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Abstract

A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incu-
bated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron accep-
tor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was
included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and con-
tained two distinct clast populations: (i) a highly weathered one with "sponge-like" internal porosity, large mineral crystallites, and Fe-
containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various
forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)ToT was bioreduced by CN32 over 60 d in media without
AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn,
Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mossbauer measurements on the bioreduced sediments indi-
cated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively
reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from
phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic
nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mossbauer measurements, however, indi-
cated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial
surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a
Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on
the nature and location of the biotransformation reaction and its products.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Bacterial iron reduction is an important process in anox-
ic soils, sediments, and subsurface materials. This critical
aspect of the iron biogeochemical cycle is driven, to large
degree, by the activities of dissimilatory metal-reducing
bacteria (DMRB; Lovley, 1991, 1993; Nealson and Saffa-
rini, 1994). DMRB are capable of using solid-phase Fe(III)
in both oxide (e.g., ferrihydrite, goethite) and phyllosilicate
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(e.g., montmorillonite, illite) form as an electron acceptor
for respiration. These two forms of Fe(III) often predomi-
nate in the reactive, high surface area, clay-sized fraction of
oxidized soils and subsurface materials. The bioavailability
of mineral Fe(III) to metal-reducing bacteria appears limit-
ed by numerous incompletely understood factors, such as
crystal chemistry, solid-phase thermodynamics and surface
area, and electron transfer efficiency at the mineral-mi-
crobe interface.

Dissimilatory bacterial reduction of Fe(III) oxides and
associated mineral transformations have been well studied
in single-phase Fe(III)-oxide suspensions (e.g., Roden and
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Zachara, 1996; Fredrickson et al., 1998, 2001; Zachara
et al., 1998, 2002; Nevin and Lovley, 2000; Kukkadapu
et al., 2004, 2005; Roden, 2004), and the general factors
that control the reduction rate, the extent of reduction,
and the distribution of reduction products are known.
Comparable information on Fe(III)-containing phyllosili-
cates is limited, making generalizations more difficult
(e.g., Kostka et al., 1996, 1999; Favre et al., 2002). Exper-
iments with single-phase suspensions indicate that phyllos-
ilicate reactivity is variable. Significant quantities (9-90%)
of octahedral Fe(III) in high-surface area, clay-sized ferru-
ginous smectite and montmorillonite were rapidly reduced
by S. putrefaciens, strain MR-1, in dilute anoxic suspen-
sions (Kostka et al., 1996, 1999). The reduction rate and
the extent in this system decreased with increasing suspen-
sion density (Kostka et al., 1996). In contrast, only a small
fraction of octahedral Fe(III) in clay-sized illites (a non-
swelling phyllosilicate) were reduced by S. putrefaciens,
strain CN32 (a functionally similar organism to MR-1) un-
less an electron shuttle, anthraquinone-2,6-disulfonate
(AQDS), was added to facilitate electron transfer to the
solid phase (Dong et al., 2003; Seabaugh et al., 2006).

The bacterial reduction of Fe(III)-oxides produces a
biogeochemically active pool of Fe that includes Fe2,*
Fe(II) adsorption complexes on mineral surfaces, and min-
eral Fe(II) (e.g., siderite). These Fe forms may be reactive
with polyvalent metals such as chromate (Cr(VI)O4

2~;
Loyaux-Lawniczak et al., 2000; Williams and Scherer,
2001), the uranyl ion [U(VI)O2

2+] and its complexes (Liger
et al., 1999; Fredrickson et al., 2000; O'Loughlin et al.,
2003; Jeon et al., 2004), pertechnetate [Tc(VII)O4"; Fred-
rickson et al., 2004], and with organic contaminants (e.g.,
Haderlein and Pecher, 1998; Amonette et al., 2000; Pecher
et al., 2002; Williams et al., 2005). The bacterial reduction
of phyllosilicate Fe(III), on the other hand, yields structur-
al Fe(II) and/or adsorption and ion exchange complexes on
the residual layer silicate (e.g., Jaisi et al., 2005). These bio-
genic Fe(II) forms may also be reactive towards organic
contaminants (e.g., Cervini-Silva et al., 2001; Hofstetter
et al., 2006).

The bioreductive transformations of Fe(III)-containing
minerals and the identity of biogenically produced Fe(II)
in composite mineral material are not well understood be-
cause of the difficulty in characterizing the low concentra-
tions of labile Fe that typically exist in natural materials.
Curiously, the few reported studies of the mineralogic im-
pacts of bacterial iron reduction in subsurface sediments
(Kukkadapu et al., 2001; Zachara et al., 2004; Cooper
et al., 2005) have shown that the effects are small, and
the degrees of biotransformation and biomineralization

jare different from those expected based on single-phase
mineralogic studies (i.e., those with just phyllosilicates or
Fe(III) oxides; Kostka et al., 1999; Zachara et al., 2002;
Jaisi et al., 2005). These differences may result from the

s associated mineral fraction and sediment aggregation that
•mediate reactions and effects that would not occur in their
• absence. Unresolved is whether oxide Fe(III) and phyllos-

ilicate Fe(III) in soil and subsurface sediments compete
for electron equivalents liberated by microbial respiration.
Does such competition occur, and which of these electron
acceptors is preferentially reduced by bacteria in a dilute
mixture of these phases with other mineral components?

In this communication, we investigate the bacterial
transformations of Fe(III) in a shale-limestone saprolite
of complex mineralogy (various pools of Fe; complex min-
eral association and micro-structures, etc) that was incu-
bated with a DMRB and an electron donor under anoxic
conditions. The sediment was obtained from a field site
where bacterial Fe(III) reduction is being investigated as
a potential remedial technique to arrest the subsurface
migration of mobile U(VI) and Tc(VII) (e.g., Istok et al.,
2004; North et al., 2004). Goethite and phyllosilicates were
the primary Fe(III) containing mineral phases in the sedi-
ment. Laboratory investigations were performed to identi-
fy: (i) which of these phases were the preferred electron
acceptor for bacterial Fe(III) respiration, (ii) the chemical
and physical reasons for preference if observed, and (iii)
the mineralogic nature of the biogenic Fe(II) reaction prod-
ucts. Anthraquinone disulfonate (AQDS) was used in select
treatments to enhance bacterial reduction to facilitate in
bioproduct identification. We have previously shown
(Fredrickson et al., 2004) that the bioreduction of this sed-
iment, yields "sorbed" Fe(II) that reduces Tc(VII)O4~, and
that exhibits an Fe(II) paramagnetic doublet in its 77 K
Mossbauer spectrum that was not well-resolved from phyl-
losilicate Fe(II). Here we strive to identify the nature of this
biogenic Fe(II) product, and the Fe(III) containing mineral
phases from which they were derived using chemical
extractions, transmission electron microscopy and electron
microprobe, and variable-temperature Mossbauer
spectroscopy.

