551.21+552.11

PETROLOGICAL-GEOCHEMICAL PECULIARITES OF MIDDLE DEVONIAN-EARLY CARBONIFEROUS ISLAND-ARC AND COLLISION VOLCANITES OF MAGNITIGORSK ZONE IN GEODYNAMIC CONTEXT

A.M. Kosarev, V.N. Puchkov, I.B. Seravkin

Institute of Geology, Ufa Research Centre of RAS

An analysis of trace elements had been done for basalts (and at a lesser extent – for intermediate and acid volcanics) of the Middle Devonian-Lower Carboniferous section of the Magnitogorsk zone (Southern Urals) with the aim of their better geodynamic interpretation.

Volcanic complexes of the Magnitogorsk zone $(D_2 - D_3 f \cdot fm)$ were formed under influence of an east-dipping subduction zone and belong to an ensimatic island arc which undergone an evolution from early stages to maturity, was accompanied by an intra-arc spreading $(D_2 e)$ and came to end in the Late Devonian-Early Carboniferous. At the latest stage the subducted lithospheric slab became wedged and its light part was exhumed (D_3) , the slab was experienced a break-off (C_1) , followed by a jump of the

. , . . , . .

subduction zone to the east, into the area of the modern Turgay depression. Good state of preservation and weak deformation and metamorphism of the Magnitogorsk paleovolcanic belt and also quantitive geochemical analyses permitted, based on their evaluation, to make geodynamic reconstructions elucidating some details of subductional process and its reflection in the surficial volcanic structures. The process of subduction was accompanied by a regular change of chemical and petrographic types of basaltoid volcanis m, which was mainly the result of melting of a suprasubductional depleted mantle wedge. The processes of crystallization differentiation acquired an important role in porphyrite island arc complexes. But only in the Early Carboniferous, high-titanium subalkaline basalts, which origin was not influenced by a subducting slab, appear, and this permits to suggest a slab break-off and the stoppage of subduction in the Magnitogorsk zone.

Key words: petrology, geochemistry, subduction, island arc, volcanic complexes, geodynamic, South Urals.

		Mg.	,	, -
	,			-
				-
[, , 1977],		·	-
			(.	3)
	-	400		-
,		⁸⁶ Sr = 0,70412-0 0,51276 [Spadea	,70555, ¹⁴³ Nd/ ¹⁴⁴ No et al., 2002].	: 87 Sr/d = 0,51236-
	-	- *		_
	, -			-
		⁸⁷ Sr/ ⁸⁶ Sr (0 1989]	,70397-0,70472) [- ., -
Mg	Fe - Ca.			, -
	-	_		-
, TiO ₂ (0,4-0,8 9 , 1985;	- %), MgO, Cr, Ni, Sr, Zr [- , 1992; , 2003],	-	,	-
,	- - - /	: 1 – Ba, U, Th; 2 –	Al, Ti, Zr, N	- Nb, Y, K, Rb,
MORB	- N-MORB	-		
ſ	- 		,	-
L .	La/Yb - 0,65 2,68 , 1			-
	- MgO (8,0-11,6 %), (CIPW)		, [1985]	- , [1999],
	_	, ,	,	-
		Zr, Y, U, Ba,	Cr (.1,2)	, _
Al, Ti (TiC Y, K, Rb, U, Th, , Na	$D_2 0,7-2,0 \%$), Zr, Nb, Ta, Hf, (.1, ,2, .1) -	-		- -

-

-

. . , . . , . .

-	(D ₂	$zv - D_3 f_1$ -	, [1997], ,
(, ,	- - - .)	, (. 1), , Li, K, Cs, Rb, Ba, Sr, , Cu Cr. , (V, Sc, Nb, Yb, Lu),
()	, (.1,; .2).
- , 	, [1977], . [199	 - [1985], 98],	⁸⁷ Sr/ ⁸⁶ Sr Sr - [Francalanci et al., 1988].
[1999]		, 	, [1989]
	,	-	
9	,		,
. 1. 1987]		,	N-MORB [, , , [, 1976]
, . ; -03, et al., 2002]; 1 [-04, -14 , , 1999] –	-18 [. 016/2-019/3 – , ., 2002]; 97/16, 97/17, -315/1160, -315/1216 [Spadea
, 2 – , . -171 – , .	(D ₂ zv , , -33 – ,	7-D ₃ f ₁) , 3 – [1998]302 - ,	, 4 - , 5 - , 6 - , 6 - , -221 - , -66 - , -221 - , -221 - , -100 - , -100 - , -20

, 5528/164, 5051/1, 907/67, -36/7 -

6

•

-, . . , , , - . -, , , -

[, 1997].

