

RARE-EARTH ELEMENTS IN COLUMNS OF PROPILITIZATION, ALBITITIZATION, EISITIZATION, BEREZITIZATION-LISTVENITIZATION OF DIFFERENTSIALIC ROCKS: EVOLUTION OF DISTRIBUTION, CAUSES AND PRACTICAL IMPORTANCE

V.N. Sazonov*, O.V. Vikent'eva**, V.N. Ogorodnikov*, Yu.A. Polenov***, A.Ya. Velikanov*

*Institute Geology and Geochemistry, Urals Branch of RAS **Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS ***Urals State Mining University

In acidic environments REE carry out, especially heavy ones. But in alkaline environments heavy REE added. REE contain level in metsomatites beresite-listvenite formation and in their minerals cause of a level contain them in educts. The sum of REE contain in magmatites of the same environment cause contain SiO₂ in them.

Key words: rare-earth elements (REE), distribution of an element, transformation of distribution, propilitization, albititization, beresitization-listvenitization, carryin and carry out of an element, educt, product (metasomatit), acidity-alkalinity of mineral-forming systems, REE-complexes in hydrothermas.

[, 1975; ..., 1997;

[

110

	3(3)	22,98	Сл	0,13	0,47	2,80	4,01	I	31,66	0,11	0,14	0,10	0,05	Сл	37,81	36,83	100,35	0,51	1,33	0,12	0,50	0,09	0,02	0,11	0,02	0,11	0,03	0,07	0,01	0,09	0,02	3,03
	3(2)	35,62	0,01	0,17	0,58	1,30	3,48	1	27,45	0,11	0,08	0,05	0,05	0,01	30,42	29,27	99,33	0,30	1,41	0,13	0,30	0,09	0,03	0,10	0,02	0,12	0,03	0,07	0,03	0,07	0,01	2,61
	3(1)	41,58	0,01	0,46	0,84	5,62	2,72	1	35,45	Сл	0,12	0,05	0,05	0,03	13,08	CI	100,01	0,07	1,20	0,22	1,10	0,33	0,13	0,41	0,07	0,48	0.09	0,27	0,04	0,16	0,04	5,24
	E(3)	42,32	1,12	CI	9,87	1,52	5,92	1,74	5,95	8,85	0,32	0,15	3,35	0,15	18,21	16,66	99,47	0,11	0,31	0,05	0,33	0,10	0,04	0,16	0,03	0,22	0,05	0,30	0,21	1,49	0,23	3,63
	E(2)	42,84	1,12	0,02	11,97	2,04	8,70	1	5,55	7,14	0,16	2,04	0,69	0,13	17,94	16,30	100,34	2,42	7,02	1,39	6,92	2,86	0,87	3,27	0,38	1,58	1,17	3,39	0,59	3,65	0,46	35.97
	E(1)	46,47	1,14	0,03	13,91	2,47	7,54		7,25	10,48	0,15	2,74	0,09	0,11	7,60	4,08	99,99	2,42	6,38	0,96	4,79	1,23	0,41	1,66	0,31	2,06	0,43	1,03	0,11	1,02	0,17	22,98
	Д(3)	34,23	0,10	0,01	22,28	0,78	1,59	0,07	11,55	2,70	0,04	2,70	0,60	0,03	19,10	16,24	99,12	0,12	0,38	0,09	0,43	0,14	0,10	0,16	0,03	1,80	1,13	3,35	0,53	3,37	0,31	11.94
