УДК 553.411:552.5

© Б.Я.Вихтер, 2006

СИСТЕМАТИКА, ПРИЗНАКОВЫЕ ХАРАКТЕРИСТИКИ И ОБСТАНОВКИ ЛОКАЛИЗАЦИИ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ ТЕРРИГЕННЫХ КОМПЛЕКСОВ

Б.Я.Вихтер (ЦНИГРИ Роснедра МПР России)

Среди 100 крупнейших месторождений золота мира около 20 размещаются в металлогенических зонах и провинциях, сложенных преимущественно терригенными, вулканогенно-терригенными, карбонатно-терригенными породами. Только золото-серебряные эпитермальные месторождения в вулканогенных толщах встречаются чаще (рис. 1).

Большинство крупных месторождений золота в терригенных толщах известны в основном в пределах трех геотектонических структур: в орогенноскладчатых областях, областях активизации платформенных окраин (и складчатых областей) и на щитах. Имеется еще одна группа месторождений, связанных с эпиплатформенными рифтогенными впадинами и бассейнами, однако они, как правило, не относятся к крупным собственно золоторудным объектам (табл. 1).

Месторождения каждой геотектонической структуры специфичны по характеру руд, рудных тел и обстановке их локализации (табл. 2). Выделенные в терригенных комплексах группы золоторудных месторождений, приуроченные к определенным геотектоническим структурам, по сути представляют рудно-формационные группы (или семейства [4]). Кроме того, они относятся к разным геолого-промышленным типам. Отнесение золоторудного месторождения к тому или иному геологопромышленному типу основано главным образом на количественном соотношении в рудах сульфидов и жильно-прожилкового кварца. Практически в прямой зависимости от этого соотношения находится доля золота, заключенного в сульфидах («упорного»), и внесульфидного золота (рис. 2). Крупность золота также зависит от этого соотношения. С повышением доли жильно-прожилкового кварца она возрастает, хотя абсолютный размер частиц во многом зависит от размера его в самой ранней докварцевой продуктивной минеральной ассоциации. В подавляющем большинстве случаев жильно-прожилково-кварцевая минерализация на золоторудных месторождениях в терригенных комплексах развивается позднее ранней продуктивной вкрапленной сульфидной минерализации с «упорным» золотом. Количественное соотношение в рудах сульфидов и жильно-прожилкового кварца определяет также структуру и текстуру руд, а в ряде случаев и морфологию рудных тел. Все это и, в первую очередь извлекаемость золота, влияет на промышленную ценность месторождений. Выделяются золото-кварцевый, золото-сульфидно-кварцевый и золото-сульфидный геолого-промышленные типы. Месторождения этих типов по всем характеристикам руд образуют непрерывный ряд, практически отсутствует дискретность каких-либо свойств, соответствующая выделяемым типам.

По результатам обобщения более 100 технологических проб из руд месторождений бакырчикского семейства на территории бывшего СССР (рис. 3) для золото-кварцевого типа можно считать характерным содержание в рудах сульфидов в количестве 1±0,5% и «упорного» золота менее 10%; для золото-сульфидно-кварцевого — 4±1,5% сульфидов и 15–30% «упорного» золота; для золото-сульфидного — 6±2% сульфидов и 40—80% «упорного» золота.

Для месторождений орогенно-складчатых областей (бакырчикское семейство) характерны следующие типоморфные особенности:

существенно пирит-арсенопиритовый состав руд, в которых эти минералы составляют более 90% суммы всех рудных минералов;

размещение преимущественно в алюмосиликатных породах; массивные карбонатные и кремнистые толщи являются неблагоприятной средой и часто служат экраном при рудоотложении;

околорудные преобразования связаны с привносом калия и летучих и наиболее широко представлены серицитизацией;

температура формирования ранней продуктивной пирит-аренопиритовой ассоциации в среднем $300-350^{\circ}\mathrm{C}$.

Месторождения активизированных платформенных окраин (карлинское семейство) имеют следующие типовые черты:

присутствие и часто преобладание реальгара и аурипигмента среди мышьяковых минералов руд;