2. Materials and methods

2.1. FRC sediment

The subsurface sediment (background sediment; SB002-
03-002) was obtained from a U.S. Department of Energy
experimental site (Oak Ridge Field Research Center) where
in situ stimulation of bacterial activity is being studied as a
potential approach to arrest the subsurface migration of
mobile radionuclide contaminants (http://www.lbl.gov/na-
bir). The sediment was provided by David Watson (Oak
Ridge National Laboratory). Iron reducing bacteria exist
in these sediments and associated groundwaters that can
be stimulated in the field by additions of ethanol (North
et al., 2004; Peacock et al., 2004).

Extractable Fe(III)-oxides were determined using meth-
ods as previously described (Zachara et al., 1998), includ-
ing acidified ammonium oxalate (AAO; Schwertmann,
1959) for poorly crystalline oxides, and dithionite-cit-
rate-bicarbonate (DCB; Mehra and Jackson, 1960) for
reducible Fe(III) oxides. Weak acid (0.5 N HC1) extraction
was used to determine the "biovailable Fe(III) oxide"
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content (ferrihydrite primarily) of the sediment (Anderson
et al., 1998). After chemical extractions, the nitrates were
analyzed for [Fe(II)] and [FeTOT] using the ferrozine assay
(Lovley and Phillips, 1986; Stookey, 1970) and the residues
analyzed by Mossbauer spectroscopy.

2.2. Acid treatment of DCB-reduced FRC sediment

The FRC sediment was treated with DCB reagent twice
at room temperature (RT) with stirring for 2 d (15 g FRC/
150 mL DCB reagent). The treated sediment was centri-
fuged (5000 relative centrifugal force for 30 min), the cen-
trifugate decanted, and the solids resuspended in 125 mL
CaCl2-2H2O (0.5 M) for 24 h to remove ion-exchangeable
Fe(II). The CaCl2-2H2O was decanted after centrifugation
and the sediment was washed four times with 150 mL of
30 mM, pH 7, 1,4-piperazinediethanesulfonic acid (PIPES)
buffer. The sediment was then treated with small volume of
1 N HC1 (to pH 4.5) to ensure that no precipitated calcium
carbonate existed in the suspension. The sediment was
resuspended and stored in PIPES buffer after acid
treatment.

The acid-dissolution of the DCB-reduced, CaCl2-2H2O-
treated FRC sediment was studied by suspending 0.2 mL
of the pH 7 suspension (1 g/lOmL suspension) in 3.8 mL
of 0.53 N HC1. Each treatment and sampling event was
replicated three times, and separate tubes were sacrificed
at each time-point (1 min to 7 d) for chemical analysis.
Supernatants from the centrifuged suspensions were
analyzed for [Fe(II)] by the ferrozine assay, and for
[FeTOT]. [Si], and [Al] by inductively-coupled plasma
spectroscopy (ICP).

2.3. Bacteria and media

Shewanella putrefaciens strain CN32 was isolated from a
subsurface core sample (250 m beneath the surface) in
northwestern New Mexico (Fredrickson et al., 1998). Stock
cultures were maintained by freezing in 40% glycerol at
-80 °C. CN32 was cultured aerobically in tryptic soy broth
(TSB), 27 gL~' (Difco Laboratories, Detroit, MI). CN32
cells were harvested from TSB cultures at mid to late log
phase and were separated by centrifugation and washed
twice with 30 mM, pH 7, PIPES buffer to remove residual
medium, and once with the final buffer (PIPES or 30 mM
sodium bicarbonate). Cells were resuspended in bicarbon-
ate or PIPES buffer and purged with O2-free N2:CO2

(80:20) or N2, respectively.

2.4. Bacterial reduction experiments

Bioreduced sediments were generated by incubating 1 g
of the <2.0 mm sediment in 10 mL of 30 mM, pH 7, buffer
(30 °C) with 8 x 107 cells/mL. Sodium lactate (10 mM) was
added as an electron donor and headspace gas was adjust-
ed depending on buffer: N2:CO2 (80:20) (for bicarbonate-
buffered medium) or N2 (for PIPES-buffered medium).

AQDS (0.1 mM) was included in the media of select treat-
ments. The tubes were shaken horizontally at 25 rpm. Each
treatment and sampling event was replicated three times,
and separate tubes were sacrificed at each time-point for
chemical analyses. At select time points, samples from
one of the replicate tubes were withdrawn for powder
XRD and Mossbauer spectroscopy measurements. Abiotic
controls consisted of suspensions that received 1 mL of
anaerobic buffer in place of the CN32 cell suspension.

2.5. Chemical analyses of bioreduced sediments

i -

i

•

i

2.6. Backscattered electron imaging (BSE) I Electron
microprobe analysis (EMP)

Mineral particles were imbedded in epoxy resin
('EpoThin', Buehler, Irvine, CA), then cut and polished
on a glass slide. The petrographic thin sections were
examined using a JEOL 8200 electron microprobe to
determine the aggregate/physical structure of the funda-
mental sediment particles, their relative porosity, and
the physical locations and semi-quantitative composition
of fine-grained Fe-containing mineral particles. BSE of
microscale atomic-number contrast was used to examine
the qualitative variability in clast textures, morphologies
and compositions.

For elemental abundance maps, crystal spectrometers
were tuned to the characteristic X-ray emission lines for
Fe and K, and the sample was moved at 2 um steps under
the focused, <1 um diameter beam of 20 keV electrons with
a current of 20 nA and a single-point dwell time of 100 ms.
The mapped concentrations were calculated as simple.
K-ratio proportions against X-ray fluxes from mineral
standards (SPI, West Chester, PA); the abundances were
not corrected for inter-element effects. For mineral-specific
compositional analyses, the instrument was calibrated
against mineral standards and raw X-ray counts were
reduced using an atomic number-absorption-fluorescence
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routine included in instrument automation software. Rep-
resentative mica clasts were grouped according to similari-
ties in elemental abundances (e.g., low-K high-Fe, and
high-Fe low-K micas were distinguished qualitatively),
morphology, and texture. For comparison, previously
grouped compositions were averaged, and then reduced
to mica structural formulae. The calculations were con-
strained by normalizing the cation equivalents to a total
anion charge of -44 (22 oxygens), and specifying that the
cation tetrahedral occupancy be equal to 8.