	Д(2)	29,35	0,27	0,22	12,31	1,32	5,50	1	16,20	5,51	0,10	0,31	3,06	CJ	25,57	23,31	99,80	0,09	0,31	0,08	0,47	0,17	0,17	0,19	0,03	0,66	0,53	1,10	0,22	1,04	0,15	52,1
	Д(1)	49,12	1,23	0,04	15,52	2,46	5,67	1	9,05	11,27	0,04	2,68	0,10	0,04	3,10	Сл	100,38	0,88	1.91	0,29	1,47	0,49	1,16	0,72	0,10	0,61	0,14	0,32	0,02	0,13	0,02	8,36
	Γ(4)	62,93	0,23	I	9,64	5,53	2,65	6,97	4,23	2,95	0,17	0,07	1,78	0,66	2,81	2,74	100,47	0,43	1,09	0,13	0,57	0,12	0,04	0,26	0,05	0,51	0,30	1,41	0,35	2,48	0,45	8,19
(/)	Γ(3)	70,93	0,27	I	11,10	1,34	0,87	2,06	1,00	2,47	0,20	0,34	3,15	0,05	6,46	4,15	99,69	4,89	12,63	1,93	12,56	4,11	1,10	1,84	0,29	4,07	1,70	5,08	1,27	5,32	0,82	57,13
()	Γ(2)	58,79	0,64	I	13,25	1,80	5,25	1	3,76	4,81	0,24	2,72	1,05	0,22	7,48	4,32	100,02	2,20	6,51	1,25	7,58	3,08	0,88	3,13	0,31	2,14	1,12	4,54	0,87	5,68	0,88	40,17
%.	Γ(1)	60,03	0,58	I	15,50	2,65	4,82	1	3,90	3,87	0,17	3,65	0,29	0,14	4,54	1	100, 14	9,54	19,78	2,60	10,90	2,62	0,41	2,06	0,34	2,21	0,48	1,38	0,29	1,32	0,21	55,2
\smile	B(3)	65,0	0,25	I	14,22	3,92	0,11	8,65	0,72	0,61	0,05	0,21	4,71	I	4,62	2,34	100,96	39,17	66,98	7,92	29,73	5,54	1,60	6,06	0,36	1,52	0,25	1,45	0,08	0,73	0,13	161.52
	B(2)	68,00	0,26	1	15,53	1,25	0,04	5,02	0,64	0,34	0,02	0,20	4,90	1	2,43	0,93	98,63	33,86	53,85	4,88	21,62	3,18	0,64	0,63	0,11	0,53	0,08	0,23	0,01	0,26	0,02	119,88
	B(1)	69,63	0,22	I	14,83	0,80	1,62		0,42	1,43	0,04	4,23	4,07	I	1,46	1	98,75	38,76	62,14	6,67	24,94	3,86	1, 14	2,79	0,28	1,03	0,14	0,46	0,03	0,40	0,05	142,69
	B(2)	68,00	0,26	I	15,53	1,25	0,04	5,02	0,64	0,34	I	0,20	4,90	I	2,43	C	98,63	17,62	43,38	5,20	18,00	3,54	0,73	1,20	0,23	1,35	0,45	0,52	0,17	0,94	0,16	98,84
	B(1)	70,50	0,26	I	15,66	0,47	1,95	1	0,82	2,00	I	4,99	3,45	Ι	I	1	97,10	14,90	29,4	2,34	11,80	2,03	0,47	1,37	0, 19	0,92	0,18	0,45	0,06	0,42	0,06	64.59
	A(2)	41,31	1,04	1	9,78	3,24	12,30	1	3,24	10,84	0,33	3,40	1,93	1,39	13,00	1	100,34	49,04	108,51	15,36	68,49	17,34	5,58	16,71	2,60	15,09	2,88	7,36	0,96	6,12	0,95	316,99
	A(1)	49,95	1,34	0,01	11,07	5,37	11,30		4,05	7,35	0,23	3,40	2,07	1,49	I	1	97,63	54,82	121,78	18,52	80,46	18,83	5,35	18,07	2,89	16,43	3,18	7,83	1,10	7,54	1,26	358,06
	Компо- ент	SiO2	ΓiO_2	Cr_2O_3	Al ₂ O ₃	Fe_2O_3	TeO	FeS_2	MgO	CaO	MnO	Va ₂ O	ζ20	205	1.П.П.	202	Сумма	_a	Ce	^D r	рү	Sm	Eu	pc	Γb	yC	Io	Ξr	Гm	Yb	n	5P3Э
			L_7		- ~	I	I	<u> </u>		$\overline{}$			ľ	Ľ.		\sim	\sim	I.	\sim			v 1	ł	\sim	L	Ι	I	I	L 7	~ `	Ι	

. .

, • • • •

,

•

.

. .