№ 3/2006

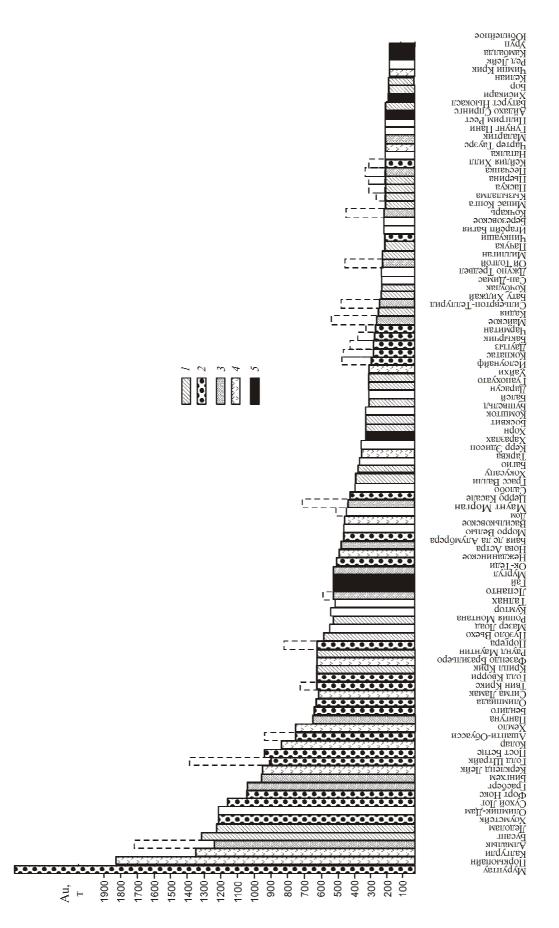


Рис. 1. Сто крупнейших месторождений золота мира:

число месторождений: I — эпитермальные в вулканитах — 25; 2 — в терригенных комплексах — 22; 3 — Сu-Au-порфировые — 13; 4 — в зеленокаменных поясах — 13; 5 — колчеданные — 7

1. Геотектоническая позиция ведущих металлогенических провинций мира с зологорудными месторождениями в терригенных толщах

Геотектонические структуры	Металлогеническая провинция	Рудовмещающие породы, их возраст	Месторождения
	Южно-Тяньшаньская	Песчано-сланцевая толща ордовика-силура, олистостромово- флишоидная толща среднего-позднего карбона	Мурунтау, Даугызтау, Кок- патас, Чармитан, Джилао, Чоре
	Зайсанская	Шлировая моласса: груборитмичная толица с редкогалечными конгломератами в основании ритмов и преобладанием в целом псаммито-алевроглинистых пород позднего карбона; песчаноалевросланцевая толица с широким развитием вулканомиктовых алевропсаммитов, туфов среднего карбона	Бакырчик, Джерек
Орогенно-складчатые	Яно-Колымская	Алевроглинистая толша поздней перми-ранней юры, песчано- алевросланцевая толша позднего карбона-поздней перми	Кючус, Нежланинское, Наталкинское, Ветренское, Дуэт, Бриндакит, Родио-
OCIGOIN	Чукотская	Туфо-песчано-алевросланцевая толща триаса; песчано- алевросланцевая толща раннего карбона	Майское, Каральвеем, Со- виное
	Енисейская	Карбонат-слюдисто-кварцевые сланцы, местами хлоритоидные среднепротерозойские; кварц-карбонат-серицитовые филлитовидные сланцы позднего протерозоя	Олимпиадинское, Совет- ское, Удерейское, Ведуга
	Северо-Байкальская	Известковистые песчаники, алевродиты, филлиты позднего протерозоя	Сухой Лог, Вернинское
	Лахланская (Восточно- Австралийская)	Чередование филлитов, алевролитов, песчаников с преобладанием последних	Бендиго, Балларат, Клунс, Стейвел
	Блек-Хилл	Хлорит-амфибол-кварц-биотит-карбонатные филлитовидные сланцы среднего протерозоя	Хоумстейк
	Невадийская (мезокайнозойская активизация Северо-Американ- ской платформы)	Глинистые известняки, доломиты, известковистые аргиллиты ор- довика-карбона	Карлин, Дип Пост, Голд Кворри, Мейкл и др.
Области активизации	«Золотой треугольник» Юго- Восточного Китая (позднемело- вая активизация платформы Янгтзе)	Песчаники, алевролиты, аргиллиты, доломитистые песчаники, известняки перми и триаса	Санчахе, Ята, Гетанг, Лан- нигоу
пла форменных окраин (и складчатых областей)	Сетте-Дабанская (меловая акти- визация Восточно-Сибирской платформы)	Доломиты, песчанистые доломиты венда, алевролиты раннего кембрия	Тас-Юрях
	Кавказская (миошен-четвертич- ная активизация позднемезозой- ских субплатформенных обра- зований)	Карбонатные и известковисто-терригенные толщи поздней юры— раннего мела	Лухуми