2.7. 5 Fe Mossbauer spectroscopy

Mossbauer analysis of the pristine sediment was per-
formed on air-dried samples, while those of bioreduced
sediments were performed on suspension subsamples that
were filtered, washed, and dried in an anoxic chamber
(Kukkadapu et al., 2004). Details of the Mossbauer instru-
mentation and sample preparation procedure were report-
ed by Kukkadapu et al. (2004). The prepared Mossbauer
disks of the bioreduced sediments were stored at -80 °C
in an anoxic chamber until analysis. A closed-cycle cryostat
(ARS, Allentown) was employed for low temperature
measurements.

The Mossbauer data were modeled with the Recoil
software using a Voigt-based spectral fitting routine (Ran-
court and Ping, 1991). In the Voigt-based method, each
distribution [quadrupole splitting distribution (QSD) and
hyperfine field distribution (HFD)] is represented by a
sum of Gaussians having different positions, widths, and
relative areas. The number of Gaussians used for a given
fit was the minimum required for good statistics. The
coefficients of variation of the spectral areas of the indi-
vidual sites generally ranged between 1% and 2% of the
fitted value. The following guidelines were used in the
modeling of the Mossbauer data: (i) all doublets were as-
sumed to be symmetric, (ii) for sextets, the ratios of the
spectral areas of peak 1 to peak 3, and peak 2 to peak
3 were fixed at 3 and 2, respectively, (iii) coupling was
not allowed between S (isomer shift) or the CS (center
shift) with the distributed hyperfine parameter [quadru-
pole splitting (A or QS)], and (iv) coupling was not al-
lowed between the quadrupole shift parameter (e) and
the distributed hyperfine parameter (z).

3. Results

3.1. Properties of the background saprolitic sediment

3.1.1. Mineralogy
The <2.0-mm fraction contained 4.4 wt% of Fe per

gram of sediment, as determined by XRF analysis.
Approximately 40% of the total Fe (FeTOx) was extracted
by DCB. Only a small amount of the DCB-extractable
Fe(III) could be extracted by AAO, indicating that most
of the reducible Fe(III) oxides were crystalline (Fredrick-
son et al., 2004). Poorly crystalline Fe(III)-oxides (e.g., fer-

rihydrite) dissolve quickly in AAO (Schwertmann, 1959;
Schwertmann and Fischer, 1973).

Peaks due to discrete Fe(III)-oxides (e.g., goethite) were
absent in the XRD pattern (not shown). Quartz dominated
the spectrum (~70%), whereas illite/muscovite, Fe-vermic-
ulite (Moore and Reynolds, 1997), and quartz were domi-
nant in the <2-um fraction that was Mg2+ saturated and
subsequently treated with glycerol. K+ saturation and
110 °C heat treatment indicated that vermiculite layers
were partially filled with hydroxy-Al species (Barnhisel
and Bertsch, 1989).

Transmission electron microscopy analyses of the
<2-um fraction (not shown) revealed the presence of: (i)
common lath-shaped crystals of goethite twinned to yield
"star-shaped" composites, as well as more abundant dis-
crete laths without twinning, and (ii) abundant illite.
"Star-shaped" goethite composites were far less abundant
in the <2.0-mm fraction. Energy-dispersive X-ray analysis
of the goethite crystallites indicated partial Al substitution
(15-20%). The illite crystals were plate-shaped, and their
corresponding selected area electron diffraction pattern
was typical of a 1-Md pattern.

3.1.2. Aggregate structures and Fe spatial distribution
Backscattered electron imaging (BSE) of sediment thin

sections (Fig. la) showed that the sediment consisted of
millimeter-sized clasts comprised of aggregates of smaller
crystalline materials. Moreover, two distinct clast types
were recognizable: (i) weathered darker-grey ones contain-
ing larger crystallites and significant, "sponge-like" inter-
nal pore space, and (ii) lighter-grey, compact ones with
very small crystallites, limited internal porosity, and occa-
sional "bedding-plane like" microfractures (Fig. lb). The
two clast groupings were clearly heterogeneous at the mil-
limeter scale and below.

Electron microprobe analyses (EMP) were performed to
identify the distribution and mineralogic residence of Fe,
particularly for the phyllosilicate fraction. The weathered
clasts consisted of an interlocking porous matrix of ca.
50 um quartz crystallites (uniform mid-grey particles)
embedded with other minor mineral phases defined by
K and Fe distributions (Fig. lb). The high K regions
(red-magenta) with spherical/oblong morphology were
shown to be feldspars by these and other analyses. Other
areas of K localization correlated exactly with Fe, defining
different populations of blade-like crystallites discriminated
by Fe concentration (e.g., high—green and low—dark
blue). EMP analyses of these regions (not shown) defined
them to be micas of two primary types: (i) high Fe and
low K, and (ii) low Fe and high K.

The compact clast was comprised of a fine groundmass
containing qualitatively equal K and Fe concentrations
(~5%). EMP of this ground mass (16 distinct point analy-
ses) were consistent with Fe-containing illite (not shown).
Discontinuous, infrequent pore space was evident as
5-10 um black regions in the Fe and K images. Imbedded
in the illite groundmass were a variety of minor phases



3666 R.K. Kukkadapu et al. 70 (2006) 3662-3676

Fig. 1. (a) Backscattered electron micrograph of an FRC sediment thin section showing a typical distribution of aggregates and grain sizes. Two different
clast types were always observed: weathered (darker grey) and compact (lighter grey), (b) Electron microprobe element abundance maps for Fe and K in
weathered and compact clast domains noted in (a).

including Fe(III) oxides (small red spots in Fe image) and
micas (green blades in the Fe image). Four microprobe
analyses were performed of the imbedded micas; these were
1 um wide and difficult to isolate analytically. These micas
also contained appreciable Fe and were compositionally
intermediate to the two types found in the weathered clast
(not shown). Zones of vermiculite and hydroxy-Al-inter-
layer vermiculite (HIV) were insufficiently delineated by
morphology or chemical signature in either clast, possibly
because of small size, to allow their defensible analysis by
EMP.

