ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ГЕОЛОГИЯ И РАЗВЕДКА

2006, № 4

ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ, МЕТОДИКА ИХ ПОИСКА И РАЗВЕДКИ

УДК 551.22+552.11

Е.Ф. РОМАНЬКО, В.Т. ПОДВЫСОЦКИЙ, К.Н. ЕГОРОВ, Д.Б. ДЬЯКОНОВ

ПЕРВЫЕ ДАННЫЕ О КИМБЕРЛИТАХ ЮГО-ЗАПАДНОЙ АНГОЛЫ

Приведены основные результаты впервые проведенного комплексного исследования геологии и вещественного состава кимберлитов Юго-Западной Анголы. На этой территории вскрыты и изучены три группы кимберлитовых трубок, установлена алмазоносность в двух трубках. По вещественным признакам изученные породы относятся к классическим кимберлитам, что дает основание говорить о выявлении нового алмазоносной кимберлитовой субпровинции на территории Юго-Западной Анголы.

Республика Ангола привлекает внимание большими запасами и качеством добываемых алмазов [7]. Все известные коренные и россыпные месторождения алмазов сосредоточены в северо-восточной и отчасти в центральной частях страны. Сведения о кимберлитовом магматизме и его алмазоносности в юго-западной части Анголы в геологической литературе отсутствуют. Информация о кимберлитовых телах в этом регионе ограничивается несколькими значками на мелкомасштабных геологических картах, составленных португальскими геологами в 70-е гг. ХХ в.

Авторы приводят результаты впервые выполненного комплексного изучения кимберлитов Юго-Западной Анголы. Исследования проводились ФГУП В/О «Зарубежгеология» в 2001—2004 гг. в рамках соглашений о сотрудничестве с компаниями SPADE BUSINESS LTD, ENDIAMA-RULTH S.A.R.L. и Геологическим институтом Анголы. В результате этих работ на территории юго-западной части страны вскрыты и изучены три группы кимберлитовых трубок (рис. 1). Намечены также еще несколько кимберлитовых тел. Северную группу составляют две трубки (Чихолонго и Шикуатите), южную — куст из четырех трубок Галанже I, II, III, IV, промежуточную — три разрозненных трубки (Очинжау, Палуэ и Виньяти).

Все три группы кимберлитовых тел приурочены к Южно-Ангольскому щиту, по обрамлению наложенной кайнозойской впадины Кунене — окраинной части более крупной впадины-плиты Окаванго, расположенной большей частью на территории Намибии. Внутри впадины Кунене в породах фундамента щита отчетливо просматриваются системы погребенных меридиональных и северо-восточных

нарушений. К меридиональным разломам приурочены южная и промежуточная группы кимберлитовых трубок. Структурами локализации кимберлитовых трубок северной группы являются протяженные зоны разрывных нарушений субмеридионального и северо-восточного простираний.

Кимберлитовые трубки южной группы размещаются в архейском комплексе основания Южно-Ангольского щита. Диатремы северной группы

Рис. 1. Схема размещения изученных кимберлитовых тел Юго-Западной Анголы: 1-4- трубки: 1- северная; 2,3- промежуточная, 4- южная группы

рвут раннепротерозойские анортозиты плутона Кунене, трубки промежуточной группы — раннепротерозойские интрузивные комплексы (анортозиты, граниты, сиениты). По данным геолого-геофизических исследований трубки имеют каплевидную, изометричную и вытянутую формы. Преобладают вытянутые в меридиональном направлении тела (рис. 2). Присутствие в кимберлитовых трубках реликтов кратерных отложений свидетельствует о небольшом эрозионном срезе диатрем. Наибо-

Рис. 2. Формы и относительные размеры установленных кимберлитовых трубок Юго-Западной Анголы

лее широко реликты вулканогенно-осадочных от-

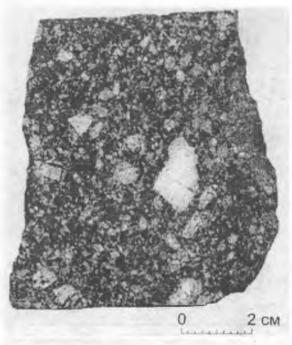


Рис. 3. Кимберлитовая брекчия с ксенолитами измененных анортозитов

ложений развиты в кимберлитовых трубках северной и промежуточной групп.