№ 3/2006 63

	Провинции Леоно-Либерийского щита	Вулканомиктовые, граувакковые, полимиктовые песчани- ки, аргиллиты супракрустального комплекса раннего про- терозоя	Ашанти-Обуасси, Престиа, Богасу, Кононга, Калана, Луло, Марлю
Щиты	Слейв Канадского шита	Алевроглинистые сланцы, граувакка, ВІГ (кварцитовид- ные гематитовые граувакки, с прослоями глинистых и гранат-амфибол-хлорит-биотитовых сланцев) позднего ар- хея	Лупин
	Патерсон (блок Пилбара) Австралийского щита	Карбонатно-кварцито-терригенная толица в составе супра- крустального комплекса Янина раннего протерозоя	Телфер, Блу-Спек
	«Железный квадрат» Бразильского щита	Слюдисто-кварц-анкеритовые, кварц-доломитанкеритовые сланцы, филлиты супракрустального комплекса позднего архея	Морроу-Велью
	Карело-Кольская (раннепротерозойские рифтогенные бассейны на архейском кратоне)	Туфоалевролиты, аргиллиты, пестроцветные каронатно- слюдистые сланцы с линзами конгломератов, шунгитсо- держащие алевролиты, туфоалевролиты раннего протеро- зоя	Средняя Падма, Космо- зеро, Толвуйское, Пигма
Эпикратонные рифто- генные впадины и бас-	Южно-Китайская (кембрийские рифтоген- ные бассейны архей-раннепротерозойского кратона Янгтзе)	Углеродистые гидрослюдистые глинистые сланцы, черные сланцы раннего кембрия	Зуньи, Хуанглживан, Тианешан
сейны	Центральный Юкон (рифтогенный бассейн, наложенный на Североамериканский до-кембрийский кратон)	Карбонатно-кремнистые аргиллиты, черные сланцы позд- него девона	Ник-Проперти
	Центрально-Европейская (каменноугольно- пермские рифтогенные впадины на протеро- зойском основании)	Песчаники, доломиты, глинистые и битуминозные сланцы поздней перми	Любин

2. Обобщенные признаковые характеристики и элементы обстановок локализации золоторудных месторождений терригенных комплексов

Характеристики руд		Me	Месторождения	
и минерализованных тел, элементы обстановок локализации месторождений	складчатых областей (бакырчикское семейство)	областей активизации платформенных окраин (карлинское семейство)	цитов	эпикратонных рифтогенных впадин (золотосодержащие)
Количествово сульфидов во вкрапленных и прожилково-вкрапленных рудах, %	2 4—5 (колеблются от 2 до 10)	'n	20 (от 5 до 70)	10-50 (до 80)
Главные и (типоморфные) минералы руд	Пирит, арсенопирит	Мышьяковистый парат (реальтар, аурипитмент, антимонит, киноварь, арсенопирит)	Пиррогин, арсенопирит, пирит (халькопирит)	Ваэсит, молибденит, халькопирит, пирит, герсдорфит, пен тландит, настуран, коффинит
Типоморфные элементы руд	Au, As	Au, As, Sb, Hg, Tl	Au, Cu, As	Cu, Ni, Zn, Mo, U, V, MIII', Ag, Re, Au, Bi, Y, Pb
Морфология тел вкрапленных и прожилково-вкрапленных руд	Линзы, лентообразные тела	Линзы	Линзы, плитообразные тела	Линзы, плитообразные тела
Текстура руд	Вкрапленная, прожилюво- вкрапленная, пгтокверковая	Вкрапленная, прожилково-вкрап- ленная, брекчиевая	Штокверковая, густовкрапленная, прожитково-вкрапленная, брекчиевая	Вкрапленная, конкреционная, линзовидно-слоистая, прожилково-вкрапленная
Содержание золота в руде, г/т	4-5 (от 2,5 до 12)	2-6 (от 0,6 до 29)	8—10 (до 15—20)	$0,5-1,0 \; (\text{do } 3-10)$
Соотношение Ag/Au в руде	0,5–2,0	0,1-0,5 (no 2,0)	0,1	Резкие колебания: >>1 до <<1
В пирите	50	До 2400 в мышьяковистом пирите	5–15	
30лота, г/т врсенопири те	300 (для вкрапленных и прожилково-вкраплен- ных руд)		50–200 (для вкрапленных и прожилково-вкрапленных руд)	
Содержание мышьяка в пирите продуктивной ассоциации, %	Чаще 2-4	8–11 (в мышьяков истом пирите)	До 5,5	
Содержание С _{орг} в рудовмещающих толщах, %	0.0n-0.n, whofia do $1-2$	Преимущественно <1		Нередко 10–20
Характерные околору дные преобразования пород	Серицитизация	Аргилизация, джаспероидизация	Турмалинизация	Альбитизация, фиотопитизация, развитие роскозлита