2. (,, - (,, - ,, 2001, .]. (30-60) -
,
, [, 1985] -
, , - (D ₂), c
- [- (. 3) -
() . 3. 175
().
, 101 175 -
, - , , , ,
(, ,), (, , , -)
- ,
,
[., 2006].
, 245Ar-

,); ,	, 1975]; .	-YSI	I		+ +)((3)).
••••	(1-3) [(1-3)	((2));	-	((1)) (2)) ((-
•	, 1975];)		+
-18 (ISP-MS (ov, Smirnov, 2000, (1-3)	; (,	((1))	- ;; , (4) -	
r	(1, 2) [Sazonc (1-4)	•	((2));	, (3) –	(3) – ((1))
	: , 1975];	<u> </u>		- (c) ,	
(1, 2) (1-3)	(1) - (2) (1-3), (1-3), (1, 2) [· · ·	((1)),	(2) - (2) - (2) - (2)	, (3) – : (2)
	, 1985];)			(2) - ((1))
	(1-4) [MS		- ((1))	

2

(/)

	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	1 1				(-)	
	07	12	0.22	11	0 33	0.13	0.41	0.07	0.48	0.09	0.27	0.04	0.25	0.04
'	0,7	0.8	0,22	0.4	0,55	0.03	0,41	0.02	0.12	0.03	0.08	0,04	0.08	0,04
Ta+K	0, -	0,0	0.05	0.13	0.02	0.06	0,11 0.04	0,02	0,12 0.04	0,03	0.03	0,01	0.04	0.01
+ +	0.4	0.8	0,05	0.4	0.16	0.00	0.12	0.02	0.17	0.03	0.12	0.02	0.18	0.04
+	1.0	17	0.19	0,4	0.15	0.05	0,12 0.14	0,02	0.16	0.03	0,12	0,02	0,10	0,04
+	0.8	1.9	0.27	11	0.25	0.07	0.2	0.03	0.18	0.04	0.13	0.02	0.14	0.02
+ +	0,0	0.9	0.15	0.6	0.15	0.04	0.16	0.02	0.15	0.04	0,15	0,02	0.17	0,02
	0.4	0,5	0.08	0,0	0,19	0.03	0,10	0,02	0,15	0,01	0,11	0,02	0,17	0,0
	0,7	0,0	0,00	0,5	(0,0)	0,05	0	0	0	0		0	0	0
· · · ·	1.0	1.0	0.02	15	12.05	0.65	2.22	0.50	4 10	0.02)	0.4	2.00	0.25
+ + +	1,8	4,6	0,83	4,5	2,05	0,65	3,22	0,58	4,19	0,93	2,19	0,4	2,66	0,35
	1,0	2,1	0,32	1,4	0,5	0,37	0,77	0,14	0,95	0,2	0,65	0,09	0,64	0,09
+ + +	0,9	2,6	0,39	2,0	0,67	0,22	0,57	0,08	0,47	0,09	0,23	0,03	0,27	0,04
+	0,1	3,2	0,45	2,2	0,74	0,26	0,03	0,09	0,33	0,09	0,29	0,04	0,27	0,05
	1,1	3,0	0,52	2,6	0,64	0,19	0,44	0,05	0,52	0,00	0,15	0,02	0,10	0,03
+ +	0,1	1,0	0,1/	0,6	0,2	0,11	0,24	0,00	0,37	0,08	0,1/	0,04	0,28	0,04
	0,2	1,/	0,15	0,5	0,14	0,07	0,15	0,03	0,5	0,08	0,31	0,06	0,08	0,11
+ +	0,9	2,1	0,23	0,8	0,17	0,05	0,19	0,05	0,25	0,08	0,25	0,05	0,34	0,06
	0,8	1,/	0,23	0,7	0,22	0,18	0,28	0,05	0,35	0,09	0,28	0,05	0,29	0,05
	1 1					()			
+ + +	0,8	3,7	0,63	3,2	1,27	0,26	1,77	0,37	2,45	0,59	1,66	0,24	1,62	0,17
	5,2	13	2,44	11,4	3,98	2,01	6,0	1,01	6,78	1,5	4,14	0,57	3,94	0,47
-:-	1,2	4,5	0,62	2,9	0,79	0,25	0,87	0,12	0,72	0,12	0,33	0,05	0,30	0,04
-:-	1,1	4,1	0,57	2,7	0,88	0,21	1,23	0,24	1,69	0,39	1,23	0,18	1,27	0,17
+ + +	3,1	9,4	1,7	9,3	3,57	1,32	5,09	0,96	6,83	1,5	4,35	0,63	3,76	0,44
+	1,4	2,9	0,6	2,6	0,95	0,42	1,25	0,23	1,5	0,34	1,13	0,18	1,3	0,22
-:-	1,4	3,8	0,6	2,7	0,84	0,26	0,79	0,11	0,65	0,12	0,38	0,05	0,31	0,05
-:-	1,2	12	2,0	11,3	4,51	1,47	4,86	0,81	4,47	0,77	2,14	0,3	2,14	0,32
+ + +	2,7	7,9	1,3	6,6	1,63	0,27	1,0	0,12	0,64	0,12	0,35	0,04	0,03	0,05
	2,5	18	2,9	13,7	3,48	0,53	1,89	0,20	0,12	0,17	0,53	0,08	0,53	0,07
-:-	2,4	6,9	1,2	6,5	2,01	0,53	1,51	0,21	1,06	0,21	0,66	0,11	1,03	0,15
+ +	5,7	16	2,7	13,3	3,39	0,69	1,88	0,17	0,81	0,13	0,37	0,05	0,36	0,05
	2,6	8,4	1,54	8,3	2,65	0,82	2,4	0,29	1,62	0,29	0,76	0,11	0,77	0,11
(,			,		175)			
+ + +	11	24	2,5	6,5	1,98	0,98	3,35	0,74	6,0	1,85	7,15	1,53	11,5	2,65
	3,0	6,0	0,85	3,48	1,03	0,19	1,37	0,41	1,68	0,43	1,89	0,46	2,50	0,31
-:-	670	111	121	440	100	33,3	101	15,9	76,0	13,3	33,1	4,2	17,9	3,1
-:-	10	22	2,1	9,1	2,7	0,31	2,9	0,61	3,88	0,96	3,17	0,52	3,80	0,61
+ +	14	30	4,2	18,1	5,3	0,17	6,3	0,57	6,30	1,39	4,12	0,52	3,20	0,48
	8,5	16	1,8	7,2	1,91	0,76	2,31	0,40	2,55	0,62	1,92	0,27	1,55	0,32
-:-	6,7	22	2,3	8,7	2,2	0,4	3,1	0,33	3,1	0,67	2,31	0,38	2,1	0,39
-:-	3,3	9,7	1,39	6,0	1,64	0,23	2,40	0,4	2,85	0,76	2,38	0,40	2,56	0,48
-:-	1,0	3,8	0,6	2,6	0,8	0,2	1,21	0,22	1,50	0,32	1,0	0,16	1,2	0,16
-:-	0,5	2,9	0,43	2,1	0,7	0,24	0,6	0,09	0,50	0,09	0,28	0,04	0,28	0,05
							-							
•							:	_		,	_			, -
, – , –	,	_		,	_		,	-		,	-	,	-	
- , - ,	-		, -	_	•									

