:

551.24(470.5+48)+550.384

* ** * 620014, . . , . . , 55 E-mail: gpetrov@ugse.isnet.ru ** pO 620016, . , . . , 100 -mail: paleomag@mail.ru 13 2005 . :

).

CORRELATION OF THE ORDOVICIAN-DEVONIAN EVENTS AT THE URALIAN AND SCANDINAVIAN MARGINS OF BALTICA: GEOLOGICAL AND PALEOMAGNETIC DATA

G.A. Petrov*, I.A. Svyazhina**

*Urals Geological Survey Expedition **Institute of Geophysics, Urals Branch of RAS

Main geotectonic events, taking place at Scandinavian and Uralian margins of Baltica, are considered. The correlation of some of them is shown; in particular, Caledonian collision of Laurentia and Baltica was in keeping with significant rebuilding of geological structures at the Uralian boundary of paleocontinent. The paleomagnetic data from Uralian Silurian and Devonian sections is minutely considered; paleomagnetic reconstructions show an abrupt anti-clockwise rotation of the paleocontinent relatively to East-Uralian terrains. Geotectonic events, discovered in geological history of Urals, are coordinated with the terrains movement, established by paleomagnetic data.

Key words: Urals, Scandinavia, Baltica, collision, paleomagnetism, the events correlation.

(. 1).

, -	-
-	-
, , - , , - () , -	, [Roberts, Gee, 1985; Stephens, 1988; Milnes et al., 1997]. (700-650 .)
, -	, (600 .)
 , ,	- [Kumpulainen, Nystien, 1985; Stephens, 1988].
-	, _
- ,	· · · · · · · · · · · · · · · · · · ·
	, - , -
	[Stephens et al., 1985; Dunning et al., 1988; Pe- dersen et al., 1992].
, 	-
(Uppermost allochthon), -	- , -
- ; (Upper allochthon),	·
- , , , , , , , - , , , -	 ,
; (Middle allochthon), -	(Old Red Sandstone).
, , , , , -	- (-) - (-
, - , - ; (Lower allochthon),). ,
- 	,
	()

. .

, . .

.

,	, -
, , ,	[2000: 2000].
, , -	
[Roberts, Gee, 1985; Milnes et al., 1997].	- , -
	-
	387±34 . [Sharma et al., 1995].
[, 1986;	· · · · · · · · · · · · · · · · · · ·
., 1990; , 1998; ,	-
- 1979, 2001, .],	
,	
, ,	
-	[, 1975; , 1983;,
· -	- 1987].
-	
(,
,)	, -
[., 1999; -	-
, , , 2000] , -	-
	, , -
[, , , 1994;	-
., 2000] -	-
,	-
	, , ,
(),	- , -
(-	,
-)	, [, 1983; -
().	, 1991; , , , 2002].
-	,
, -	
1072	, –
[, , 1973; 1974· 1980· 1980·	
, , , , , , , , , , , , , , , , , , , ,	, (?)
, 1997; , , , 1997; ,	, -
2000; , 2000; , 2005, .].	,
, –	ال ., 1999, 2000; 2000، 2000،
- ()	, 2000; , 2000, 2005;
· · · , · · ·	., 2005]
	-
- [, 1993]	, -
, 1775 <u>]</u> . , -	[., 2006].
, -	(
, –) -

. .

, . .

_

_

(),			, -
» [, , 2000]	«	_		
[, , 2000].	, 1998;	(, -) (- -)
397±20 .	([Edwards, Was) - serburg, 1985].			
_	-) ().		- , - , - ,	 ,	- - , -
,	[, 2000].			-
1998]	[[., 2005].	-	,	, -
,	·	(. 2),		-	
- -	-).		J _n [:	- , 10
, 19 ., 2000]: -	91; , · -	[- 1995; -	- 20 JR-4 - 6.	560-675° 100° -1, -	 JR-
- ,	, , 1997].	- [- -	, Enterprises TSD-2 c	KLF-3.	, . , , 2G - - , -
			- ,	:	-