№ 3/2006 65

Литологический характер рудовмещающих пород	Алевролиты, песчаники, глинистые сланцы, гравелиты; гуфопесчаники, туфы, филлиты, слюдисто-карбонат-кварцевые сланцы; гранодиориты глутонов; гранодиорит-порфиры даек	Глинистые известняки, тонко- слойные илистые известняки, микриты; переслаивание кремнистых аргиллитов, тонкослойных аргиллитов, известковистых аргиллитов; песчаники, алевролиты, аргиллиты, известковистые сланцы; горизонты брекчий с обломками кремнеземистых пород; известковистые сланцы; лампрофировые дайки, штоки гранодиоритов	Вулканомиктовые, грауваквые песчаники, аргалиты; слюдисто-кварь-анкеритовые, кварь-доломит-анкеритовые сланцы, филиты, кваръ хлоритовые сланцы; кваршты, сидеритовые кварияты, сидеритовые кварияты, карбонат-гематитовые и карбонат-гематитовые сланцы	Аргилиты, алевролиты, туффиты; карбонатно-слюдистые шунгитсодержащие сланцы; контломераты; базальные гор изонты разнообломочных контломератов, песчаников, алевролитов, сланцев; конкрециеносные (сульфилные или известковистые конкреции) горизонты; фосфатоносные кремнистые горизонты. Характерна повышенная фосфоритоносность, захватывающая вышележащие и(или) подстилающие горизонты
Соотношение с интрузивными породами	Часто устанавливается парагенетическая связь с интрузивными комплексами, нередко рудная минерализация накладывается на дайки или штоки гранитоидов, прорывающих герригенные толщи	Устанавливается парагенетическая связь с магматическими комплексами. Иногда рудная минерализ ация накладывается на дайки и штоки гранитоидов, про-рывающих терригенные толщи	Парагенстическая связь с орогенными интрузивными комплексами	Нет примеров пространственной связи с плутоническими интрузивными телами наложения рудной минерализации на интрузивные тела. Иногда предполагается регенерация и дополнительный привнос компонентов руд в связи с силлами диабазов
Контроль месторождений и (или) рудных тел разрывными структурами	Четкий контроль разрывными структурами. Рудные тела размещаются в зонах разломов; месторождения и рудные поля контролируются глубинными разломами	Месторождения контролируются разрывными структурами, часто глубокого заложения; рудные тела в одних случаях размещаются в зонах разрывов, в других — на определенных литолого-стратиграфических уровнях	Рудиые поля и месторождения часто контролируются явными и скрытыми (плубинными) зонами разломов. Иногда явный контроль отсутствует. Рудиые тела чаще контролируются разломами	Часто явный контроль отсутствует. Иногда в зонах складчато-разрывных дислокаций в участках пересечения рудоносных прослоев разломами повышается концентрация рудных компонентов и формируются рудные тела

практически постоянное присутствие антимонита и киновари в рудах, тогда как в рудах бакырчикского семейства они обнаруживаются реже и проявлены более локально;

размещение преимущественно в карбонатных или в пелит-алеврит-карбонатных, реже в известковистых тонкообломочных алюмосиликатных породах;

типоморфные элементы руд — Au, As, Sb, Hg и Tl; преобладающие околорудные изменения представлены аргиллизитами (по алюмосиликатным породам) и джаспероидами (по карбонатным породам);

температура формирования главной продуктивной ассоциации с высокомышьяковистым золотоносным пиритом в среднем 180–220°C.

Золоторудные месторождения щитов размещаются в терригенных, часто турбидитовых толщах, в так называемых бассейновых обстановках, сопрягающихся с зеленокаменными поясами и представляющих совместно с последними супракрустальные комплексы щитов. Среди них по условиям локализации выделяются две группы: связанные с секущими зонами разломов, не отличающиеся от

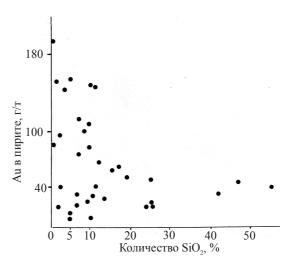


Рис. 2. Соотношение золота, заключенного в пирите, с количеством прожилкового кварца в руде золотосульфидного месторождения Чоре (вкрапленность сульфидов составляет около 5%):

из штуфной пробы прожилково-вкрапленных руд отбирался и анализировался пирит и изготовлялся шлиф, в котором определялась доля прожилков кварца

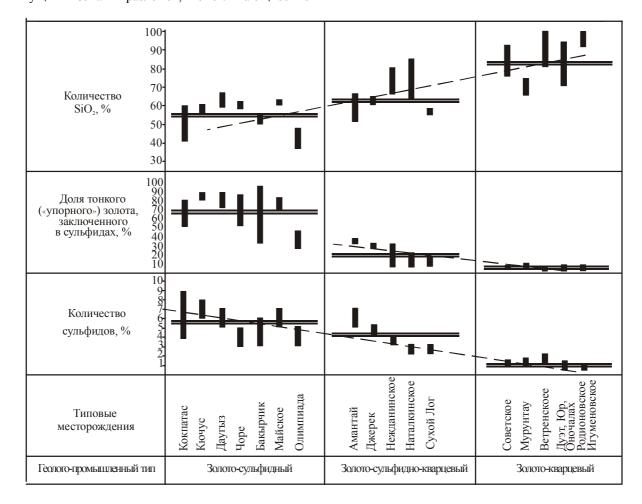


Рис. 3. Некоторые характеристики руд бакырчикского семейства по данным обработки технологических проб

№ 3/2006

месторождений бакырчикского семейства и стратиформные, локализованные в слоях песчаников и песчано-сланцевых пачках или в слоях железистых полосчатых кремнистых или карбонатных пород, в так называемых ВІF.