114

, 1998; ..., 2001], .

) (316 . , -Ar),

(240 . , -Ar), -[, 2006]. (3 -, -). , (2), (, (2), (). , (2), (, -). , (2), (, -). , (2),

. l. ,

. 4. [Evensen et al., 1978], . 1. -:1- -2; 8 – 3; 2, 3, 5-7 -1;4 – 4. 1-8 -1 -, 2 – , 3 – , 4 -, 6 – , 5 – , 7 – , 8 –

_

(8),

(2-4).

			(-	-		-	-
)		_	(= 280-395° ,
(-	<7	= 0,6-2,0))[, 1984]
•				-		,		
					,			
			(•		(-
)		(»)	~ -
).			-	(«	»)
		+	(-				, -
,) +	-	(-				;
-	,).	-				-
				-	,			
(,).		-				

•

[, 1984].

		-	-	
r	-	-		
Ĺ	, 1984]:)			
"	" () -	-	
(_	-		(
)	-).	
	((
-),	;) -	, . 1, 2; 1- 3).	-
	(-	(1).	
)	-		
	();) -		
		;)		
		([, 2001].
5%)	,	-	() (5)
_)	(-)(,).
-		,		
		, ,		,
	, .	(Eu
))			-
,		-	– Pr, G	d Tm.
				= 395°
			1,8 [, 1984].
		-	*	»

• (1,8)[, 1984]

-

.

(

(.5), Gd Er.

