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Abstract

A new approach is proposed for incorporating solid solution reactions into mass conservation equations describing reaction paths in
both closed and open systems. The method is applicable to problems involving advective, dispersive, and diffusive transport in a porous
medium. By representing the continuously variable solid solution composition with a discrete set of stoichiometric solids that span com-
position space, combined with a kinetic formulation of their rates of reaction, a self-determining spatial and temporal evolution of the
solid solution concentration and composition is obtained. It is demonstrated that equilibrium of an aqueous solution with a stoichiom-
etric solid derived from a solid solution corresponds to equilibrium of the solid solution itself if and only if equilibrium of the stoichi-
ometric solid is stable. One advantage of this approach is that it is unnecessary to introduce any additional compositional variables to
represent the solid solution. Discretization may be over the entire range of composition space, or over some subset depending on the
system. A major consequence of the kinetic discrete-composition solid solution representation is that modeling solid solutions is similar
to modeling pure mineral phases with the exception of a weighting factor applied to reaction rates of stoichiometric solids corresponding
to a common solid solution. With this approach, precipitation leads to a discrete zonation of the solid solution that approximates the
continuous variation in composition expected for the actual solid solution. The approach is demonstrated for a hypothetical ideal and
non-ideal binary solid solution AxB1�xC for a reaction path formulation and reactive transport involving advection and diffusion.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Solid solutions are ubiquitous rock-forming minerals
and are essential for understanding many geological pro-
cesses. For example, a recent study of hydrothermal ore-
forming processes of silver in the Coeur d’Alene mining
district in northern Idaho led to the development of a ther-
modynamic model for Ag–Cu solid solution in fahore and
Fe–Zn in sphalerite and provided an extensive database for
sulfide and sulfosalt solid solutions (Sack et al., 2005; Sack,
2005). In a study of crustal metamorphism of carbonates,
Ferry et al. (2005) concluded that solid solutions
were needed to explain field observations of layered
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carbonation-decarbonation reactions at Val d’Efra, Cen-
tral Alps, Switzerland.

In spite of the obvious importance of solid solutions in
fluid–rock interactions, little progress has been made to
couple these reactions to transport equations describing
advection, dispersion, and diffusion. In part, this may be
due to the inherent complexity that can result from reac-
tions involving solid solutions. Although congruent disso-
lution of a solid solution with fixed composition can be
described in a similar fashion to dissolution of a stoichiom-
etric mineral, precipitation and dissolution/recrystalliza-
tion processes are much more complex (Murphy and
Smith, 1988; Glynn and Reardon, 1990). This is a direct
consequence of the continuously variable composition of
a solid solution. Consider an aqueous solution that is
supersaturated with some solid solution forming mineral.
As precipitation commences, a range of compositions can
form depending on reaction kinetics of the solid solution.
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List of symbols

A Chemical species [—]
Aj The jth primary species [—]
Axmk Specific surface area of discretized stoi-

chiometric solid with composition xmk

[m�1]
AC Binary solid solution end member [—]
a1, a2 Binary solid solution activities [—]
aAþ , aBþ , aC� Activities of species A+, B+, and C� [—]
am

i Solid activity of the ith end member in
the mth solid solution [—]

B Chemical species [—]
BC Binary solid solution end member [—]
C Chemical species [—]
D Diffusion/dispersion coefficient [m2/s]
FAþ , FBþ , FC� Fluxes of species A+, B+, and C� [mol/

m2/s]
F xmk Rate factor to control reversibility [—]
GM Gibbs free energy of solid solution mix-

ture [J/mol]
Ixmk Kinetic reaction rate for the discretized

stoichiometric solid with composition
xmk [mol/m3/s]

Kaq
i Equilibrium constant for the ith second-

ary species [—]
Km

i Equilibrium constant of the ith end
member in the mth solid solution [—]

Kxm , Kxmk Equilibrium constant for stoichiometric
solid with composition xm and discret-
ized form xmk [—]

Kss Stoichiometric solid equilibrium con-
stant for a binary solid solution [—]

K1, K2 Binary solid solution equilibrium con-
stants [—]

kxmk Kinetic rate constant for discretized stoi-
chiometric solid with composition xmk

[mol/m2/s]
Lm Solidus for the mth solid solution [—]
lm Solutus for the mth solid solution [—]
Mm

i The ith end member of the mth solid
solution [—]

mi Molality of the ith secondary species
[mol/kg H2O]

mj Molality of the jth primary species [mol/
kg H2O]

mAþ , mBþ , mC� Molality of species A+, B+, and C�

[mol/kg H2O]
Nc Number of aqueous primary species [—]
Nm Number of end members in the mth sol-

id solution [—]
N�R Number of precipitating (+) and dissolv-

ing (�) stoichiometric solids belonging to
a solid solution in a control volume [—]

p Pressure [Pa]

Qm
i Ion activity product of the ith end mem-

ber in the mth solid solution [—]
Qxm

Ion activity product of stoichiometric
solid with composition xm [—]

Qss Ion activity product of stoichiometric
solid for a binary solid solution [—]

q Darcy velocity [m/s]
R Gas constant [mol/J/K]
r 3D spatial coordinate [m]
Sm

i Saturation state of ith end member of
the mth solid solution [—]

Sxm , Sxmk Saturation for stoichiometric solid with
composition xm and discretized form
xmk [—]

Sss Saturation for stoichiometric solid for a
binary solid solution [—]

S1, S2 Saturation state for binary solid solution
end members [—]

S�m Common saturation point of end mem-
bers and stoichiometric solid solution
[—]

T Temperature [�C]
t Time [s]
V xmk Molar volume for the discretized solid

solution with composition xmk [m3/
mol]

V ss Molar volume for the stoichiometric sol-
id in a binary solid solution [m3/mol]

xm
i Mole fraction of ith end member in the

mth solid solution [—]
xm Nm—tuple ðxm

1 ; . . . ; xm
Nm
Þ mole fractions

of end members in the mth solid solution
[—]

xmk Nm—tuple ðxm
1k1
; . . . ; xm

NmkZm
Þ mole frac-

tions of end members in the mth discret-
ized solid solution [—]

x Composition variable for binary solid
solution (x = x1) [—]

Zm Total number of discrete stoichiometric
solids for the mth solid solution [—]

Zm
i Total number of discrete stoichiometric

solids for the ith end member of the
mth solid solution [—]

a0, a1 Guggenheim parameters [—]
cj,i Activity coefficient of the jth primary

species or ith secondary species [kg
H2O/L]

dil Kronecker delta function [—]
fxmk

Rate factor [—]
km

i Activity coefficient of the ith end mem-
ber in the mth solid solution [—]

k1, k2 Activity coefficients for a binary solid
solution [—]
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lm
i Chemical potential of ith end member in

the mth solid solution [J/mol]
l1, l2 Chemical potentials of end members in

binary solid solution [J/mol]
mm

ji Stoichiometric solid reaction matrix for
the ith end member in the mth solid solu-
tion [—]

maq
ji Stoichiometric reaction matrix for

homogeneous aqueous reactions [—]emjm Stoichiometric coefficient matrix for the
overall stoichiometric solid solution [—]

qf Fluid density [kg/m3]
r Scale factor [—]

s Tortuosity [—]
u Porosity [—]
uxmk

Volume fraction for stoichiometric solid
solution with composition xmk [—]

uss Volume fraction for stoichiometric bina-
ry solid solution [—]

Wj Total concentration of the jth primary
species [mol/L]

Xj Total flux of the jth primary species
[mol/m2/s]

xxmk , xk Weight factor for kinetic reaction rate
[—]

Æ� � �æ Mean composition value [—]
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As the aqueous solution evolves over time, other composi-
tions become supersaturated and may precipitate. Subse-
quent precipitates are generally not in equilibrium with
previous precipitates which therefore must dissolve. In this
way, both the solid and aqueous solution compositions be-
come altered until equilibrium is achieved (possibly involv-
ing very long times) at some unique solid and aqueous
solution compositions. Surface armoring may prevent
recrystallization of the solid solution and the system can
behave irreversibly with the development of compositional-
ly zoned minerals. In a system involving advective and dif-
fusive transport the situation is even more complicated. In
such cases it is possible to form a solid solution with a spa-
tially variable composition from an initial homogeneously
distributed solid solution with fixed composition. Recrys-
tallization in response to changing fluid composition can
range from irreversible reaction with no recrystallization,
to complete recrystallization.

Murphy and Smith (1988) developed an irreversible
kinetic model for solid solution reaction in which they as-
sumed that dissolution proceeded from a single stoichiom-
etric phase with zero order kinetics. They treated
precipitation by assuming that the most stable solid com-
position formed. Back reaction of precipitated secondary
phases was prohibited. Glynn et al. (1990) presented a
model for calculating reaction paths involving reversible
and irreversible reaction with solid solutions using the ap-
proach introduced by Helgeson (1968) for describing
changes in geochemical systems in partial equilibrium. In
this approach, mass action equations for each solid solu-
tion end member (or component) are imposed on the sys-
tem together with mass conservation equations that
provide an equal number of equations as unknowns for
the aqueous composition and a unique solid solution com-
position and abundance. Irreversible processes are incorpo-
rated in the model by removing mass from the system
thereby preventing back reaction. As noted by Glynn
et al. (1990), however, the actual path followed by the sys-
tem is controlled by reaction kinetics. They applied their
model to both Berthelot–Nernst and Doerner–Hoskins
limiting cases of solid solution precipitation. The Berthe-
lot–Nernst case corresponds to completely reversible reac-
tion in which the solid solution re-equilibrates with the
fluid. The Doerner–Hoskins case, by contrast, assumes
complete irreversibility of secondary products, which are
assumed to become armored and thereby isolated from
the fluid so that back reaction does not occur. The final
state of this case thus depends on the reaction path. Several
computer codes implement an equilibrium formulation of
reactions involving solid solutions (Parkhurst and Appelo,
1999; Wolery, 1992); however, such models would appear
to have limited applicability due to their neglect of kinetics.
In the PHREEQEC code (Parkhurst and Appelo, 1999), it
is assumed that for each time step a solid solution dissolves
entirely and reprecipitates in equilibrium with the solution.
Recently, Nourtier-Mazauric et al. (2005) presented a
kinetic model for describing reaction of ideal solid solu-
tions in a batch reactor. In their formulation only the most
stable phase is allowed to precipitate.

It should be remarked that an argument often put forward
to justify the use of local equilibrium for mineral reaction
rates is that kinetic rate laws and their associated rate con-
stants and surface areas are not well established. However,
this deficiency would not appear to justify taking the rate
constant to be infinite rather than some finite value. Qualita-
tively different behavior is obtained for finite versus infinite
kinetics: for example, the finite time associated with forma-
tion of an advancing reaction front in a kinetic description.
While some problems may be adequately characterized by
the local equilibrium assumption, many mineral–fluid inter-
actions are characterized by sluggish mineral reactions. The
kinetic formulation enables both of these cases to be consid-
ered in a single framework with local equilibrium obtained as
a special case of the kinetic description. Kinetics has the
advantage of being more flexible, allowing the departure
from local equilibrium to be investigated even if the precise
form of the rate law is unknown.

