесям руды должна находиться в пределах $C_{B(m)} \times \lambda_{B(m)} \ge (0,3 \div 1,25)$ кг/т · сут.

Влияние гранулометрического состава руды на ее раствороудерживающую способность установлено из зависимости $q_{n,p} = f(d_{cp})$, согласно которой:

$$q_{p,y}d_{cp.}^{n=0,5} = A_{p,y} = 0,26, \quad M^3 \cdot MM /T,$$

 $q_{p,y}d_{cp.}^{n=0,5} = A_{p,y} = 0,26 \text{ MM-Cyt.}$ (35)

или

Из (35), учитывая результаты теоретических исследований¹, следует, что в пробе № 6 процесс насышения растворами пористой среды определяли фильтрационные свойства плохо проницаемых пород со средним коэффициентом фильтрационной анизотропии $K_{\phi\perp}$ ≥ 20, так как степенной показатель $n \approx 0,5$, где $K_{\phi\perp}$ и $K_{\phi=}$ — коэффициенты фильтрации таких пород перпендикулярно и параллельно их напластованию. В указанной пробе руды доля плохо проницаемых пород составляла 75% по весу.

Таким образом, анализ динамики и кинетики процессов нейтрализации выщелачивающих растворов серной кислоты, проведенный на основе (15)—(21), позволил существенно дополнить математическую модель процесса выщелачивания для дробленых руд. Отметим, что аналогичные закономерности изменения $t_{B_x} = f(C_B, \lambda_B \, \text{и} \, d_{cp})$ выявлены также и для урана при анализе кинетики процесса его выщелачивания из руд с различными химическим, литологическим и гранулометрическим составами.

Российский государственный геологоразведочный университет Рецензент — С.В. Маркелов