The elemental abundance maps were converted to nor-
malized trilateral plots of Fe, Si, and K atomic abundances
(not shown). The results provided an estimate of the qual-
itative differences between compact and weathered clasts.
For the weathered clast, more than 80% of the total anal-
yses had a normalized atomic Fe concentration of less than
10%, and the average Fe for the map was 2.12 wt%. The
clast overall was poor in Fe. For the compact clast, 70%
of the total analyses denned an area within the plot that
ranged in normalized atomic Fe concentration from about
5-15%, and the average Fe for the map was 6.12 wt%. The
clast overall included significant Fe.

3.1.3. Fe valence and phase distribution
Room temperature (RT) Mossbauer measurements,

alone, are not adequate to differentiate Fe(III) in phyllosi-
licates in sediment from: (i) ferrihydrite and (ii) Al substi-
tuted goethite (XAI>0.15). Such differentiation cannot be
made because all of these phases display doublet features
at RT with similar Mossbauer parameters, rendering it dif-
ficult to discern their specific contributions. The presence
and approximate amounts of these phases, however, can
be resolved to varying degrees by comparing spectra ob-
tained at lower temperatures, in combination with chemical

data and other spectroscopic measurements. For example,
ferrihydrite displays a doublet at 77 K (Murad and Cash-
ion, 2004); illites display a doublet even at 4.2 K (e.g., Rus-
sell and Montano, 1978) whereas Al-substituted goethite
(XAI>0.15; Fysh and Clark, 1982a; Kukkadapu et al.,
2001) displays sextets at 77 K.

A comparison of the RT Mossbauer spectrum (Fig. 2a)
of the pristine <2 mm FRC sediment with those obtained
at lower temperatures (77, 12, and 5 K; Figs. 2b,c,d) indi-
cated that the amount of "star-shaped" (large particle) goe-
thite that was evident by microscopy in the clay-sized
fraction of the sediment was not abundant overall
(<1 wt%). Pure (e.g., without Al3+substitution), large par-
ticle goethites display a sextet feature with a magnetic
hyperfine field (BM) of 38.1 Tesla at RT (Murad and Cash-
ion, 2004) that was absent in Fig. 2a. The lower tempera-
ture measurements revealed that the central doublet (0 to
1.2 mm/s region) of the RT spectrum had contributions
from both phyllosilicate (illite, muscovite, and vermiculite)
Fe(III), and Al-substituted goethite. Little or no Fe(III)
was extracted from the sediment by AAO, which implied
the absence of ferrihydrite.

The other RT Mossbauer doublet (0 to 2.6 mm/s region)
with isomer shift (<5) = 1.3 mm/s and quadrupole shift
{A) — 2.6 mm/s was due to silicate Fe(II) (Fig. 2a). The
apparent Mossbauer parameters of the silicate Fe(III)
and Fe(II) agreed well with illite/muscovite/vermiculite
(Murad and Cashion, 2004). The vermiculite, muscovite,
and illite peaks were not resolved from each other because
they exhibit similar Mossbauer parameters (Greenwood
and Gibb, 1971). The RT spectrum also indicated the pres-
ence of a small sextet (~5% of total area) from hematite.
The derived quadrupole shift parameter (e) and the Bhf val-
ues (-0.14 mm/s and 50.6 Tesla, respectively) of the small
sextet were different from pure hematite (-0.2 mm/s and
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Fig. 2. Mossbauer spectra (experimental and simulated) of the <2.0 mm pristine sediment at RT, 77 K, 12 K, and 5 K.

51.8 Tesla; Murad and Cashion, 2004), possibly because of
minor substitution of diamagnetic Al3+ for magnetic Fe3+

(Fysh and Clark, 1982b).
The low-temperature spectra were modeled to estimate

the relative contents of goethite and phyllosilicate Fe, as
well as the Fe(II)/Fe(III) ratio of the phyllosilicate. The
spectra were modeled by the QSD/HFD method with
one, two, and three Gaussian components, respectively,
for phyllosilicate Fe(II), phyllosilicate Fe(III), and goethite
sub-spectra, respectively, Table 1. The fit-derived
Mossbauer parameters of phyllosilicate Fe and goethite
(Table 2) agreed well with literature values. The spectral
contributions, and accordingly the calculated mass percent-
ages, of goethite (46-47% of FeTOx) and phyllosilicate
Fe(H/III) (~50% of FeToT) as well as the phyllosilicate
Fe(II)/Fe(III) ratio (~0.25) were similar at all temperatures
(77, 12, and 5 K; Fig. 2), given the assumption of equal
Mossbauer recoilless fractions for all components. Other
studies have reported variable effects of sample cooling
on Mossbauer spectral areas of Fe-containing mineral
components. Van der Zee et al. (2003) observed equivalent
Mossbauer spectral areas of lake and marine sediments at
RT and 4.2 K, while Wagner et al. (1988) noted that the

Fe(III) oxide spectral area in Bavarian illite increased rela-
tive to phyllosilicate Fe(II) below 12 K. Differences in mod-
eling approaches and assumptions may cause these
apparent inconsistencies.

3.2. Effect of chemical reduction
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Table
A">

Sample Temp. (K) Fe-species

Unreduced 77

12

Unreduced + DCB

Bioreduced (60 d) 12
(without AQDS)

Bioreduced (60 d ) " 5
(without AQDS)

Bioreduced (95 d ) " 12
(with AQDS)

Bioreduced (95 d)** 5
(with AQDS)

Silicate Fe(II)
Silicate Fe(III)

Goethite

Hematite
Silicate Fe(II)
Silicate Fe(III)

Goethite

Hematite
Silicate Fe(II)
Silicate Fe(III)

Goethite

Hematite

Silicate Fe(II)

Silicate Fe(III)
Hematite

Silicate Fe(II) + Fe(II)
Biomineral
Silicate Fe(III)

Goethite

Hematite

Silicate Fe(II)

Goethite biotransformation
product
Silicate Fe(III)

Goethite

Hematite

Silicate Fe(II)

Fe(II) Biomineral
Silicate Fe(III)
Goethite

Hematite

Silicate Fe(II)

Goethite biotransformation
product
Silicate Fe(III)