-

						~	~	2		~		~		~		~	+						1	·	I.
	%	105,3	-5,1			98,3	78,7	8,2		103,8	115	109,7		100		130,8	99,4								
Тесты	F	Н+ Н		F0	F0	F+	F0	+ H		+ 4	+ 止	+ +		+ Ľ		F0	+ -				F0				_
	S	2,9	0,2	1,0	1,0	1,2	1,3	0,4	1,2	4,3	2,4	1,2	0,5	1,9	1,0	1,1	2,0	1,0	1,0	1,0	0,9	1,0			
гема	α95	15,3	19,5	4,2	8,6	13,6	8,7	9,4	4,8	8,7	16,7	5,6	3,9	6,9	16,3	8,4	7,4	7,1	13,4	9,8	8,2	8,6	 -	,]. N/n –
еская сист инат	К	5,2	5,5	38,4	9,8	8,4	21,1	10,4	59,2	17,6	9,3	31,6	42,6	10,2	9,7	9,5	21,7	18,4	9,1	11,6	20,0	13,1	$(\alpha_{95} -$		nny, 1964
гиграфиче коорд	Ι	-3,4	-41,8	-19,1	-17,8	-4,4	-12,2	-20,6	-33,7	3,9	-15,0	-10,4	-33,0	15,0	-16,5	-22,8	-8,2	-1,1	14,2	-7,0	-3,2	16,5			McElhi
Страт	D	58,3	163,7	258,7	307,0	160,0	212,7	231,5	102,3	239,3	274,1	250,9	246,0	227,0	218,1	224,9	237,5	218,3	344,6	242,0	321,1	308,2		č	3]. S –
	α95	31,9	7,7	4,8	8,6	15,3	10,0	5,9	5,4	20,1	28,2	6,2	2,7	9,9	16,3	8,8	10.8	7,0	13,0	9,8	7,96	8,7			nkin, 199
ическая ординат	К	1,8	29,9	37,8	9,8	6,8	16,2	25,4	48,0	4,1	3,9	26,3	91,6	5,4	9,7	8,8	10,7	18,0	9,0	11,6	21,0	12,7		-	Watson, E
Географи истема ко	Ι	-11,4	-34,3	-36,9	-33,3	-40,7	47,0	-43,4	-74,4	-45,0	-75,0	-43,8	-38,4	-5,0	-14,8	-23,9	-5,2	2,5	9,0	-32,0	4,0	10,1	. , $\alpha_{_{95}}$ –	l	- (
c	D	62,5	231,6	253,4	311,6	167,6	204,2	231,5	264,5	228,3	307,5	230,5	218,8	228,0	212,4	213,9	228,2	217,8	340,0	237,0	321,0	310,7	·		
Компон	ента Јп	B1	B2	C	Bl	Bl	в	в	В	B1	B1	В	В	B1	B1	В	B1	в	B1	B2	B1	B1			
N/N		32/13	/13	38/25	/32	24/16	39/38	36/23	*	18/16	36/11	42/22	*	*	50/10	/34	35/20	*	51/15	51/21	29/29	23/23		1 2 _) % (
Pasnes		Ощепково		Идяш-Кускарово		Жуково	Рудянка	Хворостянка	Денисовка	Николаевка	Громовой	Kara			Актау		Катенино		IIIemyp		Шемаха	Ямашлы	D, I –		- ⁰
Струк-	тура	By		Z		By	By	Σ	Ц	3П	BEK	BEK			Z		311		Г		BEK	BEK		ļ	: F (F
B03-	раст		D3					D2					DI						S1						

, . .

ı

., 2000].

. [Bachtadse et al., 1998]; ** –

| *

. •

		φ, λ	D	Ι	α_{95}	Φ	Λ	dm	dp	$\phi_{\rm m}$
					J_n ,					
D ₃	-	57,5; 61,6 53,23; 8,5	58,3 307,0	-3,4 -17,8	15,3 8,6	14,9 13,2	179,8 292,6	7,7 4,6	15,3 8,9	-1,7 -9,1
D ₂		57,5; 61,6 56,97; 2,0	160,0 212,7	-4,4 -12,2	13,6 8,7	-32,5 33,0	85,5 202,6	6,9 4,5	13,8 8,8	-2,2 -6,2
D ₁	()	53,02; 2,0 58,8; 57,7 53,52; 7,7 52,58; 8,2	239,3 274,1 250,9 218,1	3,9-15,0-10,4-16,5	8,7 10,9 5,6 16,3	$16,3 \\ 16,7 \\ -15,5 \\ -36,1$	178,3 -4,4 340,1 319,1	4,4 320,2 2,9 8,7	8,7 8,8 5,7 16,8	2,0 -7,6 -5,2 -8,4
S ₁		53,2; 61,1 60,6; 59,6 56,5; 59,2 53,2; 57,3	237,5 344,6 321,1 308,2	$ \begin{array}{r} -8,2\\ 14,2\\ -3,2\\ 16,5 \end{array} $	7,4 13,4 8,2 8,6	22,3 39,0 27,6 28,9	175,7 260,6 284,2 300,0	3,8 6,9 4,1 4,6	7,5 13,5 8,1 8,9	$-4,1 \\ -7,1 \\ -1,6 \\ 8,4$
D ₃	-	57,5; 61,6 53,23; 8,5	231,6 253,4	-34,3 -36,9	J_n , 7,7 4,8	-36,0 -26,2	355,1 328,7	5,1 3,3	8,8 5,6	-18,8 -20,6
D ₂		52,18;58,14	231,5	-43,4	5,9	-43,1	342,6	4,6	7,3	-25,3
D ₁		52,58; 8,2	213,9	-23,9	8,8	-41,6	321,4	5,0	9,4	-12,5
S ₁		60,6; 59,6	237,0	-32,0	9,8	-31,0	350,6	6,2	11,0	-17,4
,	$, \ \phi, \ \lambda -$, $, \ ; \ dm,$; D, I, $\alpha_{_{95}} -$	dp – 1.	,	.; Ф,	Λ – ,	;		-		