Вопрос о возрасте исследованных кимберлитов не решен однозначно. В отличие от надежно геологически датированных меловых кимберлитов северо-запада Анголы [3, 6] по кимберлитам юго-запада страны нами получены достаточно противоречивые изотопные данные. Результаты определения К-Аг возраста слабо гидратизированного флогопита в пробе кимберлита, взятой с глубины 80 м в трубке Шикуатите северной группы, дали 372±8 млн. лет (определение лаборатории изотопной геохимии и геохронологии ИГЕМ РАН). Очевидно, что полученный по частично гидратизированному флогопиту К-Аг возраст меньше истинного. В то же самое время U-Рь методом по цирконам из коры выветривания по кимберлитам трубки Галанже-II в южной группе трубок установлен возраст 102,9±1,7 млн. лет (определение выполнено В.Мальковцом в лаборатории профессора У.Л. Гриффина в университете Макуари, Австралия). Исследования цирконов из других кимберлитовых трубок продолжаются. Пока неясно, анализировался не вполне представительный материал или северная и южная группы трубок Юго-Западной Анголы в действительности разновозрастные.

По геологическому строению диатремы как однофазные (южная группа), так и многофазные: двух-(северная группа) и четырех- (трубка Очинжау промежуточной группы). Трубки сложены несколькими разновидностями пород — туфобрекчиями, кимберлитовыми брекчиями, в том числе автолитовыми и порфировым кимберлитом массивной структуры.

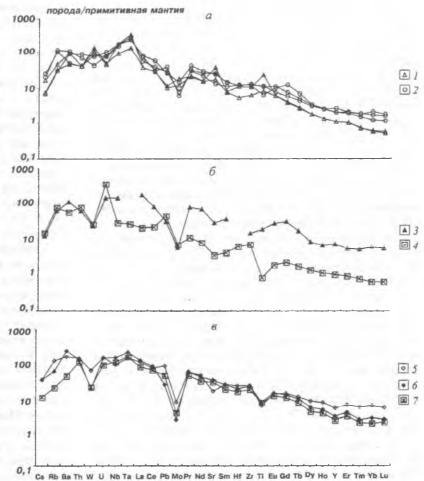
В петрографическом отношении все изученные породы являются классическими кимберлитами. Магматическая составляющая в брекчиях и массивный кимберлит отдельных разновидностей в трубках состоит из вкрапленников оливина (в основном псевдоморфоз по нему) 1- и 2-й генераций в разных соотношениях, в меньшей степендругих глубинных минералов. Основная масскимберлитов характеризуется мелкокристаллической чешуйчатой структурой и сложена агрегатом слюдистых минералов, серпентина, сапонита, кар бонатов и рудной пыли.

По степени вторичных гидротермальных преоб разований изученные кимберлиты близки (интенсивно изменены, реликты свежего оливина отме чаются лишь в одной трубке северной группы), но по характеру постмагматических преобразований существенно различаются. Если для кимберлито северной и промежуточной групп характерно серпентинизация, то для пород южной группы — сапонитизация и карбонатизация, а для трубки Виньяти промежуточной группы — окварцевание и хлоритизация. В кимберлитах всех трубок присутствуют карбонаты (главным образом кальцит), причем иногда в значительных количествах. Карбонаты участвуют в строении псевдоморфоз по оливину и замещают основную массу пород.

Обломочный материал в изученных кимберлитовых брекчиях, который цементируется порфировым кимберлитом, представлен как обломками

Химический состав кимберлитов Юго-Западной Анголы (мас. %)