Goethite
Hematite

1.262
0.477

0.485

0.478
1.272
0.482

0.489

0.494
1.262
0.49

0.495

0.424

1.246

0.49
0.441

1.269

0.482

0.492

0.486

1.263

1.182*

0.486

0.496

0.479

1.289

0.503
0.489

0.498

1.284

1.397

0.501

0.489
0.471

2.867
0.595
1.35

-0.129

-0.081
2.894
0.557
1.05

-0.125

-0.092
2.90
0.641
1.42

-0.124

0.036

2.895
3.2*
0.693

-0.016

2.837

0.513
0.91

-0.129

-0.096

2.893

2.01*

0.6
-0.68
-0.126

-0.054

2.926

2.59
0.593

-0.164

-0.103

2.885

1.906

0.55
1.29

-0.14
-0.06

0.276
0.314
0.332
—

—

0.249
0.28
0.48
—

—
0.286
0.37
0.8*

—

0.31*
0.5*
0.468
—

0.264

0.246
0.48

—

0.141

—

0.77
0.14
—

—

0.08

0.23
0.27

—

0

—

0.155
0.57
—

100
79.2
20.8
24.7
55.1
20

100
100
56.8
43
23.2
53.6
23.2

100
100
69.7
30.3
19.9
29.4
50.7

100

88.5
11.5

100
100

100

56.1
44
22
57.7
20

100

100

100

51.7
48
57.7
42.3

100

62.7

37
100
52.4
48

100

100

100

73.7
26.2

100
100

—
—
—
47.4
29.1
43.6
52.8
—
—
—
48.4
33.4
45.8
53
—
—
—
49.4
35.2
49.1
52.5

—
—
52.1

—

—
48.8
35.7
46.6
53.1

—

7.87

—
49.32
35.7
53.34

—

48.4
38.8
52.9

—

6.22

_

49.5
53.44

—
—
—

1.5
22.8

3.2
1

—
—
—

1.1
24.9

2.5
0.8*

—
—
—

0.5
10
2.7
1.5*

—
—
—

2.05

—
1

28.9
2.2
0.8*

—

3.59

—
0.87

18
0.0001

—

—
1.34*

10.4*
0.8*

—

3.6*

_

—
0.47
0

1.13

1.57

1.96

1.32

1.56

1.24

1.77

3.87
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Sample Temp. (K) Fe-species

Unreduced 77

3.3. Sediment bioreduction

3.3.1. Incubation in bicarbonate buffer
The FRC background sediment was incubated with

S. putrefaciens under anoxic conditions in the absence
and presence of AQDS which is known to stimulate the
rate and extent of Fe(III) bioreduction in natural sediments
(Zachara et al., 1998; Kukkadapu et al., 2001). Ten to fif-
teen percent of Fe(III)TOT (based on 0.5 N HC1 extraction)
was reduced in 60 d without AQDS, whereas 24% and 35%
of Fe(III)TOT was bioreduced after 40 and 95 d incubations
in media that contained AQDS. The concentrations of

i;aqueous Fe2+, Mn(II), Si, Al, and Mg, were at or near
^detection limits for all treatments during the entire incuba-
tion period.

Powder XRD patterns of the bioreduced sediments (not
shown) were almost identical to the pristine material, de-
spite significant reduction. The unreduced and bioreduced
samples, however, differed from each other in their Moss-
bauer spectra (Fig. 4). The doublet feature caused by Fe(II)
(denoted by *) was more intense in the bioreduced samples
at RT and 12 K. The sediment incubated with AQDS dis-
played an even greater enhancement in the Fe(II) signal
[compare Fe(II) spectral area of Fig. 5b with Fig. 5a;
46% vs. 21%]. The increase in the Fe(II) doublet in the
12 K spectra (Fig. 5) was accompanied by a reduction in
the spectral area of both the goethite sextet and phyllosili-
cate Fe(III) [compare fit-derived spectral areas of the biore-
duced samples (Figs. 5a and b) to the pristine sediment
(Fig. 2c)]. The increase in the spectral area of Fe(II)

Unreduced 77 Silicate Fe(II) 1.262 2.867 0.276 — —
Silicate Fe(III) 0.477 0.757 0.431 — —
Goethite 0.485 -0.129 — 37.75 16.39
Hematite 0.478 -0.081 — 52.78 1.03

12 Silicate Fe(II) 1.272 2.894 0.249 — —
Silicate Fe(III) 0.482 0.777 0.445 — —
Goethite 0.489 -0.125 — 40.9 17.11
Hematite 0.494 -0.092 — 53.02 0.8

5 Silicate Fe(II) 1.262 2.903 0.286 — —
Silicate Fe(III) 0.49 0.893 0.623 — —
Goethite 0.496 -0.124 — 45.09 8.57
Hematite 0.424 0.036 — 52.49 1.5

Unreduced + DCB 5 Silicate Fe(II) 1.246 2.93 0.353 — —
Silicate Fe(III) 0.49 0.721 0.422
Hematite 0.441 -0.016 — 52.08 2.05

Bioreduced (60 d) 12 Silicate Fe(II) + Fe(II) Biomineral 1.27 2.837 0.264 — —
(without AQDS)

Silicate Fe(III) 0.482 0.694 0.407 — —
Goethite 0.492 -0.129 — 42.52 19.35
Hematite 0.486 -0.096 — 53.13 0.8

Bioreduced (60 d) 5 Silicate Fe(II) 1.263 2.892 0.149 — —
(without AQDS)

Goethite Biotransformation product 1.182 ' 2.01 — 7.9 3.51
Silicate Fe(III) 0.486 0.715 0.448 — —
Goethite 0.496 -0.126 — 41.33 14.36
Hematite 0.479 -0.054 — 53.34 I E - 0 4

Bioreduced (95 d) 12 Silicate Fe(II) + Fe(II) Biomineral 1.289 2.85 0.229 — —
(with AQDS)

Silicate Fe(III) 0.503 0.596 0.426 — —
Goethite 0.489 -0.164 — 43.79 8.69
Hematite 0.498 -0.103 — 52.87 0.8

Bioreduced (95 d) 5 Silicate Fe( II) 1.284 2.884 0.003 — —
(with AQDS)

Goethite Biotransformation product 1.397 1.906 — 6.34 3.37
Silicate Fe(III) 0.501 0.745 0.455 — —
Goethite 0.489 -0.14 — 49.45 0.47
Hematite 0.471 -0.061 — 53.44 0.042
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-12 -10 - 8 - 6 - 4 - 2 0 2 4

Velocity (mm/s)

Fig. 3. Experimental and simulated 5 K Mossbauer spectra of the
<2.0 mm pristine sediment treated with DCB.

represented the biotransformation products of both of goe-
thite and phyllosilicate Fe(III), with each exhibiting similar
Mossbauer parameters at RT. A reasonably good fit of the
Fe(II) doublet was obtained with a two Gaussian compo-
nent HFD distribution, implying the presence of two
components.