9

[1997], . .

-

_

[1998],

(.%)

(/)

		(D ₂ e)				I	(D ₂ zv-D ₃ f ₁)			
	1	2	3	4	5	6	7	8	9	10
<i></i>	97/16	97/18	016/2	019/3	-27	1-	-1	-2	-3	-4
SiO ₂	50,6	52,5	49,97	47,38	51,34	51,58	51,71	60,61	67,21	75,72
TiO ₂	0,46	0,42	0,5	0,46	0,78	0,86	0,86	0,57	0,56	0,27
Al_2O_3	14,8	15,69	14,45	14,43	15,92	17,42	17,06	16,95	15,22	13,05
FeO	12,3	10,47	14,2	14,77	12,15	12,75	11,07	8,68	6,43	3,01
MnO	0,16	0,15	0,12	0,18	0,16	0,2	0,17	0,15	9	5
MgO	6,07	6,8/	7,23	10,22	5,2	6,27	6,73	3,33	2,09	0,91
CaO	9,07	9,2	5,28	5,13	5,69	7,8	9,65	5,71	3,24	1,15
Na ₂ O	1,35	1,4	2,67	2,52	3,97	3,31	2,8	3,54	4,3	4,63
<u>K₂O</u>	0,12	1,5	1,39	0,26	0,8	0,45	0,53	0,85	1,06	1,33
P_2O_5	0,03	0,06	0,085	0,03	0,08	0,13	0,13	0,16	0,16	5
5	5,23	1,6	4,0	4,6	4,00	-	_	-	-	-
Σ	100,19	100,1	99,89	99,99	99,6	-	-	-	-	-
Mg#	51,5	58,6	47,62	55,12	48,16	46,69	52,19	40,39	36,88	35,38
Li	27,1	20,1	-	-	16,8	10	23	<10	<10	<10
Rb	2,07	24,1	14	9	10,9	2,6	12	26	18	25
Cs	0,49	0,55	-	-	1,23	-	3,9	2,8	4,2	6,9
Be	0,43	0,41	-	-	0,56	_	_	-	-	-
Sr	138	395	77	49	341	127	210	167	200	140
Ba	21,6	106	84	44	185	250	750	850	880	833
Sc	56,4	46,5	39	33	46,2	46	34	23	14	7,1
V	409	276	339	344	317	239	173	90	35	30
Cr	58,6	126	60	53	66,9	20	75	24	12	18
Co	43	38,2	38	58	32,3	25	20	8	8	5
N1	38	54	44	47	17,2	17	3,1	1	5	6
Cu	142	99,7	40	346	128	88	120	37	<30	<30
Zn	75,4	69	91	125	211	171	165	193	158	66
Ga	14,1	11,5	-	-	16,2	12	14	12	12	11
Y	9,66	12	15	0	19,1	25	35	40	45	50
Nb	0,18	0,2	1,0	4	1,33	12	5	4,1	3,7	6,8
Ta	0,02	0,02	-	-	0,02	-	-	-	-	-
Zr	20	28	43	1/	41	50	50	125	123	118
HI M-	0,30	0,05	-	-	1,37	4,8	_	-	-	-
MO	1,15	1,03	-	-	0,51	-	-	-	-	-
5n Tl	2,5	1,1	-	_	0,00	Z	2,1	2,1	2,3	2,9
	0,003	0,055	- 0.12	-	0,089	-	-	-	-	-
U T1	0,047	0,212	0,15	0,07	0,175	<2(1)	<2	<2	<2	2,5
In	0,125	0,207	0,08	0,09	0,145	<2	<2	2	2	3,3
La	0,41	1,15	1,4/	0,96	1,69	4,4	9,3	18,0	17,0	12,0
Ce	1,29	3,27	3,68	2,78	4,89	9,0	22,0	34,0	44,0	27,0
Pr	0,23	0,51	0,66	0,46	0,89	-	-	-	-	-
Na	1,44	2,77	3,65	2,69	4,69	- 1.7	12,0	18,0	22,0	14,0
Sm E	0,58	0,99	1,45	1,03	1,/8	1,/	2,9	3,9	5,2	2,/
EU Cd	0,28	0,44	0,24	0,38	0,07	1,2	1,1	1,0	1,1	0,01
Ծն	0.22	0.29	0.29	0.20	2,40	-	0.52	0.59	1 1	0.51
	1.54	1.06	2.61	2.00	3.07	0,0	0,35	0,38	1,1	0,31
Цо	0.36	0.45	0.50	0.44	0.71	07	_	_	_	_
Fr III	1.08	1 20	1.6	1 /1	2.03	0,7	_		_	_
Tm	0.18	0.21	0.21	0.21	0.33	_				_
Yh	1 16	1 28	1/6	1.47	2.07	2.5	17	16	3.8	2 2
Lu	0.18	0.2	0.21	0.24	0.34	0.33	0.26	0.23	0.61	0.39