In this work, a new approach is introduced for incorpo-
rating solid solutions into multicomponent reactive trans-
port equations by discretizing the solid solution into a
finite set of stoichiometric solids with fixed compositions.
Central to this formulation is a kinetic description of solid
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solution reaction rates. With this approach it is demon-
strated that the solid solution composition is self deter-
mined both spatially and temporally from the reactive
transport equations, without the necessity to introduce
any additional composition variables. In this sense, the
treatment of solid solutions is no different than that of a
pure phase. The advantage of a kinetic formulation is that
not only are mineral concentrations determined directly
from mass conservation equations, but also the solid solu-
tion composition.

In the following, we first develop the general analytical
equations for calculating solid-solution equilibria and the
relation between end-member and stoichiometric composi-
tion equilibria (Sections 2.1 and 2.2). We then develop the
discrete approximation and its implementation in reaction
path and transport equations (Sections 2.3–2.5). Finally, an
example binary solid solution is used to illustrate the dis-
crete model and demonstrate that it accurately approxi-
mates analytical results (Section 3).

2. General relations

The usual approach to describe the reaction of pure sol-
id phases in reactive transport equations is to introduce
variables for the concentration or abundance of each phase
as a function of time and space. A solution to the govern-
ing equations provides both the region in space occupied
by each solid and its mineral abundance at each grid point.
The implementation of a kinetic description of mineral
reactions, besides being more realistic, also has an impor-
tant numerical advantage. It allows the solid evolution over
a single time step to be approximately decoupled from
equations describing the evolution of the aqueous solution
through an operator splitting approach. This decoupling
depends on the slow changes in properties of the porous
medium resulting in a quasi-stationary behavior (Lichtner,
1988). Thus over a time step, first the solid concentrations,
their surface areas, and porosity are frozen in place and
only the fluid composition is allowed to change. Solving
for the new fluid composition provides both solute concen-
trations at the new time step and mineral reaction rates.
Once the mineral reaction rates have been obtained, new
mineral concentrations follow by integrating the mineral
mass transfer equations over the time step. In this way,
the reacting mineral assemblage at each location in the
computational domain is directly determined from the
transport equations without the need for any further anal-
ysis. It is essential, of course, to include the correct set of
reacting minerals and exclude those minerals which ther-
modynamically may be possible to react, but which are
inhibited by nucleation kinetics.

In the case of solid solutions for which composition is
continuously variable, the situation becomes much more
complex. In this case, the solid solution composition must
be determined in addition to its abundance, as they both
evolve temporally and spatially with changing solution
composition. Thus, incorporation of solid solutions into
reactive transport equations would appear to necessitate
the introduction of additional descriptive quantities: name-
ly, a set of continuous variables to specify the solid solution
composition at as a function of time and space. To make
matters even more difficult, complete re-equilibration of
the solid solution with the changing aqueous phase may oc-
cur only partially or not at all, making it necessary to keep
track of different solid solution compositions and abun-
dances through additional degrees of freedom as new layers
are deposited at different points in space at different times.
This possibility introduces all sorts of complicating effects
such as surface armoring with newly deposited layers, etc.
In what follows such effects including solid state diffusion
are not considered further.

With this caveat, in this work it is demonstrated that
the same techniques used for describing the reaction of
pure phases in reactive transport equations can also be
applied to solid solutions. The approach developed here
is to discretize the solid solution composition: a solid
solution is represented through a discrete set of composi-
tions that span some subset (which may include the entire
range) of composition space sufficient to characterize the
particular system at hand. This approach thus circum-
vents the need to solve for additional composition vari-
ables. In order to accurately represent changes in
composition, a sufficiently fine compositional discretiza-
tion of the solid solution must be used. In this way, a con-
tinuous variation in composition is replaced by a discrete
set of compositions. Each solid solution composition is
treated as a stoichiometric solid. All such solids are
governed by a kinetic rate law and may be considered
to react reversibly or irreversibly. Because of the kinetic
nature of the solid solution reaction rates, more than
one solid composition is generally present at any given
location and at any particular time. As shown below for
reaction path simulations, the kinetic implementation
drives the stoichiometric solid solution system to its true
equilibrium composition. Thus, through a kinetic
implementation of mineral reaction rates combined with
a discrete set of solid solution compositions, a seamless
approach to incorporating solid solutions into reactive
transport equations is achieved without the introduction
of additional composition variables.

2.1. Solid solutions

Reaction of the mth solid solution whose composition is
represented symbolically by ðMm

1 Þxm
1
ðMm

2 Þxm
2

. . . ðMm
Nm
Þxm

Nm
,

having mole fractions xm
i of the ith end member Mm

i , with
an aqueous solution is described by the simultaneous Nm

end-members reactionsX
j

mm
jiAj�Mm

i ði ¼ 1; . . . ;NmÞ; ð2:1Þ

with aqueous primary species Aj and stoichiometric reac-
tion coefficients mm

ji . There are Nm � 1 independent solid
composition variables due to the constraint
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XNm

i¼1

xm
i ¼ 1. ð2:2Þ

The shorthand notation xm is used to denote the Nm-tuple:
xm ¼ fxm

1 ; . . . ; xm
Nm
g, with the following notation for the

solid solution chemical formula

Mxm ¼ ðMm
1 Þxm

1
ðMm

2 Þxm
2

. . . ðMm
Nm
Þxm

Nm
¼
Y

i

ðMm
i Þxm

i
. ð2:3Þ

Other formulations of solid-solution components besides
using end members are also possible such as site occupancy
and exchange ions (Nordstrom and Munoz, 1985). Howev-
er, this does not affect the presentation given here and these
other approaches are not considered further. Pure phases
in addition to solid solutions can be treated with the same
formulation by setting Nm = 1.

Equilibrium of a solid solution with an aqueous solution
consists of the Nm mass action relations

Km
i ¼

am
i

Qm
i

ði ¼ 1; . . . ;N mÞ; ð2:4Þ

with equilibrium constant Km
i ðT ; pÞ a function of tempera-

ture T and pressure p, end-member solid activity am
i , and

ion activity product Qm
i defined by

Qm
i ¼

Y
j

cjmj

� �mm
ji ; ð2:5Þ

where mj refers to the molality of the jth primary species
with activity coefficient cj. For an ideal solid solution the
activity of the ith end member is equal to its mole fraction

am
i ¼ xm

i . ð2:6Þ
In the general case of nonideality the solid activity is ex-
pressed as

am
i ¼ km

i xm
i ; ð2:7Þ

with solid activity coefficient km
i .

The overall reaction of the stoichiometric solid solution
with fixed composition xm is obtained by summing the indi-
vidual end-member reactions, Eq. (2.1), weighted by their
respective mole fractions to giveX

ji

xm
i mm

jiAj�

X
i

xm
i M

m
i �Mxm . ð2:8Þ

Eq. (2.8) may be rewritten more concisely asX
j

emjmAj�Mxm ; ð2:9Þ

withemjm ¼
X

i

mm
jix

m
i . ð2:10Þ

The corresponding mass action relation is given byY
i

ðKm
i Þ

xm
i ¼

Y
i

am
i

Qm
i

� �xm
i

. ð2:11Þ

Defining the equilibrium coefficient Kxm for the stoichiom-
etric solid solution Mxm in terms of the end-member equi-
librium constants and their activities as
KxmðT ; p; xmÞ ¼
Y

i

Km
i

am
i

� �xm
i

; ð2:12Þ

then equilibrium of the stoichiometric solid solution with
composition xm follows as:

Kxm Qxm
¼ 1; ð2:13Þ

where the ion activity product Qxm
is given by

Qxm
¼
Y

i

ðQm
i Þ

xm
i . ð2:14Þ

The equilibrium coefficient Kxm is a function of the compo-
sition of the stoichiometric solid in addition to temperature
and pressure. The product Kxm Qxm

is defined as the satura-
tion state SxmðxmÞ of the stoichiometric solid solution with
composition xm

SxmðxmÞ ¼Kxm Qxm
; ð2:15Þ

¼
Y

i

Km
i

am
i

Qm
i

� �xm
i

. ð2:16Þ

It follows that SxmðxmÞ can be expressed as a product of the
end-member saturation states according to

SxmðxmÞ ¼
Y

i

ðSm
i Þ

xm
i ; ð2:17Þ

where Sm
i refers to the saturation state of the ith end mem-

ber defined as

Sm
i ¼

Km
i

am
i

Qm
i . ð2:18Þ

As has been noted previously (e.g., Glynn et al., 1990, and
others), an aqueous solution that is in equilibrium with the
stoichiometric solid solution Mxm defined by Eq. (2.13),
does not imply that it is also in equilibrium with the solid
solution itself as defined by Eq. (2.4). Equilibrium with re-
spect to the stoichiometric solid solution alone imposes
only one condition on the system, whereas equilibrium with
each end member imposes Nm independent conditions giv-
en by Eq. (2.4). Thus, equilibrium of an aqueous solution
with any particular stoichiometric solid composition is only
a necessary but not sufficient condition for equilibrium of
the solid solution. To impose equilibrium of the solid solu-
tion, Nm conditions are needed: either each end member
must satisfy a corresponding equilibrium condition of the
form of Eq. (2.4), or equilibrium with Nm � 1 end members
and one stoichiometric solid solution composition is
required.

The above remarks apply to a continuous solid solution.
In the presence of a miscibility gap with the coexistence of
several phases, it is necessary to augment the above formula-
tion with the equality of the chemical potentials in the differ-
ent phases (e.g., Prigogine and Defay, 1969). Coexistence of
the exsolved phases implies the equilibrium relations

lm
i ¼ ðlm

i Þ
0
; ð2:19Þ

where lm
i and ðlm

i Þ
0 refer to the chemical potentials of the

end members with compositions xm and x0m, respectively,
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leading to additional constraints for equilibrium of the
solid solution.

2.2. Stability

To make use of the numerical advantages afforded by
pure solid phases, the continuously variable composition
solid solution is replaced by a discrete set of stoichiometric
solids. However, for this approach to be meaningful, it
must first be demonstrated that such a system can correctly
represent equilibrium states of a solid solution interacting
with an aqueous fluid. Stability is the key for understand-
ing the relation between equilibrium of a stoichiometric
solid and equilibrium of its corresponding solid solution.

An equilibrium point is stable, if the first partial deriva-
tives of the saturation with respect to changes in composi-
tion vanishes, and for a binary solid solution the second
derivative is negative [more complicated criteria exists for
multicomponent solid solutions derived by Prigogine and
Defay (1969)]. We demonstrate that equilibrium of a sto-
ichiometric solid solution implies equilibrium of the solid
solution if and only if the stoichiometric solid is in a stable
equilibrium state. To accomplish this, note that if a com-
mon saturation state S�m exists among end members, so that

Sm
1 ¼ Sm

2 ¼ � � � ¼ Sm
Nm
¼ S�m; ð2:20Þ

then the stoichiometric solid solution with composition xm

also has the same saturation state

Sxm ¼
Y

i

ðS�mÞ
xm

i ¼ ðS�mÞ
P

i

xm
i ¼ S�m. ð2:21Þ

Thus, if all end-member saturation states are equal to each
other, they are equal to the stoichiometric solid solution
saturation. In particular, if S�m ¼ 1, then since the end mem-
bers are in equilibrium, the solid solution with composition
xm is in equilibrium as is the stoichiometric solid with the
same composition.