The relative contributions of phyllosilicate Fe(II) and
the biotransformation product were resolved from each
other at liquid helium temperature (5 K) where a magneti-
cally ordered phase was observed (Figs. 5c,d). The spectral
area of the biogenic Fe(II) product was fourfold higher in
the sediment incubated with AQDS (24% vs. 6% of FeTOT
without AQDS). There was qualitative agreement between
the mass loss of goethite (30%) and the amount of biogenic
Fe(II) product formation (24%) as deduced by spectral
modeling implying that goethite was the source of the bio-
transformation product. Perhaps the/-factors of phyllosili-
cate Fe(II) and the biogenic Fe(II) phases were different.
The spectral area of hematite was unchanged in incuba-
tions with and without AQDS.

The phyllosilicate Fe(II) concentration (17-20%) was
comparable in the samples incubated with and without
AQDS, and both of these were higher than the pristine sed-
iment (10%). Accordingly, the computed phyllosilicate
Fe(II)/Fe(III) ratio in bioreduced sediments was higher
than the pristine sediment (~0.6 vs. 0.25). This increase
in the phyllosilicate Fe(II)/Fe(III) ratio corresponded to
the reduction of ~20% of the total structural phyllosilicate
Fe(III) to Fe(II). The Fe(II)/Fe(III) ratio was similar for
sediments incubated without AQDS (0.58) and with AQDS

- 6 - 4 - 2 0 2 4

Velocity (mm/s)

Fig. 4. Mossbauer spectra of pristine, bioreduced (without AQDS) and acid-treated, bioreduced sediment: (a) Room temperature, and (b) 12 K.
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b 12 K (with AQDS)

3671

Velocity (mm/s)

Fig. 5. Mossbauer spectra (experimental and simulated) of bioreduced sediments with and without AQDS: (a) 12 K spectrum of the 60-d sample without
AQDS; (b) 12 K spectrum of the 95-d sample with AQDS; (c) 5 K spectrum of the 60-day sample without AQDS, and (d) 5 K spectrum of the 95-d sample
with AQDS.

(0.62), and these, in turn, were comparable to the DCB-
treated sediment (~0.5; Fig. 3).

•3.3.2. Incubation in PIPES buffer
The pristine sediment was also incubated with CN32 in

\ PIPES buffer without AQDS to determine if the buffer
'assisted formation or caused discernable differences in the
I nature of the sorbed biogenic Fe(II) pool. The course of
I bioreduction was identical in PIPES buffer as compared
to the bicarbonate buffer in that Fe(III) reduction began

{when Mn(III/IV) was exhausted. The rate and extent of
|Fe(III) bioreduction, however, differed in the two buffers.
fLess than 10% of FeTOT was reduced by CN32 after 60 d
|of incubation in the PIPES-buffered medium as compared
fto ~15% in the bicarbonate-buffered medium, as deter-
imined by 0.5 N HC1 extraction. This difference was evident
tin the Mossbauer spectral intensities of the Fe(III) and
|Fe(II) doublets of the 60-d bioreduced sediments from
fPIPES- and bicarbonate-buffered suspensions (not shown).

Calcium chloride extraction was performed on the bio-
Induced sediment from PIPES-buffer to determine whether
|ion exchangeable Fe(II) was present. Very small amounts
[of Fe(II) [<1% of the 0.5 N HC1 extractable Fe(II)] were
textracted, indicating that most biogenic Fe(II) did not exist

in an ion-exchangeable state. Calcium chloride extraction
was not carried out with the sediment incubated in the
bicarbonate buffer because of concern for ferroan-CaC03
precipitation.

3.3.3. Acid treatment of the chemically and biologically
reduced sediments

Weak acid (0.5 N HC1) is used to extract "bioavailable
Fe(III) oxide" from oxidized sediments (Anderson et al.,
1998; Anderson and Lovley, 1999), and various Fe(II)
forms from reduced sediments/clays/Fe-oxides including:
adsorbed and precipitated Fe(II) phases (e.g., Fredrickson
et al., 1998; Zachara et al., 1998; Komlos and Jaffe, 2004;
Kukkadapu et al., 2004; Jaisi et al., 2005; Seabaugh
et al., 2006). Acid extraction (0.5 N HC1 for 1 h) was per-
formed on the unreduced sediment to estimate the "bio-
available Fe(III) oxide" content (ferrihydrite primarily)
.and to determine phyllosilicate phase stability in weak acid.
It was also performed on the bioreduced sediments to
quantify biogenic Fe(II) and to follow possible bioreduc-
tion-induced changes in the acid-stability of the phyllosili-
cate structure.

Little or no Fe, Si, Al or Mg was extracted from pristine
sediment by the weak acid, confirming that both goethite
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and the phyllosilicate phases were stable towards 0.5 N
HC1, and documenting the absence of ferrihydrite. Howev-
er, acid extraction removed significant amounts of Si, Al,
and Mg along with the Fe(II) from the bioreduced sedi-
ments (Table 3). Little or no Fe(III) was observed in any
of the 1 h-weak acid extractions of the bioreduced sedi-
ment. The extracted cations were presumed to result from
the dissolution of fine-grained phyllosilicates whose struc-
ture was rendered "more soluble" by complete structural
Fe(III) reduction. AQDS had little or no effect on the
acid-extractable concentrations of Si, Al, Mn and Mg,
but markedly enhanced acid-extractable Fe(II). It was
therefore implied that AQDS enhanced goethite bioreduc-
tion without impacting phyllosilicate reduction. This find-
ing contrasts with that of Dong et al. (2003) who
observed enhanced bioreduction of illite by CN32 when
AQDS was present.

Mossbauer analysis of the acid-treated, bioreduced sed-
iment (60 d without AQDS; Fig. 4b) displayed marked
reductions in the Fe(II) doublet relative to the unextracted,
bioreduced sample. The computed Fe(II)/Fe(III) ratio of
the acid-treated, bioreduced sediment was 0.33 as com-
pared to 0.25 for the pristine sediment and ~0.6 for the
bioreduced sediments. These observations implied that:
(i) the observed phyllosilicate Fe(II)/Fe(III) ratio of biore-
duced samples (~0.6) represented an average state contain-
ing unreduced [Fe(II)/Fe(III) = 0.25] and completely
reduced phyllosilicate domains [Fe(II)/FeToT ~ 1 ], and
(ii) weak acid dissolved only those phyllosilicates, or do-
mains within them, where structural Fe(III) was fully re-
duced. The slightly higher phyllosilicate Fe(II)/Fe(III)
ratio of the acid-treated, bioreduced sediment (0.33) as
compared to the pristine sediment (0.24) was probably
due to incomplete dissolution of reduced phyllosilicate do-
mains in the 1 h extraction (Komlos and Jaffe, 2004).