Группа	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	ппп	Сумма	H ₂ O-	H ₂ O ⁺	CO ₂	So6.	K _{Mg}	MFT
Северная	65,16	0,81	6,95	5,23	0,30	0,08	8,33	1,63	0,63	2,28	0,26	3,81	99,72	4,03	0,00	0,22	0,00	60,10	1,31
	35,78	2,70	5,08	5,40	4,28	0,12	24,94	8,20	0,22	0,43	0,45	7,90	100,31	2,28	0,00	2,53	0,00	72,04	2,01
	41,46	2,54	5,03	6,30	1,90	0,06	18,48	5,48	0,20	1,38	0,26	16,50	99,59	9,06	4,52	2,56	<0,10	81,31	1,72
	35,48	2,40	5,73	6,95	2,55	0,10	23,80	6,56	0,38	0,27	0,44	14,90	99,56	4,50	7,80	1,84	<0,10	82,81	2,00
	42,08	1,82	5,75	6,30	2,32	0,10	18,87	5,98	0,84	1,40	0,30	6,18	99,59	6,00	0,00	1,65	0,00	68,64	1,81
	64,46	0,75	5,90	2,69	0,80	0,05	8,84	4,37	0,82	2,19	0,17	3,17	99,56	3,37	0,00	1,98	0,00	71,70	2,08
	46,49	1,41	4,45	4,73	1,42	0,10	17,23	7,15	0,81	1,34	0,30	4,90	99,83	6,03	0,00	3,47	0,00	73,70	2,28
	30,68	4,62	10,50	6,07	5,66	0,12	17,13	9,14	1,97	0,59	0,25	12,95	99,68	1,84	7,12	3,42	<0,10	73,30	1,05
	35,78	2,38	10,22	3,90	5,12	0,10	21,83	6,36	1,35	0,62	0,24	8,85	99,60	2,08	0,00	0,77	0,00	70,76	1,91
	35,42	1,52	10,90	3,24	4,88	0,10	22,12	7,08	1,15	0,58	0,20	8,94	99,76	2,75	0,00	0,88	0,00	73,15	2,29
	34,67	1,53	9,85	3,31	5,01	0,10	20,79	8,78	1,83	0,52	0,27	13,00	99,66	2,66	7,98	1,63	0,54	82,26	2,18
Промежу- точная	37,44	5,24	6,57	11,20	1,80	0,21	14,60	9,13	0,41	1,53	0,90	4,92	99,81	5,75	0,00	0,11	0,00	52,90	0,80
	31,98	4,01	5,70	8,62	1,62	0,18	12,30	17,36	0,50	1,31	0,82	5,17	99,56	3,83	0,00	6,16	0,00	54,57	0,86
	87,13	0,27	1,80	3,94	1,42	0,02	0,99	0,22	0,05	0,50	0,13	2,15	99,90	1,28	0,00	0,00	0,00	15,59	0,18
	81,45	0,74	2,52	5,81	1,50	0,02	1,37	0,56	0,03	0,27	0,14	2,83	99,87	2,63	0,00	0,00	0,00	15,78	0,17
	90,28	0,24	1,20	3,02	1,55	0,03	0,62	0,17	0,04	0,29	0,11	1,52	99,96	0,78	0,00	0,11	0,00	11,95	0,13
	85,00	0,21	2,90	3,29	0,41	0,11	0,87	1,00	0,05	0,05	0,16	5,33	99,83	2,56	2,67	<0,20	<0,10	31,50	0,22
Южная	50,37	1,62	7,67	6,35	0,75	0,08	13,80	3,19	1,19	3,06	0,47	10,78	99,33	7,18	3,45	0,17	<0.05	79,18	1,71
	30,94	1,97	3,89	6,39	0,65	0,12	16,95	14,33	0,21	0,92	0,51	22,59	99,47	6,30	3,94	12,27	<0.05	82,52	2,02
	43,57	1,75	5,55	7,32	0,32	0,12	20,48	3,04	1,19	0,60	0,36	14,98	99,28	9,62	4,97	0,12	< 0.05	84,09	2,37


Примечание. Химические анализы выполнены в химической лаборатории ИЗК СО РАН, аналитик Смагунова М.Н.

вмещающих пород - гранито-гнейсов, кристаллических сланцев, анортозитов (рис. 3), так и фрагментами реликтовых пород: песчаников, известняков, кислых эффузивов. Вероятно, они сохранились благодаря опусканию ксенолитов в полости диатрем на значительную глубину от их первоначального залегания [2]. Изучение таких ксенолитов позволяет получить представление о разрезе земной коры, существовавшем на момент внедрения кимберлитов.

Глубинные мантийные включения в тех или иных количествах присутствуют в породах всех трубок: гранатовые и безгранатовые перидотиты и пироксениты, редко ильменит-клинопироксеновые нодули. Все типы включений существенно преобразованы вторичными процессами. В виде реликтов сохраняются гранаты, хромдиопсид и рудные, реже слюдистые минералы.