Furthermore, at the common intersection point of the
end members and stoichiometric solid saturation curves,
the stoichiometric saturation state is at an extremum, and
conversely. This observation follows from the relation
(see Appendix A)

o

oxl
ln Sxm

����
S�m

¼ ln
Sm

l

Sm
Nm

 !�����
S�m

¼ 0; ð2:22Þ

and thus the first derivative of the stoichiometric saturation
vanishes at the common intersection point S�m. Conversely, if
the first derivative of the stoichiometric saturation with re-
spect to all end members vanishes, then the point at which
it vanishes must be a common saturation point. To deter-
mine whether the extremum is a minimum, maximum, or
inflection point, the second derivative is needed, given by

o
2

oxm
i oxm

l

ln Sxm

����
�
¼ �

xm
i þ dilxm

Nm

xm
i xm

N

� o

oxm
l

ln
km

i

km

 !
; ð2:23Þ
Sm m Nm
where dil denotes the Kronecker delta function. For a bina-
ry solid solution with x ¼ xm

1 this expression reduces to

o2

ox2
ln Sxm

����
S�m

¼ � 1

xð1� xÞ �
o

ox
ln

k1

k2

� �
. ð2:24Þ

For an ideal solution the second derivative at the common
intersection point is always negative, implying the extre-
mum is always a maximum and thus equilibrium of the sol-
id solution is always stable. Thus, for an ideal solid
solution, an equilibrium point of a stoichiometric solid
solution is stable if and only if it is a true equilibrium state
of the solid solution. It follows in this case that if the stoi-
chiometric solid is in equilibrium for some particular com-
position, but the solid solution is not in equilibrium, then
the equilibrium point must be unstable. In this case,
according to Eq. (2.22), the first derivative does not vanish
and neighboring compositions are supersaturated or
undersaturated. As a consequence, reaction must continue
until the system achieves a stable equilibrium state. Because
over the range of stoichiometric solid compositions the
only stable equilibrium state is true equilibrium of the solid
solution, and if essentially all possible solid compositions
are available to react, the system can ‘‘find’’ the true equi-
librium state and thus cannot become trapped in an unsta-
ble state representing false equilibrium.

These relations are depicted in Figs. 1a and b for an ide-
al binary solid solution of the form AxB1�xC, in which the
stoichiometric saturation S (x) [Eq. (2.16)], and end-mem-
ber saturations S1 (x) and S2 (x) [Eq. (2.18)] are plotted as
a function of composition x to illustrate stable and unsta-
ble equilibrium conditions (see Section 3.1.1 below for
parameters used to generate the figures). In Fig. 1a, a solu-
tion composition in true equilibrium with a solid solution
having the composition x = 0.5, is used to show that the
saturation curves intersect at a common point with a value
of 1, demonstrating that equilibrium of the solid solution
and stoichiometric solid coincide. In Fig. 1b, equilibrium
is perturbed relative to the solution in Figure 1a by increas-
ing the amount of component A by a small factor of 1.05.
The stoichiometric solids with compositions xa and xb are
both saturated, but solid compositions in the interval xa

to xb are supersaturated and can precipitate. Outside this
interval the solid would dissolve if present.

For a non-ideal solid solution, depending on the solid
activity coefficients, and hence the excess free energy, the
second derivative may be positive or negative and the issue
of stability is more complex (Prigogine and Defay, 1969).
In terms of the saturation state, simultaneous equilibrium
of solid compositions xm and x0m imply the relations

Sm
i ðxmÞ ¼

Km
i Qm

i

am
i
¼ 1; ð2:25aÞ

and

Sm
i ðx0mÞ ¼

Km
i Qm

i

ðam
i Þ
0 ¼ 1. ð2:25bÞ
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Fig. 2. Stoichiometric saturation state S (x), and end member saturation
states S1 (x) and S2 (x) for a non-ideal binary solid solution plotted as a
function of composition x for: (a) stable equilibrium at compositions x

and x0, and (b) unstable equilibrium of stoichiometric solids with
compositions xa, xb, xc, and xd.
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Fig. 1. Stoichiometric saturation state S (x), and end member saturation
states S1 (x) and S2 (x) for an ideal binary solid solution plotted as a
function of composition x for: (a) stable equilibrium of a stoichiometric
solid with composition 0.5, and (b) unstable equilibrium of stoichiometric
solids with compositions xa and xb.
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Clearly, the stoichiometric saturation states are also unity:
SxmðxmÞ ¼ Sx0mðx0mÞ ¼ 1. Equating Sm

i ðxmÞ and Sm
i ðx0mÞ yields

Km
i Qm

i

am
i
¼ Km

i Qm
i

ðam
i Þ
0 ; ð2:26Þ

or

am
i ¼ ðam

i Þ
0
; ð2:27Þ

equivalent to equality of the chemical potentials [Eq.
(2.19)]. Conversely, if the stoichiometric solids correspond-
ing to compositions xm and x0m of the exsolved phases are in
equilibrium, then the solid solution is in equilibrium for the
two compositions provided that o ln Sxm=oxm

l jxm;x0m
¼ 0 (i.e.,

the equilibrium points are common intersection points with
the end members, and they represent stable equilibria).

Equilibrium states that satisfy Eq. (2.26) for a non-
ideal solid solution may be stable or unstable. If, for
a non-ideal binary solid solution, the second derivative
is negative, then the same arguments given above for
ideal solid solutions apply and the equilibrium state is
stable. If the second derivative of the saturation is posi-
tive, then the state is unstable and the solid solution
will exsolve, if kinetically possible, into stable solid com-
positions determined by the miscibility gap in the free
energy. In the presence of a miscibility gap, two maxi-
ma may occur in the stoichiometric saturation curve
separated by a minimum. The maxima correspond to
the most stable compositions on either side of the sol-
vus. This is demonstrated in Fig. 2a which is calculated
for the unique solution composition in equilibrium with
compositions on both sides of the solvus (see Section
3.1.2 below for parameters used to generate the figures).
The saturation curves for the stoichiometric solid [Eq.
(2.16)] and end members [Eq. (2.18)] all intersect at a
common value of 1 at the points x and x0. The first
derivatives at points x, x0, and x00 are all zero, but
points x and x0 have a negative second derivative (and
are thus stable), whereas point x00 has a positive second
derivative (and is thus unstable).
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If the aqueous solution is perturbed away from equilib-
rium by increasing the concentration of component A by a
factor of 1.05, local equilibria occur, but as shown in
Fig. 2b they are unstable (points labeled xa, xb, xc, and
xd). As a consequence, stoichiometric solid compositions
in the intervals xa–xb and xc–xd are both supersaturated
and precipitate, and compositions outside these intervals
are undersaturated and dissolve.

2.3. Discrete solid solution formulation

Solid solutions are incorporated into mass conservation
equations describing reactive transport in a porous medium
by discretizing the solid solution composition into a se-
quence of stoichiometric solids with compositions labeled
xmk ¼ fxm

1k1
; . . . ; xm

NmkZm
g, where the subscripts k1; . . . ; kZm re-

fer to a particular discretization with Zm different stoichi-
ometric solids. This sequence of solid solutions forms a
basis set with which to represent the continuous variation
in composition of the actual solid solution. Discretizing
each independent composition variable xm

i into Zm
i incre-

ments Dxm
ikn
¼ xm

ikn
� xm

ikn�1
, gives a total of

Zm ¼
YNm

i¼1

Zm
i ; ð2:28Þ

different stoichiometric solid solutions. It should be noted
that the choice of discretization can be quite flexible; pre-
sumably even adaptive meshing could be implemented that
changes with time to reduce the number of compositions
needed. Although not pursued further here, an adaptive
solid solution mesh would appear to be the most efficient
characterization.

As an example, consider the binary solid solution com-
posed of end members AC and BC: (AC)x (BC)1�x =
AxB1�xC. A sequence of solid solutions is generated with
compositions Axk B1�xk C, for xk ¼ xk1

; . . . ; xkZ . For example,
xk = k/(Z � 1), (k = 0, . . . ,Z�1), for equal spacing which
includes end members. Taking Z = 101, gives the sequence:
{BC, A0.01B0.99C, A0.02B0.98C, . . . ,A0.99B0.01C,AC}, result-
ing in the set of reactions

xkAþ þ ð1� xkÞBþ þ C��Axk B1�xk C. ð2:29Þ
A more complicated example is given by the ternary solid
solution plagioclase: AnxOryAb1�x�y =Ca xKyNa1�x�y

Al1+xSi3�xO8, with end members An = CaAl2Si2O8, Or =
KAlSi3O8, and Ab = NaAlSi3O8. In this case, composition
space has two degrees of freedom with the constraint:
0 6 x + y 6 1. The end-member reactions have the form

Ca2þ þ 2Al3þ þ 2SiO2ðaqÞ � 8Hþ þ 4H2O�Anorthite;

ð2:30aÞ
Kþ þAl3þ þ 3SiO2ðaqÞ � 4Hþ þ 2H2O�Orthoclase;

ð2:30bÞ
Naþ þAl3þ þ 3SiO2ðaqÞ � 4Hþ þ 2H2O�Albite;

ð2:30cÞ
and the reaction for the stoichiometric solid solution An-

xOryAb1�x�y is given by

xCa2þ þ yKþ þ ð1� x� yÞNaþ þ ð1þ xÞAl3þ

þ ð3� xÞSiO2ðaqÞ � 4ð1þ xÞHþ

þ 2ð1þ xÞH2O �AnxOryAb1�x�y . ð2:31Þ

The stoichiometric coefficients appearing in this reaction
correspond to the coefficients emjm defined in Eq. (2.10). In
the general case of Nm end members, the discretized com-
position must satisfy

0 6
XNm�1

i¼1

xm
ik 6 1. ð2:32Þ
2.3.1. Convergence weight factor

A requirement of the discrete solid solution formulation
is that the solution to the reactive transport equations
should converge to a unique result with refinement of the
solid solution discretization. To understand the implications
of this requirement, first note that the solid solution volume
fraction uxm

is equal to the sum of the volume fractions of
the individual stoichiometric solids uxmk

according to

uxm
¼
XZ

k¼1

uxmk
. ð2:33Þ

As discussed below this sum may or may not include the
primary phase. Differentiating this expression with respect
to time t gives

ouxm

ot
¼
XZ

k¼1

ouxmk

ot
. ð2:34Þ

If the stoichiometric solids are treated as pure phases that
are not associated with a solid solution, then one has the
usual mass transfer equation

ouxmk

ot
¼ V xmk Ixmk ; ð2:35Þ

where V xmk denotes the molar volume and Ixmk the reaction
rate of the solid. Substituting this relation into Eq. (2.34)
then gives

ouxm

ot
¼
XZ

k¼1

V xmk Ixmk . ð2:36Þ

For the hypothetical situation that all rates are equal
(Ixmk1

¼ Ixmk2
¼ � � � ¼ IxmkZ

), then this equation reduces to
the expression

ouxm

ot
¼ ZV xmk1

Ixmk1
; ð2:37Þ

assuming equal molar volumes. This result is clearly incor-
rect: the total reaction rate should not be proportional to
the number of solids included in the discretization. For
convergence to be obtained the total rate must be indepen-
dent of the discretization.
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To remedy this situation, a weight factor xxmk 6 1 is
introduced with the property that

XZ

k¼1

xxmk ¼ 1. ð2:38Þ

The mass transfer equation for uxmk
is replaced by the

weighted rate

ouxmk

ot
¼ V xmk xxmk Ixmk . ð2:39Þ

Now if all rates are equal, one gets

ouxm

ot
¼
XZ

k¼1

V xmk xxmk Ixmk ¼ V xmk1
Ixmk1

XZ

k¼1

xxmk

¼ V xmk1
Ixmk1

; ð2:40Þ

which yields an overall rate for the solid solution which is
independent of Z, and thus converges with refinement of
the solid solution discretization.