_

_

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

).	
, - , Eu	, $: SO_4^{2-}, PO_4^{2-}, CO_3^{2-}, F^-, Cl^- ($
(Gd, -). , l [.] [Haas et al., 1995; Wood, 1990; Gammons et al., 1996, .], -
2). , (Gd La) _ ()	,
	, Na CO _{2.}
(. 2, . 6) 	
: La Nd	. , l
, Lu.	$TR^{3+}Fe^{2+} \rightarrow Ca^{2+}Al^3 \qquad () Na^+TR^{3+} \rightarrow 2Ca^{2+}.$
,	$: 3(Fe,Mn)^{2+} \rightarrow 2TR^{3+}.$
Eu ().	. (, - , ,) -
	$: TR^{3+}Mg^{2+} \rightarrow Ca^{2+}Al^{3+}; TR^{3+}Fe^{3+}$ $\rightarrow Ca^{2+}Ti^{4+}.$
80	$: 2TR^{3+} \rightarrow 3Ca^{2+}. \qquad (2)$
),	- ,
Ca, Sr, Ba, F, Th, U, Nb, Ta, Zr, Ga [, 1962; ,, 1976, .].	· , , , , , , , , , , , , , , , , , , ,
$Na_{3}[TR(CO_{3})_{3}] = [TR(CO_{3})_{3}]$, . , , ,
	, , , , , , , , , , , , , , , , , , ,

	,	- - -	= 4-6 [= 400-280°C, P = 2,0-0,6 , 1984, 1998] -
,	-	-	(= 450-250°)	,),
			[., 2005];
,		-	_	, -
	-	, _		-
(5)		_	_	-
, ,		-	`	, (
,	-	-).	(-
(+ +)	-	, 1962],	, ,
		,		-
				- (-
		-	[, 1971],
		-		. 5) -
	(< 20 . %)	-		
(20 . %), (30 . %) [– , 1996].			
((. 5 [). ., 1990,		,
. 181] > 6.08			[1976 124].	,
	7)		, -
— ,		, -	, 	, _
•		-	(5).	-
,			-	, -
,	-	-		
,		, -	1983; .	[C , , , , 2005].
r	(.	. 5)		-
[., 2005]	_	-		-
	: –		, 1983].	[, -
	(.5,)		(1).

	1982. : ,198392-95.
-	, 2001. 622 . , , , , , , , , , , , , , , , , , ,
 ,	/ , ,
, , , , -	
. ,	, 1984. 208 .
	: , 1998. 181 .
	.: , 1975. 172 .
« - »	· · · · · · · · · · · · · · · · · · ·
, [, 1984].	1- // -2005
-	· · · · · · · · · · · · · · · · · · ·
,	// -2005. : , 2006 398-404.
	- · · · · · · · · · · · · · · · · · · ·
.2.1.1.1840 -4210.2006.5.). : , 2003. 68 .
: , 1976. 268 .	· · // - //
· · · · · · · · · · · · · · · · · · ·	· · · ,17/1. · 134-1/1.
, 1985. 298 .	, 1996. 36 . ,,,
: , 1947. 264 . 	// -
; , , , , , 2000. 184 .	-1988. ; , 1989. . 110-112. Evensen N.M., Hamilton P.J., O'Nions R.K. Ra- re earth abundances in chondritic meteorites // Geochim. Cosmochim Acta, 1978, V. 42, P. 1199, 1212
) /	<i>Gammons C.H., Wood S.A., Williams-Jones A.E.</i> The aqueous geochemistry of the rare earth elementsand yttrium: IV. Stability of neodymium chloride from 25 to
/ ,	300°C // Geochim. Cosmochim. Acta. 1996. V. 60. P. 4615-4630. <i>Haas J.R., Shock E.L., Sasani D.C.</i> Rare earth
// -	elements in yhydrothermal systems: Estimates of standard

partial molar thermodynamic properties of aqueous complexes of rare earth elements at high pressure and temperature // Geochim. Cosmochim. Acta. 1995. V. 59. P. 4329-4350.

Mullen E. $MnO - TiO_2 - P_2O_5$: a magor element discriminant for basaltic rocks of ocean environments

and implications for petrogenesis // Earth Planet. Sci. Lett. 1983. V. 62. 1.P. 41-58.

Wood S.A. The aqueous geochemistry of the rareearth elements and yttrum. 2. Theoretical prediction of speciation in hydrothermal solutions to 350°C at saturation water pressure // Chem. Geol. 1990. V. 88. P. 99-125.

.- . . .