Первые результаты изучения химизма кимберлитов юго-западной части

Рис. 4. Распределение элементов-примесей, нормированных к примитивной мантин в кимберлитах Юго-Западной Анголы: группы: а — северная, 6 — промежуточная, 8 — южная; 1—7 — трубки: 1 — Шикуатите, 2 — Чихолонго, 3 — Очинжау, 4 — Виньяти, 5 — Галанже-I, 6 — Галанже-II, 7 — Галанже-III

Анголы показали, что они в существенной степени метасоматически и гипергенно переработаны, поэтому их петрогеохимические характеристики значительно искажены.

Породам трубок северной группы свойственны высокие (до очень высокого) содержания железа и титана ($\mathrm{FeO}_{\mathrm{общ}}$ 11,12 %, TiO_{2} 4,62 %) (таблица), что может быть обусловлено значительными концентрациями в породах перовскита и ильменита. Количество главных породообразующих петрогенных компонентов (TiO_{2} , FeO , $\mathrm{K}_{2}\mathrm{O}$) в породах северной группы в целом соответствует классическим кимберлитам, несмотря на интенсивную контаминацию пород трубок ксеногенным материалом.

Особенности химического состава кимберлитовых пород южной группы также отражают их петрографический состав, степень, вид минеральных наложенных низкотемпературных преобразований и засоренность ксеногенным материалом. В частности, для кимберлита одной из трубок, насыщенного обломками полевых шпатов, отмечаются повышенные содержания SiO_2 , Al_2O_3 , K_2O , а для карбонатизированного кимберлита другой трубки повышенные количества СаО и СО, при пониженных SiO₂ и MgO. В целом изученные породы южной группы близки по умеренным содержаниям TiO₂, MnO и FeO, но достаточно сильно различаются по концентрациям Al₂O₃ и щелочей. Тем не менее, высокий коэффициент магнезиальности этих кимберлитов (K_{Mg} 60,1—84,09) указывает на их мантийное происхождение.

Концентрации элементов-примесей в кимберлитах также зависят от интенсивности метасоматических и гипергенных преобразований пород. В окварцованных кимберлитах восточной трубки Виньяти промежуточной группы резко уменьшены содержания практически всех микроэлементов, кроме Рb, U, Th (рис. 4). Остальные кимберлиты характеризуются умеренными, но неравномерными количествами элементов-примесей. Содержания Та (5,7—14,47 г/т) прямо коррелируют с количеством TiO₂ (1,53—4,62 мас. %) в кимберлитах.

На спайдерграмме кимберлитов трубок северной группы отмечены отчетливые максимумы содержаний W, Nb, Ta, Mo, Sr, Ti, и минимумы Pb, Hf, Zr (рис. 4). Кривая распределения элементов от Та до Мо во всех образцах имеет резкие перегибы из-за низких концентраций La и Ce. В тоже время на спайдерграмме отсутствует характерный для кимберлитов пик Gd. Подобный тип распределения элементов-примесей (в частности, нетипичные максимумы W, Mo, Eu) обусловлен влиянием корового материала. Следует отметить, что это в той или иной степени проявлено практически во всех кимберлитах. Спайдерграммы кимберлитов трубок южной группы близки между собой и имеют пологие наклоны. Для кимберлитов этих трубок отмечены повышенные концентрации Th, U, Ce, La и пониженные Nb, Та, поэтому спектр распределения элементов слабо дифференцирован.

В кимберлитовых трубках северной группы и в их ближайшем окружении обнаружены алмазы. Исследование первых извлеченных кристаллов по-

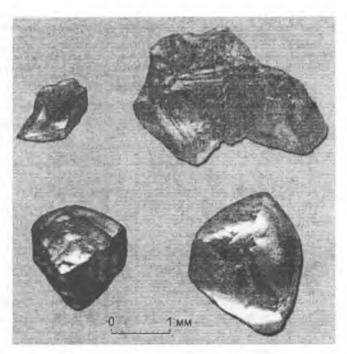


Рис. 5. Кристаллы алмаза из кимберлитовых трубок северной группы

казало, что они представлены целыми кристаллами или их осколками, а также сростками двух и более индивидов (рис. 5). Среди морфологических типов преобладают кристаллы ромбододекаэдрического габитуса. В трубке Шикуатите алмазы представлены ромбододекаэдрами или их осколками. В кимберлитах трубки Чихолонго, напротив, встречены кристаллы переходного габитуса ряда октаэдр-додекаэдр и кристаллы неопределенной формы. Кубы и тетрагексаэдроиды не встречены. По классификации Ю.Л. Орлова [4], все кристаллы относятся к І группе. Значительная их часть обладает нарушенной симметрией, для большинства алмазов характерно сильное уплощение по осям L_3 и L_2 . Алмазы в основном бесцветные или с незначительным желтым нацветом; окрашенные алмазы представлены пятью коричневыми кристаллами. Все кристаллы несут следы частичного растворения в виде микробугорков, слагающих шагреневый рельеф, а также ямки травления треугольного и квадратного сечений.