As a consequence, the reaction rate of the solid solution
is related to the rates of the individual stoichiometric solids
through the weighted mean

Ixm ¼
1

V xm

XZ

k¼1

V xmk xxmk Ixmk . ð2:41Þ

Similarly, the contribution of each stoichiometric solid to
the total rate of reaction for aqueous species must also be
weighted by the factor xxmk .

The difficulty now arises as to how to choose the weight
factors xk. In the general case, not all rates will be equal
and, furthermore, not all stoichiometric solids included in
the discretization react at the same time within a given con-
trol volume. One approach is to construct xk inversely pro-
portional to the number of reacting stoichiometric solids
within any given control volume. Distinguishing between
precipitation and dissolution, the number of reacting stoi-
chiometric solids derived from a particular solid solution
within a control volume is equal to

N�R ¼
X

k;Ixmk?0

1 ¼
NþR ; Ixmk > 0;

N�R ; Ixmk < 0;

�
ð2:42Þ

where NþR denotes the number of precipitating and N�R the
number of dissolving stoichiometric solids. This yields the
following ansatz for xxmk

xxmk ¼
1

NþR
if Ixmk > 0; ð2:43Þ

and

xxmk ¼
1

N�R
if Ixmk < 0. ð2:44Þ

For Ixmk ¼ 0;xxmk is chosen equal to zero. Clearly Eq. (2.38)
holds. Other choices for xxmk are also possible. Since no
general derivation of the form of xxmk seems to be available,
it is necessary ultimately to test this ansatz against experi-
mental observation.
2.3.2. Interpretation of solid solution results

Two different interpretations of coexisting stoichiome-
tric solid solution compositions are possible. One interpre-
tation is to consider all stoichiometric solids derived from a
particular solid solution as representing a single phase. The
volume fraction of this phase is determined from Eq.
(2.33), and its composition is obtained by averaging over
the individual stoichiometric solids using a relation of the
form

hxm
i i ¼

1

uxm

X
k

xm
ikuxmk

; ð2:45Þ

where all quantities are referred to a single control volume.
This interpretation is consistent with a view of the solid
solution homogeneously changing composition with
changing fluid conditions. An alternative interpretation is
to distinguish between the initial primary phase and the
precipitated secondary stoichiometric solids which are tak-
en to form a separate phase. The definition of the weight
factor xxmk depends on the interpretation in terms of which
solids are included in the sums in Eqs. (2.33) and (2.45).

The approach proposed here may be contrasted with the
recent approach developed by Nourtier-Mazauric et al.
(2005) for ideal solid solutions. In their approach, a single
stoichiometric solid is allowed to precipitate corresponding
to the least soluble phase or, equivalently, the phase
with the greatest saturation state. After each time step,
the solid solution composition and volume fraction are re-
vised by mixing the precipitated phase in each control vol-
ume with the existing solid solution over a time step. In this
way, a single phase is maintained with varying composition
and amount. The updated solid solution is allowed to dis-
solve independently through a separate rate law from
precipitation.

There are several differences with the approach taken by
Nourtier-Mazauric et al. (2005) and the approach present-
ed here. In this approach, all supersaturated compositions
may precipitate (depending on the rate law used), and not
just the least soluble composition allowing the kinetic for-
mulation to provide a flexible means of determining the
composition of the precipitated solid. The initial solid solu-
tion is treated as a stoichiometric pure phase which can
continue to react until it disappears completely. During this
process it is replaced by a number of secondary stoichiom-
etric solids. As noted above, maintaining a distinction be-
tween primary and secondary phases of the same solid
solution provides a means of modeling different dissolu-
tion/precipitation scenarios. The method is applicable to
both ideal and non-ideal solid solutions, including the
occurrence of miscibility gaps. An assumption of instanta-
neous mixing is not used which would appear difficult to
generalize to non-ideal solid solutions in the presence of
a miscibility gap where solids with distinct compositions
may coexist as they exsolve from solution.

The Murphy and Smith (1988) approach is similar to the
second alternative interpretation in that they maintained a
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distinction between the primary phase which dissolves and
precipitation of a porous surface layer. They were interest-
ed in the formation of a distinct secondary phase that can
result in armoring of the primary phase through formation
of a porous surface layer thereby reducing its surface area
through some function of the amount of secondary precip-
itate. The Murphy and Smith approach only allows for
irreversible precipitation of the most stable phase, simulat-
ing a Doerner–Hoskins process. The approach described
here includes this as one end-member of a spectrum of pre-
cipitation processes that range from completely irreversible
to reversible.

Other conceptual models can also be investigated
through suitable manipulation of rate laws and surface
areas. For example, irreversible precipitation (composi-
tional zonation) can be described by imposing an irrevers-
ible rate law in which precipitated phases are not allowed
to redissolve. Precipitation (dissolution) of only the most
(least) saturated phase can be modeled by suitable adjust-
ment of the rate law and weighting factors.

In the following a discretized basis set is used to approx-
imate a continuous variation in solid solution composition,
first in a reaction path formulation for both closed and
open systems, and then applied to more general open sys-
tems involving advective and diffusive transport.

2.4. Reaction path formulation

The discretized solid-solution formulation is implement-
ed by first deriving equations for a reaction path in a closed
or open system (Helgeson, 1968). For the purpose of this
study, a system is closed if there is no mass transfer either
into or out of the system (Prigogine and Defay, 1969). As a
consequence, species concentrations can vary only as a re-
sult of physico-chemical processes taking place within the
system. In an open system, mass transfer may take place
with its surroundings. In a closed system, the final equilib-
rium state of the system is independent of the reaction
path, and hence kinetics; whereas in an open system the fi-
nal equilibrium state in general depends on the path (Prigo-
gine and Defay, 1969).

A general geochemical system is considered allowing for
both homogeneous reactions between aqueous species and
heterogeneous solid solution reactions. Homogeneous
reactions can be expressed in terms of a set of Nc primary
or basis species Ajðj ¼ 1; . . . ;N cÞ with the formX

j

maq
ji Aj�Ai; ð2:46Þ

for the aqueous secondary species Ai with stoichiometric
coefficients maq

ji (Lichtner, 1985). Heterogeneous reactions
between the aqueous fluid and solids have the form of
Eq. (2.8) for each stoichiometric solid solution composition
(pure phases have a single composition with a mole frac-
tion of unity)X

ji

xm
ikm

m
jiAj�Mxmk . ð2:47Þ
A reaction path is then described by the equations

d

dt
uWjðtÞ ¼ �

X
mik

mm
jix

m
ikxxmk Ixmk ðtÞ; ð2:48Þ

for the aqueous primary species, and

d

dt
uxmk
ðtÞ ¼ V xmk xxmk Ixmk ; ð2:49Þ

for the stoichiometric solid solution corresponding to the
kth discretized composition, with weight factor xxmk defined
in Eq. (2.42). In these equations, u denotes the aqueous
volume fraction within the batch reactor, Wj represents
the total concentration accounting for aqueous secondary
species given by

Wj ¼ qf mj þ
X

i

maq
ji mi

 !
; ð2:50Þ

where qf refers to the fluid density, and mj, mi refer to the
molality of the jth primary species and ith secondary spe-
cies, respectively. Assuming conditions of local equilibri-
um, the secondary species concentrations are determined
by the primary species concentrations through mass action
equations of the form

mi ¼ c�1
i Kaq

i

Y
j

ðcjmjÞm
aq
ji ; ð2:51Þ

where cj,i denote activity coefficients of the subscripted spe-
cies, and Kaq

i denotes the equilibrium constant. The quan-
tity uxmk

denotes the solid solution volume fraction for
the kth composition. The reaction rate Ixmk is assumed to
have the usual form given by transition state theory

Ixmk ¼ �kxmk Axmk ð1� Sxmk Þfxmk
ðuxmk

; Sxmk ÞF xmk ðu0
xmk
Þ; ð2:52Þ

where the rate constant kxmk in general depends on the solid
solution composition, and Axmk denotes the specific solid
surface area. The factors fxmk

and F xmk restrict the rate in
various cases. The quantity fxmk

constrains the reaction rate
to zero if the solid Mxmk is undersaturated and not present
in the system. It is defined as unity if uxmk

> 0 or Sxmk > 1,
and zero otherwise. The factor F xmk allows for irreversible
reaction to take place in which secondary precipitates (de-
fined as having zero initial concentration: u0

xmk
¼ 0) are not

allowed to back react and re-dissolve, and thus re-equili-
brate with the fluid. In this case, precipitates that cannot
dissolve simulate formation of layers (armoring). Thus
the quantity F xmk ¼ 1 for reversible reaction for which
complete re-equilibration of secondary solid products with
the fluid takes place (Berthelot, 1872; Nernst, 1891). For
irreversible reaction for which precipitated solids do not
re-equilibrate with the fluid (Doerner and Hoskins, 1925),
F xmk ¼ 0 if uxmk

ðtÞ > 0 and u0
xmk
¼ 0 and Sxmk < 1; and

F xmk ¼ 1 otherwise. Thus, dissolution of secondary solid
solution compositions is prohibited.

The kinetic rate constant kxmk is normalized to the sur-
face area of the reacting solid. Experimental determination
of surface area and the characterization of how it changes
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both spatially and temporally with reaction is perhaps one
of the most difficult aspects of quantitatively describing flu-
id/rock interactions. To complicate matters, there appears
to be no reason why the surface area should be the same for
precipitation and dissolution. The surface area for dissolu-
tion is proportional to the dissolving mineral grain size,
with the actual reactive surface area determined by such
factors as surface roughness and grain size distribution.
The surface area for precipitation, on the other hand, is
not necessarily limited by the precipitating phase itself
and could be related to the total area of the porous medi-
um. Alternatively, preferential nucleation could restrict the
reaction to specific sites. Surface armoring is another pro-
cess affecting surface area that is especially important in
the case of solid solutions where it can prevent re-equilibra-
tion of the precipitated solid, resulting in the formation of
isolated layers of differing composition. Finally, the change
in surface area with reaction would generally be expected
to behave differently for precipitation compared to dissolu-
tion, where in the latter case the surface area must vanish
when the mineral completely dissolves.

To complete the reaction path equations represented
by Eqs. (2.48) and (2.49), it also necessary to specify ini-
tial values for the fluid composition Wjð0Þ ¼ W0

j and
reacting solid uxmk

ð0Þ ¼ u0
xmk

. Various constraints can be
applied to determine the initial fluid composition, such
as pH and equilibrium with specified solids or gases. If
the initial fluid is in equilibrium with respect to a specific
solid solution composition, for example, this requires
applying the appropriate mass action constraints for each
end member.