1, 2, 5 [Spadea et al., 2002];

: 3, 4 (

,

, 1998]; 1-5 –

; 6-10 –

-

		(D ₃ f)			(D ₃ f-fm ₁ ?)			
		1						
11	12	13	14	15	16	17	18	19
-171	-221	-66	-1	-2	-3	-273	-151	-375
49,65	48,65	57,53	51,48	52,91	50,14	51,94	49,12	54,47
0,53	0,87	0,95	0,72	0,79	0,82	0,52	0,99	0,69
12,91	16,92	14,85	14,49	14,29	16,15	14,21	18,38	16,59
5,3	5,33	1,77	10,14	11,33	10,95	8,15	10,17	9,11
0,15	0,22	0,13	0,15	0,2	0,19	0,14	0,15	0,15
8,73	5,21	4,55	7,84	7,01	8,44	9,01	4,71	4,29
7,67	9,28	5,56	9,21	8,85	10,14	7,01	5,62	5,55
4,19	3,19	5,45	2,63	2,82	3,08	2,5	4,17	3,51
1,26	1,4	1,79	3,35	2,3	0,64	2,54	3,32	5,41
0,18	0,3	0,17	_	-	—	0,03	0,32	0,31
4,11	2,73	2,05	_	_	_	3,25	2,81	1,65
100,42	99,48	99,47	_	_	_	100,01	99,33	101
74,48	63,55	81,88	58,04	52,41	58	66,37	45,17	45,73
-	_	—	_	_	—	—	_	—
69	19	23	81	72	35	86	59	147
-	-	-	_	_	-	_	_	_
-	-	-	_	_	-	_	_	_
197	600	254	647	595	402	233	686	1040
-	_	_	812	1029	588	_	-	—
_	_	_	_	_	_	_	_	_
446	501	479	_	_	-	355	708	288
676	347	490	241	118	189	257	91	60
52	48	30	_	_	-	35	63	15
96	29	112	133	74	101	65	50	9
-	_	-	_	_	-	-	_	
_	_	-	_	_	_	_	_	_
_	_	-			_	-		_
10	36	28	9	15	7	17	_	15
6	5	7	2	2	3	5		5
_	_	_	_	_	_	_	_	_
23	151	100	48	56	63	40	87	42
_	_	_	_	_	_	_	_	_
-	-	-	_	_	-	_	_	_
-	-	-	_	_	-	_	_	_
-	-	-	_	_	-	_	_	_
-	_	—	_	_	—	—	_	—
—	-	_	_	—	—	—	_	_
6,57	8,53	4,09	7,25	9,1	4,5	9,78	8,96	14,52
9,28	10,66	7,33	16,0	19,5	11,0	24,75	16,36	33,37
1,08	1,3	1,2	_	_	—	2,41	2,04	2,54
4,29	5,83	6,34	9,0	10,6	7,5	6,77	8,57	5,57
-	1,47	1,55	2,1	2,5	2,1	1,03	1,72	1,21
0,52	0,95	0,86	0,79	0,8	0,73	0,26	0,78	0,52
0,95	1,91	2,51	_	_	_	1,65	2,17	1,56
-	_	_	0,42	0,45	0,47	0,19	_	0,19
0,88	1,8	2,45	_	_	-	1,31	1,89	1,31
0,17	0,35	0,44	_	_	-	0,25	0,35	0,24
0,35	0,88	1,05	_	_	-	0,88	0,96	0,79
0,05	0,11	0,13	—	_	-	0,14	0,12	0,1
0,44	0,79	0,88	1,35	1,55	1,7	0,88	0,79	0,71
-	-	-	0,22	0,25	0,26	-	-	-