$$\phi, \lambda -$$

, .; dm, dp –
; D, I, α_{95} –

	-			-
	(1). ,			 .1
		[., 2002].	
	-, -		,	
: 300°C,	- 600° (. 283,	95 %		, 80-
. 3). J _{rs}	600°,			-
	, - J _{rs} H _{crs,} -		, J _n (. 132, . 3).
. 270	450-600° J _{rs} , H _{crs} –		,	- ,
600°, :	, FS	,	(, - ?), .
	-		,	- -
(,)- ; - ,			, -
- , .	,) — -		,	· F
500 / .	- 0,3	,	78,7	[°] % S > S .
	- ,	1998],		() [Bachtadse et al., . 1.
	J _n - 200°., -		: (), -
200° 650°.	J _n -	, (, ,),	, - , - , -
450-500° (- ?) 650° – -	,	0,11	 8,78 / .
,	- -		-	-
	, -			- ,

,

.

-

. 5.

,

:	-	() –	(), ();
		(); –	(), -
(),	(),	();	
(),	(),	(). :	, –

	,		:	_						
		,	_	-		•				-
[, 2005].									-
				-						-
			$\mathbf{J}_{\mathbf{n}}$.				,			
		,		-						•
			•							-
				-	-				-	-
		[., 2	.002].				-		-
								• • • • • •		

-

30-40°.

	\mathbf{J}_{n}			,	-							
				(. 4).				,			
	,				-				•		,	-
- ,		,	,		—							
,	_	-			-			,				-
,							-			-		
					-		,	,		,		-
, -	,				-			,		-		
					-							
_				,								-
,	,				, -			, ,				
												-
						,						-
					2.							-
				,	-							-
					-					,		
,					,						(-

	. , -	(1,6-0,2 .)	, 1998. 252 .
,		•••,	· ., · _
,	,	-	// -
,	, - ,	. :	, 1980 5-30.
,	-	. 1982. 1 41-54	· · · · · · · · · · · · · · · · · · ·
	-		-
	,	1991.75 .	-
		: , 1980. 224	4.
		,	
. .		. : ,	2000.140 .
	, -	() // -1 , 2000 85-89.	999. :
	, –	• •,	,
	, -	. : , 2000. 64 .	
		, ,	. , : ,1982.312 .
	_	,	. 1994.
	.: , 1994. 154 .	1 25-37.	
	· ., · . · -		с -
		- ? // :	-2004 /-103.
		,	.,
	,		-
1987.229 .	,	// 2000. 4 14-20.	
	-	•••	// . 1977.
1.	· , 2005 135-153.	19 40-49.	
	, 2000. 256 .	1 : 50 000.	-
	· ·, · ·, · · · · · · · · · · · · · · ·	/,.	. ,
. 61-70.)// . 2000. 5.	, , 	1991.128
	· ·, · ·	(-)//	- VI
	- II	. 2005 180-183.	. :
, 2003. (с 643-647. ,,,	1979.260 .	: ,
. 1:	, 1990. 328 .	,2	2000. 145 .