Note that the composition variable xm does not appear
in the governing equations. With this formulation, the solid
solution composition along the reaction path is determined
directly through solving the reaction path equations. In
general, at each instant in time there will be in fact several
stoichiometric solid solutions present, either dissolving or
precipitating. Eventually, however, as the system
approaches equilibrium either a single unique composition
or at most two compositions can survive, with all other
compositions being undersaturated. Whether one or two
compositions are present in the calculated final state de-
pends on the solid solution discretization interval used in
the calculation and how close the exact final composition
is to the composition included in the discretization. At
any instant in time the average solid solution composition
hxm

i i is obtained from Eq. (2.45). The calculated solid com-
positions in the final state should bracket the unique ana-
lytical solution for final solid solution composition (see
below).

In a closed system, for which all stoichiometric compo-
sitions must be able to react, there exists a unique asymp-
totic equilibrium state independent of the reaction path
(and hence the kinetic rate constants used to calculate the
path) which is determined in the limit t fi1. Integrating
the reaction path equations over time yields (taking
u . constant)
Z 1

0

d

dt
uWj dt ¼ uðWeq

j �W0
j Þ;

¼ �
X
mik

mm
jix

m
ik

Z 1

0

xxmk Ixmk ðtÞdt; ð2:53Þ

andZ 1

0

d

dt
uxmk
ðtÞdt ¼ ueq

xmk
� u0

xmk
;

¼ V xmk

Z 1

0

xxmk Ixmk dt; ð2:54Þ

where Weq
j , ueq

xmk
refer to the final equilibrium state of the

system as t fi1, and W0
j , u0

xmk
refer to the initial state at

t = 0. Eliminating the integral over the reaction rate gives
the relation

uðWeq
j �W0

j Þ ¼ �
X
mik

mm
jix

m
ikV
�1

xmk
xxmk ðueq

xmk
� u0

xmk
Þ; ð2:55Þ

which, taking into account the initial solid solution compo-
sition and the survival of a single composition in the final
equilibrium state, becomes

uðWeq
j �W0

j Þ ¼ �
X

mi

mm
jiðxm

ikf
V
�1

xmkf
xxmkf

ueq
xmkf

� xm
ik0

V
�1

xmk0
xxmk0

u0
xmk0
Þ; ð2:56Þ

where k0 denotes the initial solid solution composition
present at t = 0, and kf denotes the final solid solution
composition as t fi1. Because only one stoichiometric
solid is presumed present in the initial and final states,
xxmkf

¼ xxmk0
¼ 1. This relation combined with the mass

action equations for each end member of the final state
solid solution enables the final equilibrium state to be cal-
culated directly, including the final composition of the sol-
id solution and its concentration. Note that there are an
equal number of unknowns as equations: Nc +

P
Nm,

for the Nc primary species concentrations, and for each
solid solution included in the system a single volume
fraction and Nm � 1 composition variables. Because
the equations are nonlinear, an iterative approach
(e.g., Newton–Raphson) is generally required to solve
the system of equations (Glynn et al., 1990). By solving
the reaction path equations the final composition is deter-
mined as part of the solution within the solid solution dis-
cretization error used in the calculation. Depending on
how close the discretized solids are to the exact result,
either one or at most two solid compositions which brack-
et the exact composition, can be present in the final reac-
tion path equilibrium state. For the case of an open
system in which irreversible reaction takes place, it is nec-
essary to solve the reaction path equations numerically to
obtain the final equilibrium state. In this case, the final
state depends on the path and hence the kinetic rate con-
stants used in the path calculation.

Depending on the relative rate constants, initial solid
composition and abundance, and the initial aqueous con-
centrations, different reaction paths result. However, be-
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cause the reaction path equations are linear in the kinetic
rate constants, scaling the rate constants by a common
factor r simply results in scaling the time by the reciprocal
factor r�1 according to the following relations (Lichtner,
1993)

WjðrtjkÞ ¼ WjðtjrkÞ; ð2:57aÞ
uxmk
ðrtjkÞ ¼ uxmk

ðtjrkÞ; ð2:57bÞ

for some constant scale factor r. As a consequence, if all rate
constants are scaled by the same factor, preserving relative
rates, the reaction path becomes stretched or compressed
in time. Thus the time to reach equilibrium decreases or
increases depending on whether r is greater or less than
one, respectively. This observation holds for both closed
and open systems. However, for a closed system, because
the final equilibrium state is independent of the path, chang-
ing the rate constants in some arbitrary manner only affects
the path but not the final equilibrium state. If the reaction
path is projected onto a Lippmann diagram (see below
and Appendix B), time is eliminated, and the path is invari-
ant with respect to scaling the kinetic rate constants.

2.5. Reactive transport equations

For an open system involving advection, dispersion, and
diffusion the incorporation of solid solution reactions be-
comes more complex because the solid solution composi-
tion may vary spatially as well as temporally. The mass
conservation equations for reaction of a discretized set of
stoichiometric solid solutions involving advective and diffu-
sive transport in a porous medium with porosity u can be
written in the following form for aqueous primary species as

o

ot
uWj þ $ �Xj ¼ �

X
mik

mm
jix

m
ikxxmk Ixmk ; ð2:58Þ

and for stoichiometric solid solutions as

o

ot
uxmk
¼ V xmk xxmk Ixmk ; ð2:59Þ

with Wj given by Eq. (2.56), and where uxmk
denotes the vol-

ume fraction of the stoichiometric solid solution with the
indicated composition. The total primary species flux Xj

for species-independent diffusion is given by (Lichtner,
1985)

Xj ¼ ½�suD$þ q�Wj; ð2:60Þ
where s denotes the tortuosity, D the diffusion/dispersion
coefficient, and q the Darcy flow velocity. The reaction rate
Ixmk has the same form given in Eq. (2.52) as used in the
reaction path formulation. As in the reaction path case
each stoichiometric solid solution can react either revers-
ibly or irreversibly and secondary precipitates may or
may not be allowed to redissolve and thus re-equilibrate
with the fluid.

The result of reactive transport calculations with pure
mineral phases is a sequence of reaction zones containing
different mineral assemblages (Lichtner et al., 1996). Solv-
ing the transport equations directly determines the react-
ing mineral assemblages. For the case with solid
solutions, a similar picture emerges but in this case a solid
solution reaction zone, in general, consists of a homoge-
neous phase with a continuously spatially variable compo-
sition. In the discrete solid solution approach, the
continuously variable composition expected of an actual
solid solution is replaced with a coexisting set of compo-
sitions. The average solid solution composition within an
alteration zone can be determined from Eq. (2.45) applied
to each spatial node n.

Scaling relations also apply to the advection, dispersion,
diffusion equation, similar to that for the reaction path
equation with some additional complications resulting
from dispersion and diffusion (Lichtner, 1993). One has

Wjðrr; rtjq;D; kÞ ¼ Wjðr; tjq; r�1D; rkÞ; ð2:61aÞ
uxmk
ðrr; rtjq;D; kÞ ¼ uxmk

ðr; tjq; r�1D; rkÞ; ð2:61bÞ

in which both the dispersion/diffusion coefficient and rate
constants are scaled simultaneously.

2.5.1. Local chemical equilibrium
The kinetic formulation of reaction rates should reduce

to the local equilibrium limit as the rate constants are al-
lowed to approach infinity (Lichtner, 1985). To demon-
strate that the local equilibrium limit holds for the
discrete-composition solid solution formulation, Eq.
(2.59) is substituted into Eq. (2.58) to give after rearranging
the transport equations

o

ot
uWj þ

X
mik

mm
jix

m
ikV
�1

xmk
uxmk

 !
þ $ �Xj ¼ 0. ð2:62Þ

In this equation, all reference to reaction rates has been
eliminated. Combining the transport equations with the
appropriate mass action equations given by Eq. (2.13) re-
sults in the local equilibrium limit. Solving the local equi-
librium equations requires determining not only the solid
abundance and composition, but also the region in space
where it is stable. Details of implementing the local equi-
librium limit for pure solid phases can be found in Licht-
ner (1990). For an ideal solid solution or in the absence of
a miscibility gap for nonideal, within each control volume
solutions the sum in Eq. (2.62) collapses to a single term
(or at most two terms) corresponding to the stoichiome-
tric solid in equilibrium with the aqueous solution. Reac-
tion rates for the stoichiometric minerals can be computed
from Eq. (2.59) once the solution has been obtained. Note
that the weight factor xxmk does not appear in the local
equilibrium limiting equations.

In an exact formulation, Nm mass action equations given
by Eq. (2.4) are required corresponding to each end mem-
ber of the solid solution. The mass conservation equations
combined with the end member mass action equations then
determine both the amount and composition of the solid
solution within each control volume, and the spatial region
of stability.
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3. Application to the binary solid solution AxB1�xC

In this section, the kinetic discretized composition ap-
proach to incorporating solid solutions in reaction path
and reactive transport equations is applied to a binary solid
solution with end-member components AC and BC

Aþ þ C��AC; ð3:1aÞ
Bþ þ C��BC; ð3:1bÞ

in a three component system with aqueous species A+, B+,
and C�. The corresponding mass action equations are giv-
en by (cf. Section 2.1)

K1 ¼
a1

aAþaC�
; ð3:2aÞ

K2 ¼
a2

aBþaC�
; ð3:2bÞ

with aqueous activities aAþ , aBþ , and aC� , and solid activi-
ties and equilibrium constants a1, a2, K1, K2, for end-
member solids AC and BC, respectively. For an ideal
solution solid

a1 ¼ x; ð3:3aÞ
a2 ¼ 1� x; ð3:3bÞ

where x refers to the mole fraction of component AC. At
equilibrium the solid and aqueous concentrations are relat-
ed by the expression

aAþ

aBþ
¼ K2k1ðxÞx

K1k2ðxÞð1� xÞ ; ð3:4Þ

obtained from the ratio of Eqs. (3.2a) and (3.2b), with solid
activity coefficients k1 and k2, in general, functions of the
solid solution composition. Conversely for an ideal solid
solution

x ¼ 1

1þ K2aBþ
K1aAþ

. ð3:5Þ

Combining reactions 3.1a and 3.1b, the overall reaction of
the stoichiometric solid solution AxB1�xC has the form

xAþ þ ð1� xÞBþ þ C�� xACþ ð1� xÞBC

� AxB1�xC. ð3:6Þ

Equilibrium of the stoichiometric solid AxB1�xC is deter-
mined from the relation

K1

k1ðxÞx

� �x K2

k2ðxÞð1� xÞ

� �1�x

ax
Aþa1�x

Bþ aC� ¼ 1. ð3:7Þ

Defining the equilibrium constant for the stoichiometric
solid solution as

KssðxÞ ¼
K1

k1ðxÞx

� �x K2

k2ðxÞð1� xÞ

� �1�x

; ð3:8Þ

the equilibrium condition can be expressed in terms of the
saturation index Sss defined as

SssðxÞ ¼ KssðxÞQssðxÞ ¼ 1; ð3:9Þ
where the ion activity product Qss (x) is defined as

QssðxÞ ¼ ax
Aþa1�x

Bþ aC� . ð3:10Þ

As noted above equilibrium of the stoichiometric solid
AxB1�xC does not imply equilibrium of the solid solu-
tion with composition x. This condition is only a neces-
sary one, but not sufficient. In addition, equilibrium
with either end member AC or BC must also be im-
posed on the system to obtain equilibrium with the solid
solution.