-

ICP-MS, -

, , , .); 6-10 [, 1999]; 11-13, 17-27 [,

				-		:
[,	, 1998]: 11 –	, 12 –	, 13 –	; 14-19 –	-
, 2002]: 14 –		, (n = 2	5), 15 – ,	(n =	14), 16 –	-

1

				-	(_1)			
	20	21	22	23	24	25	26	27
	864/71	5505/235	5528/164	-358	-460	-477	-150	-57
SiO ₂	46,84	51,78	47,71	40,20	48,95	53,33	64,56	71,18
TiO ₂	2,2	1,2	1,34	3,49	2,80	2,53	0,53	0,44
Al ₂ O ₃	15,38	18,92	18,07	14,80	11,47	13,72	16,73	15,73
FeO	12,27	9,99	9,85	15,36	16,76	14,89	3,56	2,25
MnO	0,12	0,21	0,2	0,23	0,22	0,16	0,07	0,01
MgO	5,97	4,61	5,06	8,46	5,14	4,64	1,49	0,38
CaO	6.71	5.33	9,19	5.22	6.42	2.82	3.37	0.42
Na ₂ O	4.33	3.51	2.6	3.59	5.64	5.68	4.93	5.21
K ₂ O	0.28	0.91	1.9	2.61	0.29	0.35	2.72	3.14
P ₂ O ₅	0.33	0.2	0.15	0.42	1.00	0.63	0.11	0.01
- 2 - 3	5.2	3.42	3.2	5.73	3.25	2.38	2.85	0.95
Σ	100.0	100.3	99.63	100.11	101.94	101.13	100.78	99.65
 Ma#	16 39	45.06	47.91	49.53	35.46	35 71	42.53	21.95
Ivig#	40,37	45,00	47,71	47,55	55,40	55,71	42,55	21,75
LI Dh	- 5	- 16	- 52	- 19	- 22	- 15	- 76	- 72
K0 Ca	3	10		48	25	15	70	15
	_	_	_	_	_	_	_	_
Be	455	-	- 200	- 210	-	- 111	-	-
Sr D	455	303	309	510	243	111	204	122
Ва	_	-	-	_	_	_	-	_
Sc	-	-	-	-	-	-	-	-
V	260	190	260	661	200	89	120	1
Cr	58	5	64	40	13	20	148	200
Со	34	23	25	30	14	15	11	5
Ni	56	23	19	16	5	5	23	5
Cu	_	-	-	_	_	_	-	_
Zn	_	-	-	_	_	_	-	_
Ga	-	-	_	_	-	-	-	_
Y	24	18	16	29	46	87	41	93
Nb	5,5	4,4	4,3	46	13	11	20	7
Та	-	-	-	—	—	—	-	-
Zr	120	60	76	324	224	427	540	501
Hf	—	—	_	—	—	-	-	—
Mo	—	-	-	—	—	—	-	-
Sn	—	-	-	—	—	—	-	-
Tl	—	—	—	—	—	-	-	—
U	—	—	—	—	—	-	-	—
Th	-	-	-	-	_	-	-	-
La	12	8,8	5,4	28,77	10,3	21,4	11,10	37,87
Ce	32	20	14	74,56	25,23	48,19	29,55	78,63
Pr	_	-	_	7,19	3,2	4,9	3,36	11
Nd	21	12	10	24,34	11,74	16,88	10,5	53,31
Sm	5,7	2,8	2,9	5,52	2,5	5,7	2,59	9,57
Eu	2,0	1	1	1,3	1,38	1,99	0,52	3,28
Gd	_	_	_	4,77	4,42	7,98	3,21	13,44
Tb	1,2	0,64	0,77	0,51	0,6	1	0,4	_
Dy	_	_	_	3,57	4,7	7,75	2,87	15,8
Но	_	_	_	0,54	0,8	1,5	0,52	3,06
Er	_	-	_	1,49	2,54	4,9	1,46	9,28
Tm	_	-	_	0,18	0,35	0,5	0,18	1,1
Yb	3,3	2,1	2,2	1,19	2,3	3,5	1,23	7,64
Lu	0.55	0.31	0.34		_	_	_	_

, (n = 10); 17-19 -[, , 1998]: 17 -; 18 -; 19 -; 20-27 -[, , , 1998]: 20-22 -, ; 23 -, 24 -, 25 -, 26 -, 27 -.