Типоморфными чертами месторождений щитов являются:

пирротин-пиритовый, пирротин-арсенопиритпиритовый обычно с халькопиритом состав руд (вплоть до формирования золото-медных руд — Телфер в Австралии);

более высокое, чем в рудах бакырчикского и карлинского семейств, количество сульфидов; в стратиформных месторождениях содержание сульфидов в среднем 20 и до 70% на отдельных участках;

высокое содержание турмалина в рудах и в рудовмещающих горизонтах пород.

В отличие от месторождений трех рассмотренных геотектонических структур месторождения в эпиплатформенных рифтогенных впадинах и бассейнах, как правило, поликомпонентны с разным составом ведущих и сопутствующих элементов. Золото в них — компонент попутный [1–3, 5]. Специфическими чертами этих месторождений являются:

преимущественно стратиформный характер размещения;

высокая углеродистость рудовмещающих пород (10–15% C_{opr});

повышенная фосфатоносность, чаще в подстилающих, реже в перекрывающих толщах;

частое присутствие в рудоносных горизонтах конкреций сульфидного, карбонатного, фосфатного составов:

малая мощность рудных прослоев (от первых сантиметров до 1-2 м) и высокое содержание в них сульфидов (от 10-15 до 100%);

частая приуроченность к границам стратиграфического несогласия толщ (свит, серий).

Собственно золото-платиноидные месторождения данной геотектонической обстановки редки (Любин в Польше) и крупные среди них не известны. Возможное исключение — Сьерра Пелада в Бразилии. В более высоких частях разрезов толщ эпиплатформенных рифтогенных впадин чаще встречаются собственно золоторудные или золотоплатиноидные рудные концентрации (Толвуйское, Комлевское в Карелии), также не образующие крупных объектов. Однако в определенных геолого-экономических условиях, особенно в случае развития по ним золотоносных кор выветривания, подобные объекты имеют промышленное значение.

Представляется, что месторождения именно этой геотектонической обстановки в связи с высокой углеродистостью рудовмещающих пород следует называть «черносланцевыми», отличая их от

золоторудных месторождений трех других геотектонических обстановок, где также широко распространены черные сланцы в рудоносных толщах, но содержание $C_{\rm opr}$ в них обычно не превышает 1–2%, а чаще 0,n%.

Основные черты обстановок локализации выделенных рудно-формационных семейств месторождений — это положение их в сводном разрезе пород провинций, соотношение со складчато-разрывными структурами и магматическими телами.

В сводных разрезах терригенных толщ металлогенических провинций золоторудная минерализация охватывает нередко значительный возрастной интервал и большую мощность сводного разреза (рис. 4). Однако обычно концентрация объектов в разных частях литостратиграфических колонок различна и нередко достаточно четко устанавливаются рудоносные литоформации. Для многих провинций преобладает стратоидный характер размещения месторождений. Для месторождений карлинского семейства, судя по двум провинциям (Невадийской в США и «Золотой треугольник» в Китае), где эти месторождения развиты наиболее широко, более важен литологический состав пород, и в сводном разрезе они размещаются в разных литоформациях, преимущественно в карбонатсодержащих.

На щитах, как упоминалось, широко развиты месторождения, приуроченные к маломощным (первые метры – десятки метров) литолого-стратиграфическим слоям, пачкам, горизонтам (рис. 5).

Сравнительно четкий литолого-стратиграфический контроль месторождений характерен также для эпиплатформенных рифтогенных впадин, расположенных главным образом в основании разрезов. Для месторождений в более верхних частях разреза признаковые характеристики и условия локализации во многом сходны с таковыми для месторождений бакырчикского семейства. По соотношению с литолого-формационными комплексами они также относятся к стратоидным (рис. 6).

Контроль золоторудных месторождений в терригенных комплексах разрывными структурами разного порядка играет важнейшую роль в их локализации. Региональные рудоконтролирующие разрывные структуры занимают резко секущее положение по отношению к господствующему направлению покровно-складчатых структур провинций, образуя тренды пространственного размещения (рис. 7), или кососекущее до субсогласного. Очевидно, что такой контроль обусловлен крупными глубинными разрывными структурами. Более локально, в пределах рудных полей и узлов, месторождения нередко контролируются зонами смятия, брекчирования, милонитизации, в которых размещаются рудные тела (рис. 8).