An analytical solution can be derived for equilibrium
with a given binary solid solution composition under
ideal conditions and assuming unit activity coefficients.
There are three unknowns mAþ , mBþ , and mC� , and
three equations consisting of the mass action equations
for AC and BC, and charge conservation. It follows
that:

mAþðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk1ðxÞK�1

1

1þ ð1�xÞk2ðxÞK1

xk1ðxÞK2

vuut ; ð3:11aÞ

mBþðxÞ ¼
ð1� xÞk2ðxÞK1

xk1ðxÞK2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk1ðxÞK�1

1

1þ ð1�xÞk2ðxÞK1

xk1ðxÞK2

vuut ; ð3:11bÞ

mC�ðxÞ ¼ mAþðxÞ þ mBþðxÞ. ð3:11cÞ
An alternative approach to determining equilibrium

conditions is based on a Lippmann diagram (Lippmann,
1980; Glynn et al., 1990). At equilibrium the following con-
dition must hold (a general formulation for a multicompo-
nent system is presented in Appendix B).

mC� mAþ þ mBþð Þ ¼ a1

K1

þ a2

K2

; ð3:12Þ

as follows from the mass action equations, Eqs. (3.2a) and
(3.2b). It also follows that:

mC�ðmAþ þ mBþÞ ¼
1

K1

k1
X Aþ þ K2

k2
X Bþ

; ð3:13Þ

obtained by eliminating x from the mass action equations,
where XA,B refers to the aqueous activity fractions

X Aþ;Bþ ¼
mAþ ;Bþ

mAþ þ mBþ
. ð3:14Þ

Following Lippmann (1980), for a binary solid solution the
solidus is defined as

LðxÞ ¼ log
xk1

K1

þ ð1� xÞk2

K2

	 

; ð3:15Þ

and the solutus as

lðX AþÞ ¼ � log
K1

k1

X Aþ þ
K2

k2

ð1� X AþÞ
	 


. ð3:16Þ

Equilibrium is determined from the tie line determined by
the equality

LðxÞ ¼ lðX AþÞ; ð3:17Þ
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where x and X Aþ are related through the equation

X AþðxÞ ¼
xK2k1ðxÞ

xK2k1ðxÞ þ ð1� xÞK1k2ðxÞ
. ð3:18Þ

For non-ideal solid solutions, a Lippmann diagram for the
solutus is constructed by solving Eq. (3.13) for X Aþ to give

X AþðxÞ ¼
10�LðxÞ � K2=k2ðxÞ

K1=k1ðxÞ � K2=k2ðxÞ
; ð3:19Þ

where LðxÞ refers to the solidus defined in Eq. (3.15).

3.1. Reaction path

In this section, the reaction path calculations in a closed
system are presented to illustrate the discrete solid solution
formulation. Although the discrete formulation only uses
stoichiometric solids (which as already noted cannot
uniquely define solid solution equilibria), the kinetic for-
mulation together with incorporation of a range of stoichi-
ometric solid compositions, enables the system to find the
correct solid solution equilibrium state (within the accuracy
of the discretization) as illustrated in the following reaction
path simulations. A reaction path describing an aqueous
solution reacting with a binary solid solution is defined
through the kinetic mass transfer equations (neglecting
changes in volume)

uqf

dmAþ

dt
¼�

X
k

xkxkI ssðxkÞ; ð3:20aÞ

uqf

dmBþ

dt
¼�

X
k

ð1� xkÞxkI ssðxkÞ; ð3:20bÞ

uqf

dmC�

dt
¼�

X
k

xkI ssðxkÞ ¼
d

dt
ðmAþ þ mBþÞ; ð3:20cÞ

for aqueous species with molalities mAþ , mBþ , and mC� , and
fluid density qf, and

ouss;k

ot
¼ V ssxkI ssðxkÞ; ð3:21Þ

for the solid phase with compositions Axk B1�xk C with vol-
ume fraction uss,k, where the reaction rate is given by the
usual expression based on transition state theory

I ssðxÞ ¼ �kssðxÞAssðussÞð1� SssðxÞÞfF ; ð3:22Þ
where kss refers to the kinetic rate constant (in general a
function of solid composition), Ass denotes the specific sur-
face area which depends on the solid composition through
the mineral abundance, and the saturation index Sss is de-
fined by

SssðxÞ ¼
K1

xk1ðxÞ

� �x K2

ð1� xÞk2ðxÞ

� �1�x

ax
Aþa1�x

Bþ aC� . ð3:23Þ

The quantities f and F are rate control factors to restrict
dissolution to phases present in the system and for revers-
ible and irreversible reaction, respectively (see Section 2.3).
The sum over xk is taken over a discretization of the solid
solution composition which spans its composition space.
The initial condition is specified by the aqueous composi-
tion m0

Aþ
, m0

Bþ , m0
C� , and initial solid with abundance spec-

ified by u0
ss;k0

with composition xk0
.

The set of reactive minerals consist of a range of compo-
sitions of stoichiometric solid solutions, but not their corre-
sponding end-member components for the corresponding
compositions. Because of the discrete nature of the solid
reactions included in the calculation, true equilibrium gen-
erally is not precisely achieved: one end member with the
composition of the stoichiometric equilibrium solid may
be slightly supersaturated and the other undersaturated,
depending on the values for the equilibrium constants.

3.1.1. Ideal binary solid solution
First, reaction path calculations are conducted using the

computer code FLOTRAN (Lichtner, 2001) for an ideal
binary solid solution illustrating application of the discrete
kinetic solid solution model. Two different solid solutions
characterized by different solubilities between the two
end-members were considered; this resulted in four differ-
ent cases corresponding to equilibrium constants
K�1

1 ¼ 0:75 and K�1
2 ¼ 0:5 (cases 1 and 2), and K�1

1 ¼ 7:5
and K�1

2 ¼ 0:05 (cases 3 and 4). These values are combined
with two different initial conditions corresponding to an
undersaturated aqueous solution (m0

Aþ
¼ 10�3;m0

Bþ ¼
10�8 ½mol=L�—cases 1, 3), and supersaturated solution
(m0

Aþ
¼ 2;m0

Bþ ¼ 2 ½mol=L�—cases 2, 4) with m0
C� ¼ m0

Aþ
þ

m0
Bþ . The solid solution composition is discretized using a

composition step size of 0.02, with equal molar volumes
of 100 cm3/mol. For cases 1 and 3 an initial solid is present
with composition and volume fraction with the values
u0

A0:5B0:5C ¼ 0:1 corresponding to x0 = 0.5.
For a closed system with reversible reaction, the final

equilibrium state may be computed directly from the mass
conservation equations [see Eq. (2.56)]

uqfm
f
Aþ þxfV

�1

xf
uf

xf
¼uqfm

0
Aþ þx0V

�1

x0
u0

x0
; ð3:24aÞ

uqfm
f
Bþ þð1�xfÞV

�1

xf
uf

xf
¼uqfm

0
Bþ þð1�xx0

ÞV �1

x0
u0

x0
; ð3:24bÞ

uqf m
f
C� þV

�1

xf
uf

xf
¼uqfm

0
C� þV

�1

x0
u0

x0
; ð3:24cÞ

together with the mass action equations

K1mf
Aþmf

C� ¼ xf ; ð3:25aÞ
K2mf

Bþmf
C� ¼1� xf . ð3:25bÞ

In these equations, the superscript 0 denotes the initial
state, and x0 refers to the initial solid solution composi-
tion. The superscript ‘f’ refers to the final equilibrium
state with solid solution composition xf. There are five un-
knowns consisting of mf

Aþ
, mf

Bþ , mf
C� , uf

xf
, and the final sol-

id solution composition xf, and an equal number of
equations. The composition variable xf can be eliminated
by taking the ratio of the mass action equations to give

xf ¼
K1mf

Aþ

K1mf
þ þ K2mf

þ
. ð3:26Þ
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Furthermore, it follows from the reaction path equations
that

mf
C� ¼ mf

Aþ þ mf
Bþ . ð3:27Þ

As a result, the system of equations is reduced to three
equations in three unknowns.

Shown in Table 1 is a comparison of the exact solution
with the reaction path calculation for the four different
cases. As can be seen by inspecting the table, the reaction
path results are close to the analytical solution. The volume
fractions representing the integrated rate over time exhibit
excellent agreement with the analytical solution. In cases 1
and 4, two solid compositions bracket the analytical result
in the final equilibrium reaction path state. It should be
kept in mind, however, that because the system is closed
the final equilibrium state is independent of the path and
therefore the agreement between the numerical path calcu-
lations and analytical solution cannot be used to justify the
form of the weight factor used in the calculations.

Cases 1 and 3 are characterized by a steady change in
solution composition as the initial solid dissolves stoichio-
metrically until the system solutus is reached (Figs. 3 and
5). As the solution intersects the solutus, the solid dissolves
incongruently by precipitation of new compositions which
are slightly supersaturated with respect to the aqueous
solution. With further reaction, the original solid continues
to decrease in abundance and both the liquid and newly
precipitated solids evolve in composition. At each time
step, several solids are present all with compositions near
the average. Each of these solids first increase and then de-
crease in abundance, as the system evolves. The discontinu-
ities in trend of the average solid composition and volume
fractions reflect discretization (e.g., in Fig. 3 sharp bends in
the curves correspond to the complete dissolution of one of
the solids). The calculated kinetic dissolution path corre-
sponds closely to an equilibrium path once the solutus is
reached. The calculation predicts the coexistence of multi-
ple product solids which are interpreted as representing the
average composition of the new solid. In calculating the
average composition, both the original solid and newly
precipitated phases are included.

Cases 2 and 4 involve precipitation from an initially
supersaturated solution (Figs. 4 and 6). In the calculation,
the initial aqueous solution is supersaturated with respect
Table 1
Comparison of the exact result with the final reaction path equilibrium state f
solution using the kinetic, discrete-composition formulation

Case mAþ mBþ mC�

Exact Path Exact Path Exact

1 0.4136 0.4138 0.3658 0.3657 0.779

2 0.4574 0.4578 0.3301 0.3297 0.787
3 0.5347 0.5367 0.0780 0.0778 0.612
4 1.3499 1.3555 0.0273 0.0271 1.377
to the entire solid solution, so that initially every solid com-
position precipitates. However, the kinetic formulation
increases the rate of precipitation of solids that correspond
to the solidus/solutus relations. As a consequence, precipi-
tation enriches the aqueous solution in the soluble (B+)
or four different cases (see text) involving reaction of an ideal binary solid

xf uf

Path Exact Path Exact Path

4 0.7795 0.4298 0.42 0.0299 0.0163
0.44 0.0137

4 0.7875 0.4802 0.48 0.3213 0.3231
8 0.6145 0.0436 0.04 0.0449 0.0448
2 1.3826 0.2479 0.24 0.2623 0.1798

0.26 0.0820
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component. As the system evolves, the aqueous solution
and average solid composition approach steady composi-
tions that are governed by the solidus/solutus relations.
The movement of the aqueous solution back towards the
insoluble component corresponds to the loss of the final
competing solid (Figs. 4 and 6).

At equilibrium, either one or at most two solid compo-
sitions are present. Note that in Figs. 4a and 6a secondary
precipitates occur in pairs although only a single phase sur-
vives as the system approaches equilibrium in Fig. 4a,
whereas two survive in Fig. 6a.