			-	-			//
1 15 21		. //	. 2001.		,	,	
1 15-31.							
	,	,	-		0070	«	»:
			-	, 2000 2	25-45.		,
//		:	-				/
• •	. «II	•		, 248 .	,		, 1960.
:		, 2006 8	39-92.		,		
	• •,	•••	-		1007	220	-
//		10		: -	, 1997.	320.	_
21-32.	•	. 1,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••,		
	«	»		. 1981	. 6 25-	37.	
		1	// -		• •,		• • -
.: , 2005.	. 56-83.	1.	•				-
,	• •,	• •,	· · -	1 : 200 000 (2002.).	: ,
			-				-
//			-		(_	-
·		,	, –		()//	/
			-		, 1975	178-181.	
	. 0	0070	« -		••	1000	
» ,20				:	. 1997.	. 58-61.	
	-	,	-		•		-
		//	-			//	-
" »	· 19	199 5-23	0070			1983	: - 20-129
·· /·· ·	, , , , , , , , , , , , , , , , , ,	· ·,		,	.,		20 127.
	:		-			//	. 1993.
1	? //	· · · ·	- 005 154	4 56-65.			
178.	·	,2	005 154-		.,		-
	•••,	•••	· ., -	//	. 1995.	6 32-44.	
: ,20	003.136		•		., //	 . 1997.	5 47-
	• •,	,		56.			
			-		•,	•••	//
		. 3	(.)// 3		:		
: , 20	002 97-1	102.		,	•	- V	• •
	• •,	• •,		. «		»,	:
//			_	, 2000 Bachtad	105-120. se V Tait I	Soffel H e	<i>t al</i> Paleo-
:	,	,	,	magnetism and	plate kinemat	ics of the Sou	thern Urals
,				// Europrobe w	orkshop on	Uralides. Pro	gramm and
· · · · · · · · · · · ·		»		Abstracts. M., 1	998. P. 23.	מית מ מים מית	and of c-1.
:	, 2003 .	. 02-04.		olites and arc-re	U.K., Pederse elated plutons	en K.B. U/Pba s of the Norv	iges of ophi- egian Cale-
	•••	• •,	. 5.	donides: implica	ations for the	development	of Japetus //
	: ,19	74.218 .		Contrib. Minera	l. Petrol. 1988	8. V. 98. P. 13	-23.
	,	,		Edwards	R.L., Wasse	rburg G.J. T	he age and

Edwards R.L., Wasserburg G.J. The age and emplacement of obducted oceanic crust in the Urals

• _ from Sm-Nd and Rb-Sr systematics // Earth Planet. Sci. Lett. 1985.V. 72. P. 389-404.

Enkin R.I. A computer program package for analysis and presentation of paleomagnetic data. Victoria: Pacific Geoscience Centre, Geol. Surv. Canada, 1994. 16 p.

Gee D.G. A tectonic model for the central part of the Scandinavian Caledonides // Am. J. Sci., 1975. V. 275-A. P. 468-515.

Gee D.G., Guesou J.C., Roberts D., Wolff F.C. The central-southern part of the Scandinavian Caledonides // The Caledonide Orogen – Scandinavia and related areas / D.G. Gee, B.A. Stur (eds.). Chichester: Wiley and Sons Ltd., 1985. P. 109-133.

Kumpulainen R., Nystien J.P. Late Proterozoic basin evolution and sedimentation in the westernmost part of Baltoscandia // The Caledonide Orogen – Scandinavia and related areas / D.G. Gee, B.A. Stur (eds.). Chichester: Wiley and Sons Ltd., 1985. P. 213-232.

McElchinny M.W. Statistical significance of the fold test in palaeomagnetism // Geophys. J. R. Astron. Soc. 1964. V. 8. P. 338-340.

Milnes A.G., Wennberg O.P., Skar Q., Koestler A.G. Contraction, extention and timing in South Norvegian Caledonides: the Sognefjord transect // Orogeny through time / J.P. Burg, Ford M. (eds.). Geol. Soc. Lond. Spec. Publ. 1997. 121. P. 123-148.

Pedersen R.B., Bruton D.L., Furnes H. Ordovician faunas island arcs and ophiolites in the Scandinavian Caledonides // Terra Nova. 1992. 4. P. 217-222.

Roberts D., Gee D.G. An introduction to structure of the Scandinavian Caledonides // The Caledonide Orogen Scandinavian and Related Areas / D.G. Gee, B.A. Stur (eds.). Chichester: Wiley and Sons Ltd., 1985. P. 55-68.

Sharma M., Wasserburg G.J., Papanastassiou D.A. et al. High ¹⁴³Nd/¹⁴⁴Nd in extremely depleted mantle rocks // Earth Planet Sci. Lett. 1995. V. 135. P. 101-114.

Stephens M.B., Gee D.G. A tectonic model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides // The Caledonide Orogen – Scandinavia and related areas / D.G. Gee, B.A. Stur (eds.). Chichester: Wiley and Sons Ltd., 1985. P. 953-978.

Stephens M.B. The Scandinavian Caledonides: a complexity of collisions // Geology Today. 1988. 4. P. 20-26.

Watson G. S., Enkin R. J. The fold test in paleomagnetism as a parameter estimation problem // Geophys. Res. Let. 1993.V. 20. 19 P. 2135-2137.

Zijderveld J.D. Demagnitization of rocks: analysis of results // Methods in paleomagnetic data. Amsterdam: lsevier, 1967. P. 254-286.

- . ..