	Распределение месторождений распорождений распорождении распорождений р	ромедения			_		9	>		4				
випни	Распр		od-		ITbI,				_	ники,	ремней	ле сланцы. г,		
Южно-Тяньшаньская провинция	Литологический	cociab	Сероцветные и пестро- цветные молассоиды	ŗ	Песчаники, алевролиты,	граувакка с линзами вункапитов кремней	pymantive, apenden	Карбонатные пополы	wepodianina nepoda	Полимиктовые песчаники,	алевролиты, линзы кремней	Доломиты, кремнистые сланцы амфиболовые сланцы, метавулканиты		
	Мощ- са ность,	KM	>0,5	AN.	1.2-	3,0	· N	±0,8-	0,5-	· · A:3	5, 232			
Ω̈́	Мощ- Колонка			A THE		12	1			1			† ≰	
	Bos-	paci	C ₃ -P		ن ن	9		ζ	ي <u>-</u> در		O?-S	э- ^-		
Провинция «Золотой треугольник», по А. Wilde, 2003	Положение месторождений	орождения			Цеянг, ята	_	Ланнигоу	(Санчхе		і етанг	_		
		MICCI	ые звестняки,	нистые				алевролиты	естняки, панпы.	й, песчано- ганцы	зролиты,			
	Литологический	COCIAB	Тонкослоистые глинистые известняки,	песчано-глинистые	отложения	THOUSE THE		гесчаники, алевролиты	Мергели, известняки, глинистые сланпы.	прослои углей, песчано- глинистые сланцы	— Сланцы, алевролиты, — нзвестняки			
	Колонка	1						-				_		
	Bo3-	paci	Τ	1 2			E	Γ_1	۵	Γ3	P_1			_
Невадийская провинция, no L.Teal and MacJackson, 1997	Распределение месторож пений	мсторождении	MA	T)	t		现人	+	加加		4	- MH		
	Pac	NIC.		Se de	1									
	Литологический	cociab	Формация Винини +1500 м переслаивание кремней, кремнистых илов,	зеленокаменных пород.	О-D известняков	Свита Родео Крик 50-250 м	агиллиты, кремнитые илы	Формация Попович >400 м	глинистые известняки, микриты, органогенные	известнями Формания Робертс Маунтинс	тинистые известняки >470 м	Формация Хонсон Крик массивные доломиты	Кварпиты Эврика	
	Bos-	paci	0	- /	0-D	(اع-3 در		Ω		S E	-		
		_					_			•		•		

Рис. 4. Положение золоторудных месторождений в сводных литолого-стратиграфических колонках некоторых провинций:

№ 3/2006

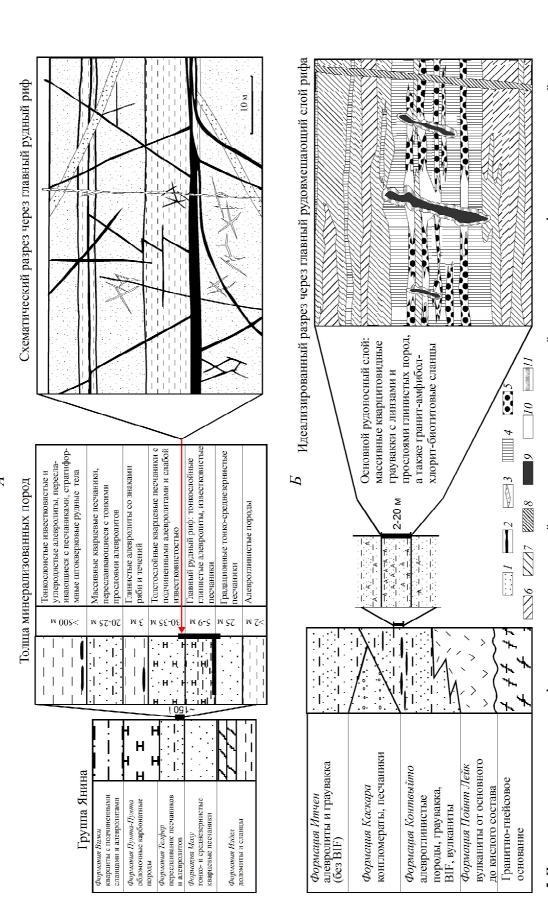


Рис. 5. Положение в литолого-стратиграфических колонках провинций и структурно-металлогенический характер рул стратиформных месторождений щитов:

4 — месторождение Телфер, блок Пилбара Западно-Австралийского щита, по [7, 8]; 1 — ранние гидрогермальные изменения; 2 — жилы главной продуктивной стадии; 3 — поздние гидрогермальные прожилки; 5 — месторождение Лупин, Канадский щит, по [6]; 4 — убогосульфидные прослои; 5 — прослои, обогащенные (>5%) сульфидами; 6 — граувакка; 7 — аргиллиты (филлиты); 8 — диабазовая дайка; 9 — кварцевая жила; 10 — участки, обогащенные арсенопиритом с промышленными концентрациями золота; II — хлоритовая оторочка