The use of average compositions shows that the calcu-
lated system evolution is close to an equilibrium path.
The small amount of supersaturation of the aqueous solu-
tion and solid compositions is a result of the use of kinetics
to describe solid reactions. It is interesting to observe that
although a large number of time steps are required before
the system reduces to a single equilibrium solid, the average
composition quickly approaches the final composition de-
spite the presence of almost the complete suite of discrete
compositions.

3.1.2. Nonideal binary solid solution

Next the method is applied to a nonideal binary solid
solution. A two parameter Guggenheim (1952) model is
used to represent the solid activity coefficients with the
form

ln k1ðxÞ ¼ ð1� xÞ2½a0 þ a1ð4x� 1Þ�; ð3:28aÞ
ln k2ðxÞ ¼ x2½a0 þ a1ð4x� 3Þ�; ð3:28bÞ

where the Guggenheim expansion coefficients have the
values a0 = 2.5 and a1 = �0.08. Equilibrium constants
with values log K1 ¼ 0:904 and log K2 ¼ 1:129 were used
in the simulations. These values correspond to the
KCl–KBr solid solution with the exception of the param-
eter a0 which was increased from 1.2 to 2.5 to produce a
miscibility gap.
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Three reaction path calculations were carried out with
an initial aqueous solution undersaturated with respect
to the solid solution (mAþ ¼ 10�3 mol=L, mBþ ¼
10�8 mol=L, mC� ¼ mAþ þ mBþ ). The first reaction path
(#1) is calculated using equal effective kinetic rate con-
stants for all solid compositions with the value
5 · 10�10 mol/cm3/s, and with an initial solid composi-
tion and volume fraction equal to u0

A0:52B0:48C ¼ 0:1. For
the second path (#2) an initial solid composition and
volume fraction equal to u0

A0:24B0:76C ¼ 0:9 was used. In
this case, different effective rate constants were used for
the initial solid (10�8 mol/cm3/s) and for secondary solids
(10�10 mol/cm3/s). In the third path (#3), the solid is the
same as in path #2 but the initial solid volume fraction
was reduced to 0.1. In all cases the initial phase is unsta-
ble and dissolves. For the first two reaction paths the
system evolves to the same final equilibrium state shown
on a Lippmann diagram in Fig. 7, consisting of two
immiscible solids with compositions uA0:14B0:86C and
uA0:84B0:16C, but with different volume fractions. The sec-
ond path, however, crosses the solutus and approaches
the stoichiometric saturation curve. For the third path,
because of the smaller initial volume fraction, two solids
form with neighboring compositions uA0:06B0:94C and
uA0:08B0:92C. The solids are shown only for the first path.
Note that there exists one unique fluid composition
where two solid solution end members can coexist. How-
ever, whether or not the fluid can actually reach this
composition depends on the total moles of each species
available, determined by the initial fluid composition
and abundance of the primary solid phase initially
present.

These calculations also illustrate the flexibility of the
discrete formulation to generate reaction paths. Path
#1 in Fig. 7 shows a near equilibrium evolution of sol-
id and liquid with precipitation occurring where the li-
quid crosses the solutus. Path #2 shows inhibited
precipitation kinetics and allows the solution composi-
tion to move metastably above the solutus. By prevent-
ing any precipitation from occurring, the solid would
dissolve along the minimum stoichiometric saturation
line (not shown; cf. Glynn et al., 1990). By suitable
manipulation of dissolution and precipitation rates
and the factors governing reversible and irreversible
behavior, a wide variety of reaction paths can be
simulated.

The time evolution of the solid phase volume fractions
for the first reaction path are shown in Fig. 8. As time
increases the system comes to equilibrium with both
solids on opposite sides of the miscibility gap. To under-
stand this behavior the free energy of the mixture
GM/RT given by
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GMðxÞ
RT

¼ ln½ðxk1ðxÞÞxðð1� xÞk2ðxÞÞ1�x�; ð3:29aÞ

¼ xð1� xÞða0 þ a1ð2x� 1ÞÞ þ x lnðxÞ þ ð1� xÞ
lnð1� xÞ; ð3:29bÞ

is shown in Fig. 9 together with the relation between X Aþ

and x given by Eq. (3.18). A miscibility gap occurs be-
tween x = 0.132 and x = 0.842; these are values obtained
from the equality of the chemical potential in the two
phases as demonstrated below. The final equilibrium state
may be computed directly from the mass conservation
equations [see Eq. (2.56)]. There are now seven un-
knowns, fmf

Aþ
;mf

Bþ ;m
f
C� ;u

f
xf
;uf

x0
f
; xf ; x0fg, with an equal

number of equations consisting of three mass conserva-
tion equations
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Fig. 9. Free energy GM/RT and X Aþ plotted as a function of x for the
nonideal binary solid solution used in Figs. 7 and 8. A miscibility gap
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x = 0.1316 and x = 0.8423 as indicated in the figure by the vertical lines.
uqf m
f
Aþ þ xf V

�1

xf
uf

xf
þ x0f V

�1

x0
f
uf

x0
f
¼ uqf m

0
Aþ þ x0V

�1

x0
u0

x0
; ð3:30aÞ

uqf m
f
Bþ þ ð1� xfÞV

�1

x0
f
uf

xf
þ ð1� x0fÞV

�1

x0
f
uf

x0
f
¼ uqf m

0
Bþ

þ ð1� xx0
ÞV �1

x0
u0

x0
; ð3:30bÞ

uqf m
f
C� þ V

�1

xf
uf

xf
þ V

�1

xf
uf

x0
f
¼ uqf m

0
C� þ V

�1

x0
u0

x0
; ð3:30cÞ

together with four mass action equations

K1mf
Aþmf

C� ¼ k1ðxfÞxf ; ð3:31aÞ
K2mf

Bþmf
C� ¼ k2ðxfÞð1� xfÞ; ð3:31bÞ

K1mf
Aþmf

C� ¼ k1ðx0fÞx0f ; ð3:31cÞ
K2mf

Bþmf
C� ¼ k2ðx0fÞð1� x0fÞ. ð3:31dÞ

Combining Eqs. (3.31a) and (3.31c), and Eqs. (3.31b) and
(3.31d) provides two equations for the two compositions
xf and x0f

xfk1ðxf Þ ¼ x0fk1ðx0fÞ; ð3:32aÞ
ð1� xfÞk2ðxfÞ ¼ ð1� x0fÞk2ðx0fÞ; ð3:32bÞ

equivalent to equality of the chemical potentials of the
two phases: l1 ¼ l01, and l2 ¼ l02. The reaction path sim-
ulation is compared to the exact solution in Table 2. As
can be seen, excellent agreement is obtained for the aque-
ous solution and solid composition, but as a result of
numerical inaccuracies the solid phase volume fractions
are only approximately correct. To improve the agree-
ment a front tracking scheme would be needed to more
closely follow the appearance and disappearance of solid
phases.

3.2. Reactive transport with pure diffusion and advection-

diffusion

An example simulation involving advection and diffu-
sion in a one-dimensional column coupled to reaction of
the solid solution AxB1�xC is presented using the computer
code FLOTRAN (Lichtner, 2001), to illustrate the discret-
ized solid solution technique for an open system. The trans-
port equations describing reaction with a solid solution in a
porous medium with porosity u are of the form
Table 2
Comparison of the exact result with the final equilibrium state of a
reaction path calculation using the discretized solid solution formulation
for a non-ideal binary solid solution

Quantity Path #1 Path #2 Path #3

Exact Path Exact Path Exact Path

mAþ 0.2631 0.2631 0.2631 0.2631 0.2133 0.2099
mBþ 0.1599 0.1599 0.1599 0.1599 0.1782 0.1796
mC� 0.4230 0.4230 0.4230 0.4230 0.3916 0.3894
xf 0.1316 0.14 0.1316 0.14 0.0753 0.08
x0f 0.8423 0.84 0.8423 0.84 — —
uf 0.2202 0.2239 0.7614 0.7741 0.0648 0.0654
u0f 0.2587 0.2652 0.1344 0.1256 — —
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ouCAþ

ot
þ $ � FAþ ¼ �

X
k

xkxkI ssðxkÞ; ð3:33aÞ

ouCBþ

ot
þ $ � FBþ ¼ �

X
k

ð1� xkÞxkI ssðxkÞ; ð3:33bÞ

ouCC�

ot
þ $ � FC� ¼ �

X
k

xkI ssðxkÞ; ð3:33cÞ

and

ouss;kðr; tÞ
ot

¼ V ssxkI ssðxkÞ; ð3:34Þ

with fluxes

Fj ¼ qCj � suD$Cj; ð3:35Þ
with Darcy velocity q, tortuosity s, and diffusion coeffi-
cient D.

Initial and boundary conditions must be specified to
complete the set of equations. For initial or boundary con-
ditions specifying equilibrium with a particular solid solu-
tion composition x0, simultaneous equilibrium with
respect to the solid solution end members corresponding
to the desired composition must be determined. A porous
medium with porosity 0.5 occupied by a solid solution with
volume fraction 0.5 and composition A0.5B0.5C is consid-
ered. Initially, the pore fluid in the column is in equilibrium
with the solid solution. The injected fluid is taken to be in
equilibrium with a solid solution with composition
A0.76B0.24C. To describe the solid solution alteration, a dis-
cretization of 0.02 in composition is used from end member
AC to BC.

The resulting mineral alteration pattern is shown in
Fig. 10 for pure diffusive transport for a diffusion coeffi-
cient of 10�9 m2/s and an effective rate constant of
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Fig. 10. Stoichiometric solid volume fractions plotted as a function of
distance using K�1

1 ¼ 0:75 and K�1
2 ¼ 0:5 for an elapsed time of 100 years

for pure diffusive transport and with an initial solid volume fraction and
composition of uA0:5B0:5C ¼ 0:5. Also shown is the summation of the
secondary solid volume fractions representing the envelope of a separate
secondary alteration phase and average solid composition. The labels
0.5,0.52,0.54, . . . , indicate the change in component A across the profile.
10�8 mol/cm3/s for all solids, corresponding to a time of
100 years. As can be seen from the figures, a sequence of
secondary solid solutions is formed which vary spatially
in composition, ranging from the initial composition
(A0.5B0.5C), to the solid solution composition in equilibri-
um with the boundary fluid (A0.76B0.24C). The solid line
represents the sum of the volume fractions of the alteration
products. A relatively smooth envelope is obtained in spite
of the sharply peaked profiles of the individual product sol-
id solutions. The average composition derived from Eq.
(2.45) is shown as a dash-dotted curve. The average com-
position evolves monotonically from A0.76B0.24C to
A0.5B0.5C with small steps that reflect the discretization.
The envelope of the summed volume fractions combined
with the average composition data can be interpreted as
representing a single homogeneous solid solution phase.

The effect of the solid solution discretization is shown in
Figs. 11a and b for Z = 50, 100, and 200. Convergence of
the total volume fraction for the secondary solid solution
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Fig. 11. Volume fractions for primary solid A0.5B0.5C and total secondary
solids for Z = 50, 100, and 200, plotted as a function of distance for pure
diffusive transport with an elapsed time of 100 years. (a) The case shown in
Fig. 10, with an effective rate constant of 10�8 mol/cm3/s and, (b) an
effective rate constant of 10�12 mol/cm3/s. In (b) the primary solid profiles
coincide.
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is shown for two different rate constants corresponding to
10�8 mol/cm3/s (Fig. 11a), and 10�12 mol/cm3/s (Fig. 11b).
For the larger rate constant, convergence improves signifi-
cantly from Z = 50 to 100. The effects of discretization are
more evident in the greater width of the reaction front for
larger Z. Smaller rate constants yield smoother profiles and
result in better convergence as evidenced in Fig. 11b.
Greater discretization results in a smoother total volume
envelope of the secondary precipitates.