-	-					
			·			-
-	-					-
$(C, t_{\rm eff})$						
$(\mathbf{C}_1 \mathbf{U} \mathbf{V}_2)$.	-					-
,	-					-
				(
,	-	,	-			-
	-)			-
	-					
, Г					• •	
, 1977; , 1997; , ,	- 1998].	•••		_	-	_
- ()	,				-
[1997]	_					•
[, 1997].	-					
	-	(SiO ₂ 37-4 4,75 %, K	43 %, M ₂ O 1,48-2	gO 5,83- 2,61 %)	-9,36 %, Na	₂ O 2,46-
	-		-	Rb	(39-73 /),	Sr (229-
-		484), Zr (2	Cr(30.2)	, Y (23-38 30 /) N	8), Nb (33-9]	(10.32)
,	-	_	CI (30-2. Rb	50 /), IN	I (II-23), CC	- (19-32). -
	-	(3-19	/),		,	
- (.1 , ,2).			,		Cr, Ni, Co Zı	, - ;, Y, Nb.
[1998],						-
	-				T_1O_2 (1,9-)	3,63 %),
-				,		-
,]	La/Yb (4	,5-24,2)	(.1 , ,2	, 3).
,	-					(V Dh
,		Sr)			(Zr,	$(\mathbf{K}, \mathbf{K}\mathbf{b}, \mathbf{Y}, \mathbf{N}\mathbf{b}),$
,						Cr,
	-	- 1	Ni, Co.	87 C - /86 C	-m)	
, [-			51/55	or)	-
, 1986],	-	0,70388	0,7051	4,		_
$TiO_{2} (1,2-2,2 \%), \Sigma$ Sr, Nb, Yb,	E FeO,	0,703	0,7046	6 [, 1991] ⁸⁷ S	r/ ⁸⁶ Sr,
Al_2O_3 , Na_2O , P_2O_5 – Cr, N	Ni, Co,				10007	-
Zr.	-			,	, 1988],	,
	-					
K, Rb, Nb, Cr, Co, Ni,	-					-
- Zr $-$ TiO ₂ , Al ₂ C) ₃ , Yb.		r	100	001	
,	-		L	, 198	00].	-
	-			()	-

-

, - , - , , , , -, , , , , , , ,

(

?

[Rogers et

al., 2002; Kohn, Parkinson, 2002].

-Nb, Zr

.

-,

, , ,

N-MORB

- _
 - 2. $(D_2 - C_1 v)$
 - : 1 -, 2 –
- .
- - 3. (

- ()
- 4.

- //

- - ()

- ,

- .
 - MinUrals N ICA-2-CT-2000-01-010011 7
 - 9 « (»).
 - . ., . .
 - , 1986. . 49-69. :
 - ., . .
 - : , 1998. 156 .
 - . . , 1976. 267 . .: . ., . .,
 - - , 1989. 24 . : . .
 - , 1988. 248 . .: / . .
 - , 1992. . .: . . 197 .
 - //
 - , 1991. . 32-39. :,
 - ||
 - , 1987. . 10-23. . ., :
 - , 2001. 409 .
 - . ., // :
 - II , 2003. . 367-370. : . ., . ., ۰, -. .
- // 3. -, 2003. . 113-116. :
- . ., . .

- // 1975. . 168-175. . .. // . 2001. 6.
- . 50-57. // 3. •
 - , 2003. . 130-140.
 - K, Ti, Zr
- // -1997. , 1999. . 186-191.
- , 2002. 199
- , .:
- , 2002. 366
 - / .: , 1987. 335
 - //
 - . 1987. . 134-165. . : //
 - . 1987. 8. . 39-47.
- . 1988. // . 300. . 914-919. 4.
 - // . 1996. 2. .16-33. , 2000. 146 . , 1981. 584
- - , 1997. 85 .,
 - // , 1987. . 102-133.
 - , 1997. 309 . ().
 - //

).