The acid induced (0.5 N HC1) dissolution behavior of
the DCB-treated pristine sediment (Fig. 6) lent support to
our conceptual model of reduced and unreduced phyllosili-
cate domains in the bioreduced sediment. The strong DCB
reductant extracted most of the Fe(III) oxides, and reduced
a portion of the structural Fe(III) to structural Fe(II) in the
phyllosilicates (Fig. 3). On acid contact, the DCB-treated
sediment rapidly released Fe(II), Al, and Si that were pre-
sumed to originate in an accessible, high-surface area phyl-
losilicate phase that was reactive with dithionite. The
absence of Fe(III) at time periods of less than 24 h indicat-
ed that Fe in this acid-soluble phyllosilicate was fully re-
duced. The dissolution rate slowed after 24 h and
increasing concentrations of Fe(III) were observed in the

Time (h)

Fig. 6. Acid extractable solutes (Fe2+, FeTOT. Si, and Al) from the DCB-
treated pristine sediment.

extracts, while Fe(II) concentrations remained constant.
This later stage was consistent with the dissolution of larger
particle-sized illites and micas whose Fe(II)/Fe(III) ratios
were less or uneffected by DCB treatment.

4. Discussion

4.1. Mineral electron acceptors for bacterial Fe(III)
respiration

The studied sediment contained a mixture of millimeter-
sized aggregates of contrasting mineralogy and physical
properties, and different total iron contents. The relative
percentages of the two clast types were not quantitatively
determined, but they appeared to be present in nominally
equal abundances. Weathered clasts were present with
large open internal pores, large mineral crystallites (e.g.,
>10 (am), and Fe-containing micas. These clasts would ap-
pear to offer a physical environment conducive to intra-
particle bacterial colonization, but their average total Fe
content was three times less (2.12 wt%) than the other pre-
dominant clast type (6.12 wt%). The compact clasts con-
tained a fine-textured groundmass of Fe-containing illite
with imbedded crystallites of nano-meter sized Fe(III) oxi-
des. With negligible internal porosity, these clasts offered a
significant challenge of accessibility to organisms that re-
quire direct contact for reduction. We have previously ob-
served (Fredrickson et al., 2004) that Tc(VII) reduction by
"sorbed" Fe(II) in the bioreduced FRC sediment occurs

Table 3
Concentration of acid soluble Fe,

Bioreduced sediment

60 d (without AQDS)
40 d (with AQDS)
95 d (with AQDS)

Mn, Si, Al and Mg

Fe (mM)

12.1
20.1
28.5

Mn (mM)

4.8
4.9
5.9

Si (mM)

4.9
4.8
5.4

Mg (mM)

4
4.6
5.3

Al(mM)

12
12.2
14.1
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preferentially within the weathered clasts, possibly indicat-
ing that bacterial Fe(III) reduction was higher in those
domains.

On a bulk basis, approximately 50% of the Fe-roT was
present as goethite, with the remainder residing in phyllos-
ilicates. A disproportionate fraction of the Fe(III) resided
in the compact clasts. EMP analyses indicated that phyllos-
ilicate Fe existed in illite and mica, at minimum. Iron may
also exist in the vermiculites and HIV evident by XRD, but
these phases were difficult to unequivocally identify by elec-
tron microscopy and compositional analysis was not per-
formed. Given the diagenetic relationship between micas,
vermiculites, and HIV in acid soils (Barnhisel and Bertsch,
1989), it is probable that the observed vermiculites and
HIV were iron substituted as well. The clast locations of
the vermiculite components were not determined. A small
amount of hematite (<5% of FeTOT) was also present,
and its partial recalcitrance to DCB extraction indicated
that, like goethite, it resided in the compact clasts.

The partial reduction of both goethite and phyllosilicate
Fe(III) by CN32 was evident from the 5 K Mossbauer
spectra (Figs. 5c,d). We were unable to determine which
specific phyllosilicate phase was bioavailable, but the
observance of considerable weak-acid extractable Si, Al,
and Mg (Table 3) indicated that structural Fe(III) in a frac-
tion of the phyllosilicates was completely reduced. Com-
plete Fe reduction caused the phyllosilicates to be more
soluble in weak acid. Goethite and phyllosilicate Fe(III)
were reduced to equal extents in the 60 d incubation that
was not amended with AQDS where approximately 10—
15% of the Fe(III)TOT w as reduced (Figs. 5a,c). Hence,
there was no apparent bacterial preference for a specific
mineralogic electron acceptor based on accessibility or free
energy.

4.2. Aggregation effects on Fe (III) -mineral bioavailability

AQDS readily enters the electron transport chain of
DMRB (DiChristina et al., 2005), including Shewanella
and is rapidly reduced to AH2DS. AH2DS is a soluble
reductant that can access electron acceptors in pore and
intragrain space that is below the nominal size of CN32
(e.g., 0.3 x 2.0 um) by either advection or diffusion. The ex-
tent of mineral Fe(III) bioreduction in the FRC sediment
was threefold greater in media that contained AQDS.
AQDS enhanced the bioreduction of goethite, but had no
appreciable effect on phyllosilicate reduction. Goethite
was found primarily in the compact clasts of the FRC sed-
iment. Direct bacterial contact with goethite that was in the
interiors of such aggregates with small internal porosity
was limited in the incubations with CN32 alone. This ac-
cess limitation was relieved by AQDS. AQDS enhanced
the bioreduction of goethite and hematite in sand-textured
subsurface sediments from the Atlantic coastal plain (Za-
chara et al., 1998) by a comparable mechanism. Why
hematite in the FRC sediment was not reduced by AH2DS
is unclear.

The observed commonality in the phyllosilicate Fe(II)/
Fe(III) ratio (0.57 ± 0.06) of the three reduced sediments
(CN32, CN32/AQDS, and DCB) was unexpected. Prior
to experiment we speculated that reduction extent would
be greatest in the DCB and AQDS treatments because of
the ability of soluble reductants to access intraparticle,
fine-grained phyllosilicates in the compact clasts, as noted
above for goethite. Supporting this hypothesis was the
work of Dong et al. (2003) who found that AQDS en-
hanced the bioreduction of both illite and goethite by
CN32 in a mixture of these phases. Although we do not
know the specific phyllosilicate phase that was reduced in
the FRC sediment (e.g., vermiculite, HIV, or illite), it ap-
pears that: (i) the same phase or phase mixture was redox
active towards both CN32 or dithionite, and (ii) the total
amount of phyllosilicate Fe(III) that was reducible was
controlled by mineral physical and/or chemical factors
[e.g., it was limited to a maximum Fe(II)/Fe(III) ratio of
0.6].