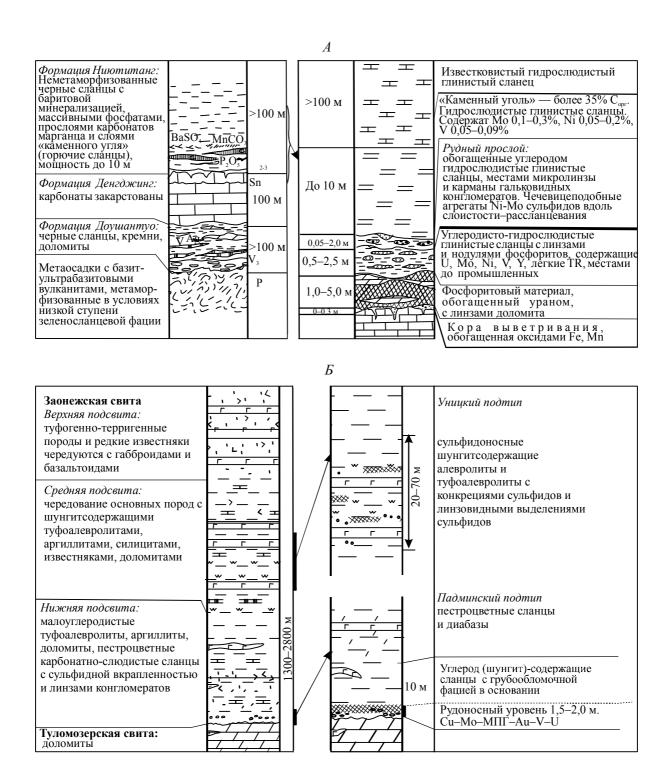


Рис. 6. Позиция черносланцевых месторождений комплексных золотосодержащих и существенно золотых и золото-платиноидных руд в литолого-стратиграфических колонках провинций:

A — Южно-Китайская провинция, месторождение Хуангдживан, *по материалам* [9]; B — Карело-Кольская провинция, месторождения Онежской впадины, *по материалам* [1, 2, 3]

Nº 3/2006 71

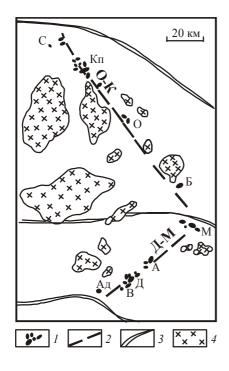


Рис. 7. Тренды размещения основных месторождений в Кызылкумской провинции

1 — месторождения (С — Сопредельное, Кп — Кокпатас, О — Окжетпес, Б — Балпантау, М — Мурунтау, А — Амантайтау, Д — Даугызтау, В — Высоковольтное, Ад — Аджибугут); 2 — тренды распространения месторождений: О-К — Окжетпес-Кокпатасский, Д-М — Даугызтау-Мурунтауский; 3 — границы структурно-формационных зон; 4 — массивы гранитоидов

В стратиформных месторождениях более ярко проявлен литолого-стратиграфический контроль рудной минерализации, однако роль и значимость разрывных структур иногда являются определяющими в размещении промышленных руд (см. рис. 5).

Анализ соотношений золоторудных месторождений в терригенных комплексах с магматическими образованиями в большинстве случаев обнаруживает парагенетическую связь их с определенными интрузивными комплексами. Анализ простран-

Рис. 8. Структурные условия локализации месторождений золото-сульфидных прожилково-вкрапленных руд:

I— золотое оруденение установленное (a) и предполагаемое (δ) ; 2— слоистость вмещающих пород; 3— разрывные нарушения; 4— гранитоиды; месторождения: A— Кокпатас, ${\cal B}$ — Даугызтау, ${\cal B}$ — Майское, ${\cal \Gamma}$ — Кючус; рудоносные зоны: ${\cal J}$ — Поймазар-Яфчская, ${\cal E}$ — Кызыловская

РУДЫ и МЕТАЛЛЫ

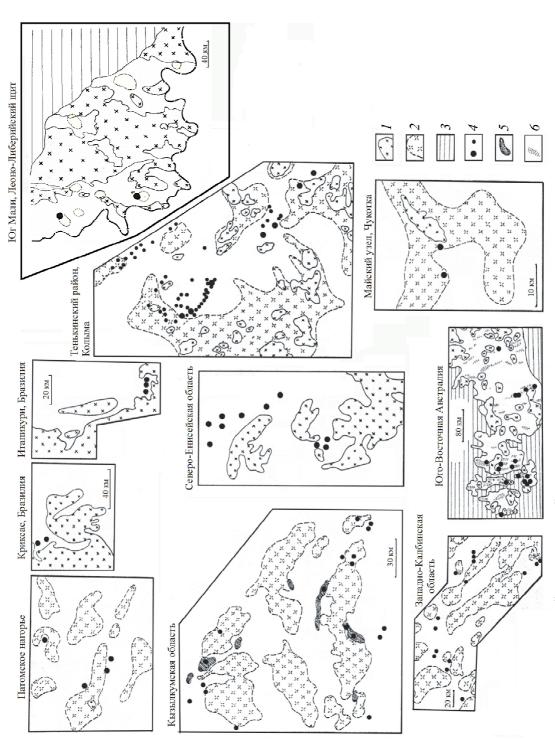
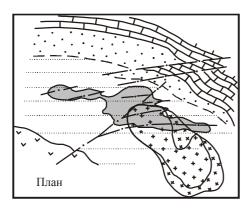