Кимберлитовые породы всех изученных трубок содержат классический набор минералов-спутников алмаза (МСА) — пироп, хромшпинелиды, пикроильменит, хромдиопсид, однако их абсолютные содержания и соотношения различаются. Наибольшие количества МСА характерны для кимберлитов северной группы, наименьшие - для южной. В некоторых трубках преобладает пироп над другими минералами-спутниками, но в целом распространены пироп-пикроильменитовые ассоциации с теми или иными количествами хромшпинелидов. Максимальные содержания хромшпинелидов отмечаются в кимберлитовых трубках северной группы, а минимальные — в южной. Кимберлитам всех трубок южной группы присущи повышенные концентрации хромдиопсида. Размеры МСА в конкретных трубках, как и в телах, например, Якутии, значительно различаются — от преимущественно мелких, < 1 мм, до преобладания пиропов и пикроильменитов в классах -2+1 и -4+2 мм. По морфологии МСА в изученных трубках схожи, особенно пиропы и хромшпинелиды. Для гранатов типичны оскольчатая, угловатая и угловато-округлая формы, что связано с интенсивной трещиноватостью зерен этого минерала в кимберлитах. Хромшпинелиды представлены плоскогранными октаэдрами, комбинациями различных форм. Наиболее крупные из них несут следы магматической коррозии (матировка, занозистость, шестоватые скульптуры). На большинстве зерен пикроильменитов сохранилась наждачная и шипастая первичная по-

верхность. Пикроильменитовые выделения характеризуются как монолитным (раковистый излом), так и агрегатным (зернистый) строением; их соотношения в трубках различны.

В изученных кимберлитах присутствуют глубинные минералы хромовой и титановой ассоциаций ультраосновного парагенезиса и альмандин-пиропы эклогитового парагенезиса различных фаций глубинности.

Для кимберлитовых трубок северной группы типичны широкий спектр составов индикаторных минералов по типам парагенетических ассоциаций; присутствие пиропов дунит-гарцбургитового (в том числе алмазного) парагенезиса; преобладание низкохромистых пикроильменитов (рис. 6, а).

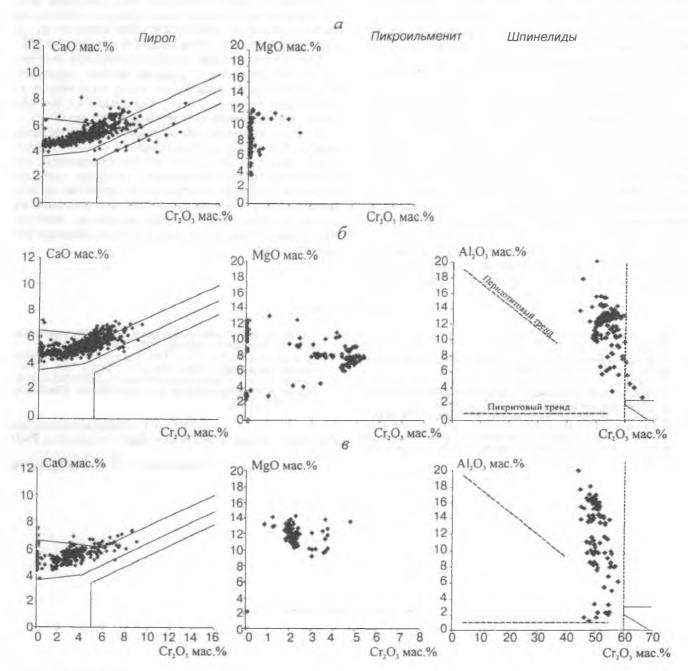


Рис. 6. Особенности состава минералов-спутников алмаза из кимберлитов Юго-Западной Анголы; группы: a — северная, δ — промежуточная, δ — южная

Содержание высокохромистых и низкокальциевых пиропов положительно коррелирует с алмазоносностью пород, что подтверждает общие закономерности для кимберлитов Якутии [8] и северо-востока Анголы [5]. Выявленная связь между наличием пиропов алмазного дунит-гарцбургитового парагенезиса и алмазов, на примере кимберлитов Юго-Западной Анголы, еще раз подчеркивает универсальность данного минералогического критерия, используемого для оценки алмазоносности кимберлитов и лампроитов [6].