Accessibility appeared as a minor factor influencing
phyllosilicate bioreduction, in spite of the presence of copi-
ous fine-grained phyllosilicates in internal domains of the
compact clasts. S. putrefaciens is known to produce soluble
reductants under certain conditions (e.g., Newman and
Kolter, 2000; Nevin and Lovley, 2000) and perhaps these
were produced here allowing intra-aggregate access to
phyllosilicates (and goethite) in the CN32 incubations
without AQDS. To be consistent with the observed results,
however, the soluble reductants would have had to exhibit
a higher effective redox potential, or been present in signif-
icantly lower concentration than AQDS.

4.3. The biotransformation product of goethite

The lack of extractability of sorbed biogenic Fe(II) by
CaCl2-2H2O suggested that it was a strongly sorbed or pre-
cipitated phase and not an ion exchange complex. Moss-
bauer measurements also supported this conclusion. Ion
exchangeable Fe(II) in smectite suspensions is "invisible"
to Mossbauer spectroscopy at RT because of a low recoil
fraction (Diamant et al., 1982). Accordingly, the presence
of an ion-exchangeable Fe(II) component on bioreduced
nontronite was deduced from a noted increase in the spec-
tral intensity of Fe(II) as measurement temperature was
lowered (Jaisi et al., 2005). In contrast, we observed similar
spectral areas for Fe(II) in bioreduced sediments at RT and
12 K which was not consistent with ion exchangeable
Fe(II) as a principal component.

The Mossbauer doublets of phyllosilicate Fe(II) and the
biogenic Fe(II) phase were not well-resolved from each
other at >12 K, making it difficult to identify the biogenic
Fe(II) material from the higher temperature spectra. The
presence of a distinct adsorbed or precipitated biogenic
Fe(II) phase, however, was evident at 5 K from magnetic
ordering that broadened the spectra from -5 to +6 mm/s
(Fig. 5), and lowered the contribution of the Fe(II) doublet
feature to the overall spectra. Comparable magnetic
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ordering was not observed in the DCB-treated sample at
5 K (Fig. 3), ruling out phyllosilicate Fe(II) as the source
of this spectral feature. The extent of magnetic ordering
was proportional to the decrease in the spectral area of
goethite, suggesting that the transformation of goethite
by CN32 or bioreduced AQDS was the source of this prod-
uct. Moreover, commonality in the Mossbauer parameters
of the various peaks observed in the 5 K spectra of the bio-
reduced sediments without and with AQDS, indicated that
the nature of this phase was the same in both materials,
and therefore, not solely a consequence of biomineraliza-
tion induced by direct cellular contact.

It is possible that the biogenic Fe(II) phase remained in
association with goethite in the sediment, its apparent
mineralogic source, because soluble Fe(II) was not ob-
served during the entire course of reductive incubation.
The temperature response and Mossbauer spectral signa-
ture of the biogenic Fe(II) phase resembled that of an
"adsorbed Fe(II)" phase observed by Williams et al.
(2005) in bioreduced ferrihydrite containing siderite and
magnetite. This unidentified phase displayed comparable
Mossbauer parameters at 4.2 K to our biogenic Fe(II)
phase at 5 K. While Fe(II) adsorbed on an Fe(III) oxide
surface would magnetically order at liquid He tempera-
ture due to spin polarization with the substrate (Rancourt
et al., 2005); we feel that the concentration of the biogenic

Fe(II) phase in our studied sediment was well above that
which can be rationalized as an adsorbed phase (e.g., a
surface complex) on the residual goethite. Considerations
of surface site concentration mandate that the phase be a
precipitate, possibly associated directly with the goethite
surface. We speculate that the phase could be a Fe(II)-
rich, Fe(II)-Al coprecipitate, with Al originating from
the aluminous goethite. This phase would be different
from that observed by Williams et al. (2005), as their
experimental system did not contain Al. Efforts continue
in our laboratory to identify this phase, as it may be of
significant general importance.

5. Conclusions

The dissimilatory metal reducing bacteria, 5. putrefaciens
strain CN32, was able to access various Fe(III) forms in a
physically aggregated, mineralogically complex shale-lime-
stone saprolite. Both goethite and Fe(III) containing phyl-
losilicates were utilized as electron acceptors for lactate
oxidation. In the absence of an electron shuttle, approxi-
mately 50% of the bioreduction was associated with phyllos-
ilicate Fe(III) and the remainder with goethite. These
mineral phases exhibited complex physical distribution at
the surfaces of and within aggregates of fine-grained crystal-
lites and their potential interfacial surface areas could not be
readily estimated. Consequently it was not possible to evalu-
ate whether there was competition between these phases for
electron equivalents, or the primary factors controlling bac-
terial utilization of different mineral Fe(III) forms. Experi-
mental evidence strongly suggested that Shewanella was
able to access intra-aggregate Fe(III), either through coloni-
zation of larger pores or release of a soluble reductant.

Reductive biologic activity yielded two primary mineral
products: (i) fine-grained phyllosilicate domains where all
structural Fe was reduced and that were soluble in 0.5 N
HC1, and (ii) a biotransformation product of goethite
exhibiting magnetic ordering in its 5 K Mossbauer spec-
trum. The goethite-derived phase was not identified be-
cause it exhibited different characteristics from all known
Fe(III) oxide transformation products. The lack of extract-
ability of sorbed Fe(II) in CaCl2-2H2O and its Mossbauer
response at various temperatures indicated that goethite
biotransformation product was not an adsorbed Fe(II) spe-
cies on the surfaces of phyllosilicates. Additional character-
ization [e.g., application of applied-field Mossbauer
spectroscopy where better resolution of phyllosilicate and
biogenic Fe(II) peaks is expected], and experiments (e.g.,
biotransformation studies of Al-substituted goethite and
low temperature Mossbauer measurements) are needed
for more definitive identification of this curious biogenic
Fe(II) product. Either one or both of these biotransforma-
tion products are responsible for the rapid heterogeneous
reduction of Tc(VII) noted in sediments treated similarly
in the lab (Fredrickson et al., 2004). These phases are also
the most likely mineral products formed through in situ
stimulation of the endogenous Fe(III)-reducing bacteria
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in the field site from which these sediments were obtained
(Istok et al., 2004).
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