Рис. 9. Размещение золоторудных полей и месторождений относительно гранитоидных плутонов в некоторых золотоносных провинциях:

I — плутоны, обнажающиеся на дневной поверхности; 2 — скрытые плутоны, выявленные по геофизическим данным; 3 — толщи, перекрывающие рудоносные комплексы; 4 — месторождения и рудные поля; 5 — золоторудные поля и узлы; 6 — золотороссыпные поля и узлы;

ственных соотношений золоторудных месторождений и интрузивных массивов показывает, что главные рудоносные площади располагаются над выклиниванием латеральных апофиз плутонов, обычно наиболее удаленных от их корневых частей. Характерна также локализация оруденения в провесах кровли крупных плутонов и между ними (рис. 9).

Важно отметить, что золоторудные месторождения в металлогенических провинциях терригенных комплексов размещаются иногда и в интрузивных телах, прорывающих терригенные рудоносные толщи, однако самые поздние фации гранитов, как

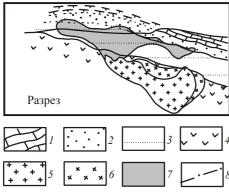


Рис. 10. Упрощенная модель рудогенной обстановки:

1 — толщи карбонатных пород; 2 — толщи грубообломочных пород; 3 — алевро-песчано-сланцевая толща (рудовмещающая рудоносная формация); 4 — вулканогенно-карбонатно-терригенная толща (вероятная рудоносная формация); 5 — граниты, лейкограниты позднего плутоногенного комплекса (рудообразующая формация); 6 — преимущественно гранодиориты раннего комплекса (рудообразующая формация); 7 — золоторудная минерализация; 8 — современный эрозионный срез; 9 — разрывные нарушения

правило, кислые по составу, рудных тел не содержат.

В общем случае рудогенная обстановка обусловливается положением термостатированных систем, определяемых благоприятным сочетанием морфологии плутонов, создающих сфокусированный, а не рассеянный термофлюидопоток, рудоэкранирующих поверхностей или реакционно-активными толщами и каркасом разрывных структур, а также положением рудогенерирующих формаций между источником энергии (гранитоидный очаг) и местом рудоотложения (рис. 10).

СПИСОК ЛИТЕРАТУРЫ

- 1. Билибина Т.В., Мельников Е.К., Савицкий А.В. О новом типе месторождений комплексных руд в Южной Карелии // Геология рудных месторождений. 1991. Вып. 6. С. 3–13.
- 2. *Булавин А.В.* Формация комплексных медь-уран-молибден-ванадиевых руд зон складчато-разрывных дислокаций Онежской структуры // Металлогения Карелии. Петрозаводск, 1999. С. 246–260.
- Платинометальные формации / А.И.Голубев, М.М.Лавров, Н.Н.Трофимов и др. // Металлогения Карелии. Петрозаводск, 1999. С. 261–272.
- 4. *Рундквист Д.В.* О значении формационного анализа при прогнозных исследованиях // Критерии прогнозной оценки территорий на твердые полезные ископаемые Л., 1986. С. 17–39.
- Черников А.А. Соотношение процессов коры выветривания и гипергенных факторов при формировании комплексных месторождений онежского типа // Глубинный гипергенез, минерало- и рудообразование. М., 2001. С. 49–59.
- Bullis H.R., Hureau R.A. and Penner B.D. Distribution of gold and sulfides at Lupin, Northwest Territories // Econ. Geol. 1994. Vol. 89. P. 1217–1227.
- Goellnicht N.M., Groves D.I., McNaughton N.J. An epigenetic origin for the Telfer gold deposit, Western Australia // Econ. Geol. Monograph 6, 1989. P. 151–167.
- Rowins S.M., Groves D.J., McNaughton N.J. A reinterpretation of the role of granitoids in the genesis of the Neoproterozoic gold mineralization in the Telfer dom, Western Australia // Econ. Geol. 1997. Vol. 92. P. 133– 160
- 9. *Mao J., Lehmann B., Du A. et al.* Re-Os of polimetallic Ni-Mo-PGE-Au mineralization in lower cambrian shales of south China and its geolodgic significance // Econ. Geol. 2002. Vol. 97. P. 1051–1061.
- 10. *Teal L. and Jackson M.* Carlin trend gold deposits and description of resent deep discoveries // SEG Newsletter. 1997. № 31. P. 13–24.
- 11. Wilde A. The golden triangle of southeast China: another Carlin trend? // SEG Newsletter. 2003. № 55. P. 1, 9–11.