The case of advective and diffusive transport is shown in
Fig. 12 for a Darcy flow velocity of 1 m/y and a diffusion
coefficient of 10�9 m2/s. Note, however, the difference in
spatial scales with a much larger alteration zone for the
case with advective transport. A smooth envelope is ob-
tained by summing the secondary products to yield the sol-
id solution alteration phase.

3.2.1. Exchange reactions

Finally, it is noted that the discrete-composition formu-
lation of solid solution reaction includes exchange reac-
tions as a special case. Although, in general, the solid
solution volume fraction changes with time and position,
it is also possible that reaction is limited to exchange of spe-
cies common to the solid solution without any change in
volume fraction. For example, for the binary solid solution
with end members AC and BC, the overall reaction

Aþ þ BC� Bþ þAC; ð3:36Þ
involves exchange of species A+ and B+. As a consequence
species C� is conserved. To see how this situation may arise
from the reactive transport equations, Eqs. (3.33a)–(3.33c)
are rewritten in terms of the transport operator
L ¼ uo=ot þ $ � q� $ � /sD$ for simplicity, to give
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Fig. 12. Stoichiometric solid volume fractions plotted as a function of
distance for K�1

1 ¼ 0:75 and K�1
2 ¼ 0:5 corresponding to an elapsed time of

100 years for advective and diffusive transport. An initial stoichiometric
solid composition A0.5B0.5C and volume fraction uA0:5B0:5C ¼ 0:5 is used.
Also shown is the summation of the secondary solid volume fractions
representing the envelope of a separate secondary alteration phase and
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change in component A across the profile.
LCAþ ¼ �
X

k

xkxkIk ¼ �I ; ð3:37aÞ

LCBþ ¼ �
X

k

ð1� xkÞxkIk ¼ I ; ð3:37bÞ

LCC� ¼ �
X

k

xkIk ¼ 0; ð3:37cÞ

and

ouk

ot
¼ V kxkIk; ð3:38Þ

where the rate for species C� is set to zero, and I is defined
by

I ¼
X

k

xkxkIk. ð3:39Þ

Note that species A+ and B+ involve equal and opposite
rates. The total solid solution volume fraction then satisfies
the equation (see Eq. (2.33))

oussðr; tÞ
ot

¼ o

ot

X
k

ukðr; tÞ ¼ V ss

X
k

xkIk ¼ 0; ð3:40Þ

assuming the molar volume is independent of composition
(V k ¼ V ss), and thus the solid solution volume fraction is
conserved.

Realization of a pure exchange process would not occur
in most systems, but may be a good approximation in cer-
tain circumstances. For example, potassic alteration of
feldspar at elevated temperatures involving exchange of
Na+ and K+ can take place if aluminum is approximately
conserved and silica is buffered by quartz. In the example
presented above, if the species C� occurs in sufficient
concentrations compared to other species, it may be
approximately conserved. In general, however, exchange
reactions and precipitation and dissolution of a solid solu-
tion occur simultaneously.
4. Conclusion

This work demonstrates the feasibility of incorporating
solid solutions in reactive transport models using a kinetic,
discrete-composition formulation in which a discretized set
of stoichiometric solid solution compositions are included
in the set of reacting minerals with reaction rates governed
by a kinetic rate law. A kinetic formulation of mineral reac-
tion rates provides a convenient and straightforward means
to implement solid solution reactions into mass conserva-
tion equations describing reactive transport in a porous
media. The use of a kinetic formulation for solid reaction
rates provides a self-determining mechanism for the solid
solution composition. It was necessary, however, to intro-
duce a weighting factor, applied separately for dissolution
and precipitation reaction rates, to obtain convergence as
the discretization of stoichiometric solids is refined. It was
demonstrated that equilibrium of a stoichiometric solid is
equivalent to equilibrium of the solid solution if and only
if the stoichiometric solid is in a stable equilibrium state.
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Unstable equilibrium compositions of the stoichiometric
solid are ephemeral and eventually disappear with time—
at these compositions the reaction rate merely changes sign.
Because only stable equilibria can survive, the discrete stoi-
chiometric approach must yield, within the accuracy of dis-
cretization, the same equilibria as the true solid solution.
The method was applied to reaction paths in a closed sys-
tem, and to open systems involving transport by advection,
dispersion and diffusion. The latter resulted in formation of
a spatially variable solid solution composition from alter-
ation of an initial stoichiometric solid.
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Appendix A. Stability analysis

In this appendix the stability of equilibrium of a stoichi-
ometric solid solution with an aqueous solution is investi-
gated. Differentiating the logarithm of the saturation Sxm

given in Eq. (2.15)

ln Sxm ¼
XNm

i¼1

xm
i ln Sm

i ; ðA:1Þ

with respect to xm
l , (l = 1, . . . ,Nm � 1), yields

o

oxm
l

ln Sxm ¼
X

i

oxm
i

oxm
l

ln Sm
i þ

X
i

xm
i

o

oxm
l

ln Sm
i . ðA:2Þ

Noting from Eq. (2.18) that

ln Sm
i ¼ ln Km

i Qm
i � ln xm

i � ln km
i ; ðA:3Þ

the first derivative is given by

o

oxm
l

ln Sm
i ¼ �

1

xm
i

oxm
i

oxm
l

þ o ln km
i

oxm
l

� �
. ðA:4Þ

It follows that:X
i
xm

i

o

oxm
l

ln Sm
i ¼�

X
i
xm

i

1

xm
i

oxm
i

oxm
l

þ o ln km
i

oxm
l

� �
; ðA:5Þ

¼ 0; ðA:6Þ

since according to the Gibbs–Duhem equationX
i

xm
i

o

oxm
l

ln km
i ¼ 0; ðA:7Þ
andX
i

oxm
i

oxm
l

¼ dil � diNm . ðA:8Þ

Thus

o

oxl
ln Sxm ¼

X
i

oxm
i

oxm
l

ln Sm
i ; ðA:9Þ

¼ ln
Sm

l

Sm
Nm

 !
. ðA:10Þ

Thus, the first derivative vanishes at a common intersection
point S�m [see Eq. (2.20)]

o

oxm
l

ln Sxm S�m

�� ¼X
i

oxm
i

oxm
l

ln S�m; ðA:11Þ

¼ ln S�m
X

i

oxm
i

oxm
l

¼ 0. ðA:12Þ

Conversely, if the first derivative is zero, the point is a com-
mon intersection point. From this result it follows that the
saturation state Sxm evaluated at S�m is either a maximum,
minimum or inflection point. To evaluate stability, the sec-
ond derivative is needed. It follows that:

o2

oxm
l xm

i
ln Sxm ¼

o

oxm
l

ln Sm
i �

o

oxm
l

ln Sm
Nm
; ðA:13Þ

¼ �
xm

i þ dilxm
Nm

xm
i xm

Nm

� o

oxm
l

ln
km

i

km
Nm

 !
. ðA:14Þ

For a binary solid solution with x ¼ xm
1

o2

ox2
ln Sxm S�m ¼ �

1

xð1� xÞ �
o

ox
ln

k1

k2

� �
.

���� ðA:15Þ

For an ideal binary solid solution, the second term on
the right-hand side vanishes and the second derivative
is always negative. This implies that the stoichiometric
saturation state at the common end-member intersection
point is a maximum. Consequently, an equilibrium point
of a stoichiometric solid represents a true equilibrium
state of the solid solution if and only if it is stable,
i.e., the first derivative of the stoichiometric saturation
vanishes and its second derivative is negative. Any other
equilibrium point of the stoichiometric solid is unstable
and therefore does not correspond to equilibrium of
the solid solution.

For a non-ideal binary solid solution with solid activity
coefficients given by the second order Guggenheim expan-
sion with expansion coefficients a0 and a1

ln k1ðxÞ ¼ ð1� xÞ2ða0 � a1ð4x� 1ÞÞ; ðA:16Þ
ln k2ðxÞ ¼ x2ða0 þ a1ð3� 4xÞÞ; ðA:17Þ

it follows that:

o

ox
ln

k1

k2

� �
¼ �2ða0 þ 3a1ð1� 2xÞÞ. ðA:18Þ
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Depending on the sign and magnitude of the expansion
coefficients a0 and a1, the sign of the second derivative
may be positive or negative.

Appendix B. Generalized Lippmann diagrams

To visualize the relations between aqueous and solid
compositions, Lippmann (1980) introduced an alternative
approach which has the distinct advantage of enabling
both the evolution of the solid and aqueous compositions
to be followed on the same diagram, referred to as a Lipp-
mann diagram (Glynn et al., 1990). For a multicomponent
system the end-member mass action equations given in Eq.
(2.4) are rearranged and summed over the ion activity
product for all end members to determine the solidus (com-
position of the equilibrium solid)X

i

Qm
i ¼

X
i

km
i xm

i

Km
i

. ðB:1Þ

Alternatively, solving Eq. (2.4) for xm
i

xm
i ¼

Km
i Qm

i

km
i

; ðB:2Þ

and summing over all end members givesX
i

Km
i Qm

i

km
i

¼ 1. ðB:3Þ

Introducing the ion activity product fraction X m
i defined by

X m
i ¼

Qm
iP

i0Q
m
i0
; ðB:4Þ

determines the solutusX
i

Qm
i ¼

1P
i

Km
i X m

i
km

i

. ðB:5Þ

The Lippmann diagram is formed by graphing the loga-
rithm of the right-hand sides of Eqs. (B.1) and (B.5) against
xm

i and X m
i as independent variables. Thus

LmðxmÞ ¼ log
X

i

km
i xm

i

Km
i

" #
; ðB:6aÞ

and

lmðX mÞ ¼ � log
X

i

Km
i X m

i

km
i

" #
; ðB:6bÞ

defining the solidus and solutus equations, respectively,
where the shorthand notation X m ¼ ðX m

1 ; . . . ;X m
Nm
Þ is used.

Tie lines connect the solid and aqueous compositions at
equilibrium

LmðxmÞ ¼ lmðX mÞ. ðB:7Þ
Note that for non-ideal solid solutions the equation for the
solutus depends on both aqueous and solid compositions
through the solid activity coefficients km

i . In general, to
implement these relations it is necessary to obtain the solid
solution composition xm
i as a function of the aqueous solu-

tion composition mole fractions X m
i which follows from the

identity

km
i xm

i

Km
i X m

i

¼
X

Qm
i . ðB:8Þ

Substituting the expression for the solidus from Eq. (B.1)
for the right-hand side gives

X m
i ¼

km
i xm

i =Km
iP

i0k
m
i0 x

m
i0 =Km

i0
. ðB:9Þ

For non-ideal solid solutions, calculation of the solutus re-
quires determining xm

i ¼ xm
i ðX mÞ. This is achieved by com-

bining Eq. (B.9) with Eq. (B.5) where the right hand side
is determined by the solidus given by Eq. (B.1).
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