(. : . 1977. 266 .

.:

, 1997. 320

- 1985.64

_

-). . 1998. 203 Arculus R.J. Aspects of magma genesis in arcs //
- Lithos. V. 33. 1994. P. 189-208
- Bailey J.C., Frolova T.I., Burikova I.A. Mineralogy, geochemistry and petrogenesis of Kurile island-arc basalts // Contrib. Mineral. Petrol. 1989. V. 102. P. 265-280.
- Bea F., Fershtater G., Montero P., Smirnov V., Zinkova E. Generation and evolution of subductionrelated batholiths from the central Urals: constraints on the P-T history of the Uralian orogen // Tectonophysics. 1997. V. 276. 1-4. . 103-116.
- Brown D., Alvarez-Marron J., Perez-Estaun A. et al. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continental collision in the southern Urals. Tectonics. 2001. V. 20. 3. P. 158-171.
- Chemenda A., Matte Ph., Sokolov V. A model of Paleozoic obduction and exhumation of high-pressure/ low temperature rocks // Tectonophysics. 1997. V. 276. 1-4. P. 217-227.
- Davies J.H., Stevenson D.J. Physical model of source region of subduction zone volcanics // J. Geophys. Res. 1992. V. 97. B2. . 2037-2070.
- Francalanci L., Barbieri M., Manetti P., Peccerillo A., Tolomeo L. Sr isotopic systematics in volcanic rocks from the Island of Stromboli, Italy (Aeolian Arc) // Chem. Geol. Isot. Geosci. Sec. 1988. V. 73. 2. P. 109-124.
- Kohn M.J., Parkinson C.D. Petrologic case for Eocene slab breakoff during the Indo-Asian collision // Geology. 2002. V. 30. 7. P. 591-594.
- Molnar P., Atwater T. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere // Earth Planet. Sci. Lett. 1978. V. 41. P. 330-340.
- Nicolas A., Boudier F., Bouchez J.L. Interpretation of peridotites structures from ophiolitic and oceanic environment // Am. J. Sci. 1980. V. 280. Pt. 1. P. 192-210.
- Rogers R.D., Karason H., van der Hilst R.D. Epeirogenic uplift above a detached slab in northern

Central America // Geology. 2002. V. 30. 11. 2002. P. 1031-1034.

Rupke L.H., Morgan J.P., Hort M., Connoly J.A.D. Are the regional variations in the Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? // Geology. 2002. V. 30. 11. P. 1035-1038.

Spadea P., D'Antonio M., Kosarev A., Gorozhanina Y., Brown D. Arc-continent collision in the Southern Urals: Petrogenetic aspects of the Forearc-arc

omplex // Mountain building in the Uralides: Pangea to the present. AGU Geophysical monograph series. 2002. V. 132. P. 101-134.

Stern R.J., Bloomer S.H. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs // Geol. Soc. Amer. Bull. 1992. V. 104. P. 1621-1636.

Tamaki K., Honza E. Global tectonics and formation of marginal basins: role of the Western Pacific // Episodes. 1991. V. 14. 3. P. 224-230. Tatsumi Y., Hamilton D.L., Nesbitt R.W. Chemical characteristics of phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks // J. Volcanology and Geothermal Research. 1986. V. 29. P. 293-309.

Taylor B., Martinez F. Back-arc basin systematics // Earth Planet. Lett. 2003. V. 210. P. 481-497.

Uyeda S. The Japanese island arc and the subduction process // Episodes. 1991. V. 14. 3. P. 190-198.

Uyeda S., Kanamori H. Back-arc opening and the mode of subduction // J. Geophys. Res. 1979. V. 84. P. 1049-1062,

Willner A., Ermolaeva T, Puchkov V., Arzhavitina M.Y., Gorozhanina Y. Surface signals of an arccontinent collision: The detritus of the Upper Devonian Zilair formation in the Southern Urals, Russia // Mountain building in the Uralides: Pangea to the present. AGU Geophysical monograph series. 2002. V. 132. P. 183-210.

.- . ..