Кимберлитовые трубки промежуточной группы в целом характеризуются резким преобладанием минералов хромовой минеральной ассоциации над минералами титановой ультраосновного парагенезиса. Следует отметить, что хромшпинелиды из кимберлитов промежуточной группы характеризуются довольно узким спектром содержаний $\text{Сr}_2\text{O}_3$ и высокой долей высокохромистых разностей. Пикроильмениты здесь образуют две группы: низко-(типичны для кимберлитов северной группы) и высокохромистые (рис. 6, δ).

Кимберлитам трубок южной группы свойственны резкое преобладание пиропов лерцолитового парагенезиса, умеренная и средняя их хромистость, узкий спектр хромшпинелидов по содержанию $\mathrm{Cr}_2\mathrm{O}_3$, отсутствие представителей алмазной ассоциации среди пиропов и хромшпинелидов, а также повышенные хромистость и магнезиальность пикроильменитов (рис. 6, θ). В наиболее высокохромистых пиропах содержания $\mathrm{Cr}_2\mathrm{O}_3$ достигают 9 мас. % .

В целом результаты проведенных комплексных исследований ранее неизученных кимберлитовых трубок дают основание выделить новую алмазо-

носную кимберлитовую субпровинцию в пределах юго-западной части Анголы. Кимберлиты этого региона по всем вещественно-индикационным параметрам относятся к классическим кимберлитам: содержат мантийные включения ультрабазитов, эклогитов, полный спектр барофильных минералов, в том числе алмазной фации глубинности, а также алмазы. Несмотря на то, что изученные породы в различной степени контаминированы материалом прорванных пород, существенно преобразованы гидротермально-метасоматическими и гипергенными процессами, они характеризуются содержаниями большинства макро- и микрокомпонентов, типичных для кимберлитов других регионов мира. По особенностям минерально-петрографического и петрогеохимического составов изученные кимберлиты наиболее близки кимберлитам группы I Южной Африки и кимберлитам Fe-Ti серии Архангельской алмазоносной провинции [1].

При сопоставлении минералогических особенностей кимберлитов юга-запада Анголы намечается закономерное увеличение доли мантийного (в том числе алмазоносного) материала глубинных фаций в кимберлитовых трубках с юга на север.

Вопрос об уровне продуктивности как отдельных трубок, так и субпровинции в целом окончательно может быть решен после проведения дополнительных исследований, которые должны включать изучение внутреннего строения многофазных тел с обогащением всех разновидностей пород, углубленное изучение глубинных минералов и мантийных включений, а также поиски новых объектов.

ЛИТЕРАТУРА

- 1. Архангельская алмазоносная провинция / Под ред. О.А. Богатикова. М.: Наука, 2000. 522 с.
- 2. Гаранин В.К. Введение в геологию алмазных месторождений. М.: Изд-во МГУ, 1989. 234 с.
- Зуев В.М., Харькив А.Д., Зинчук Н.Н., Манкенда А. Слабоэродированные кимберлитовые трубки Анголы // Геология и геофизика. 1988. № 3. С. 56-62.
 Орлов Ю.Л. Минералогия алмаза. М.: Наука, 1984. 263 с.
- Орлов Ю.Л. Минералогия алмаза. М.: Наука, 1984. 263 с.
 Соболев Н.В., МанкендаА., Каминский Ф.В., Соболев В.Н. Гранаты кимберлитов Северо-Восточной Анголы и связь их состава с алмазоносностью // Докл. АН СССР. 1990. № 3. С. 46-52.
- Соболев Н.В. О минералогических критериях алмазоносности // Геология и геофизика. 1971. № 3. С. 70–80.
- 7. Харькив А.Д., Зинчук Н.Н., Крючков А.И. Коренные месторождения алмазов мира. М.: Недра, 1998. 567 с.
- S o b o l e v N.V. Deep seated inclusions in kimberlites and the problem of the composition of the Upper Mantle. Washington: AGU, 1977. 264 p.

ФГУП В/О «Зарубежгеология» Институт земной коры, Сибирского отделения РАН

Рецензент — Г.П. Кудрявцева