IV. МИНЕРАЛОГИЯ, ГЕОХИМИЯ ОСАДОЧНЫХ ПОРОД, МЕТАМОРФИЗМ

С.Ш. Юсупов, В.Н. Даниленко¹, В.А. Попов¹, Е.А. Авдяков² КАЙРАКЛИТ — НОВЫЙ МИНЕРАЛ УГЛЕРОДА В РЯДУ АЛМАЗ — ЧАОИТ — ГРАФИТ

Историю, приведшую к обнаружению данной минеральной формы углерода, с одной стороны, можно считать длительной, поскольку она во многом связана с постепенным накоплением фактического материала в процессе изучения первым автором РТ-условий формирования кварцево-жильных образований в 1976-1984 гг. [Юсупов и др., 1979], а в 1996-2003 гг. и платиноносности пород Южного Урала (отчет в рукописи), в том числе в полосе развития максютовского метаморфического комплекса. С другой — сравнительно короткой, так как только в 2004-2005 гг. работы по углероду были форсированы. В частности, в последние два года был подвергнут ревизии не только имеющийся каменный материал (дубликаты шлиховых и протолочных проб, образцы и др.), но и начаты целенаправленные полевые поиски, более тщательная обработка проб и детальные исследования минерального состава, в том числе методами рентгенографии, оптической и электронной микроскопии и др. Параллельно было проанализировано большое количество доступной, в том числе новейшей, литературы по минералогии углерода, особенно касающейся переходных форм графит – алмаз – графит, метаморфических и импактных проявлений мелких алмазов, лонсдейлита, чаоита, фуллеренов, карбинов и др. [Веселовский, 1936; Чесноков, 1961; Бокий, Порай-Кошиц, 1964; Верещагин и др., 1965; Сладков, Кудрявцев, 1969; Вдовыкин, 1970; Алексеев и др., 1976; Кейльман, Болтыров, 1976; Ленных, 1977; Ленных и др., 1978; Станцо, 1983; Специус, Сафонов, 1986; Чухров и др., 1986; Томсон и др., 1989; Лаврова, 1991; Екимова и др., 1992; Пучков, 1994; Симаков, 1995; Маракушев, Бобров, 1998; Гамера и др., 1999; Велjamin et al., 2003]. Все это позволяет авторам выделить новую аллотропную модификацию углерода, названную кайраклитом, и показать в данной статье первые результаты этих исследований.

В 2004—2005 гг. геологические поиски нового минерала проводились в меридиональной полосе развития эклогит-глаукофаносланцевых пород максютовского комплекса на протяжении около 80 км (от д. Абубакирово на юге до д. Чингизово на севере). Наибольшее внимание уделялось графитоносным эклогитовым проявлениям, кварцитам и сланцам высоких давлений кайраклинской и карамалинской свит на участках брахиантиклинальных структур и в особенности зонам сильного смятия, растяжения и срывов в их крыльях, сопряженных с Главным Уральским разломом. В результате был установлен ряд геологических, петрографических и минералогических признаков поисков и оценки проявлений новой кристаллической формы углерода.

К настоящему времени в породах поверхностной зоны на юго-востоке Башкортостана, в Присакмарье, выявлено 15 проявлений кайраклита, в том числе 12 в поле развития пород кайраклинской свиты и 3 в карамалинской свите. Площади проявлений колеблются от десятков м² до нескольких км². Два из них по количеству, размерности и качеству встречаемых в породах кристаллов кайраклита, несмотря на их малые величины (от долей миллиметра до 2–3 мм), имеют уникальный характер.

Отличительными признаками кайраклитовых проявлений являются:

- наличие в породе тонких (1-5 мм) прослоек с сильно деформированными, скрученно-чешуйчатыми кристаллами графита в отличие от линзочек, выполненных плоскочешуйчатым графитом, наблюдаемым на одних и тех же проявлениях;
- 2) наибольшее развитие в зонах смятия и разломов линз белого талька, средне-крупночешуйчатого талько-мусковитового (по данным [Вализер и др., 1997; Ленных и др., 1978], «мусковиты» представляют собой фенгиты, но здесь и далее в тексте мы пока сохраняем определение — мусковит) и мусковит-серицитового грейзена, содержащего либо максимальные количества мелких, либо относительно «крупные» (1–3 мм) единичные кристаллы кайраклита;
- частая встречаемость в кристаллах мусковита микрокристалликов кайраклита;
- 4) широкое и неравномерное развитие в породах (наряду с «равномерно» распределенным чешуйчато-кристаллическим матово-черным графитом) аморфизованного тонкодисперсного графита, которым пропитаны по трещинкам не только основные породообразующие минералы: омфацит, глаукофан, актинолит, тальк и слюды, но и гранаты и турмалины; при этом, в отличие от относительно «чистых» красно-розовых кристаллов граната,

¹ Институт проблем сверхпластичности металлов РАН, г. Уфа; ² Школа № 116, г. Уфа

распространены графитосодержащие черные, черно-красные кристаллы, тонкодисперсный графит в которых нередко распределен то зонально, то импрегнирует трещины в них; редко графит образует в «бесцветных» индивидах граната сыпь микрокристаллических включений; эти факты подтверждены проявлением на дифрактограммах порошков всех упомянутых минералов слабых экзотермических эффектов в интервале от 510 до 690°C;

- 5) присутствие в коренных и рыхлых породах черных немагнитных обломков антраксолита и кокса (продуктов термометаморфизма графита), пузыристых черных и цветных шлаков, нитей и сферул черного и окрашенного стекла, а также черных магнитных шариков и шлаковых корочек — продуктов окислительного обжига пирита и других сульфидов под влиянием поздних погонов кислых высокотемпературных газов (СО₂, О₂ и др.);
- 6) «первичная» концентрация кайраклита в тяжелой фракции шлихов и протолочек породы, в ассоциации с магнетитом, гранатом, рутилом, турмалином, хромитом, цирконом и др., и «конечная» в тяжелой немагнитной фракции, совместно с рутилом, цирконом, сульфидами и др., из которой кайраклит и отделяется (пока вручную) в собственную монофракцию.

В ассоциации с кайраклитом, сульфидами и др. в тяжелой фракции шлихов на многих проявлениях были выявлены обломки кристаллов рубина, сапфира, а также самородные элементы: Au, Pt, Fe, Cu и Pb. Наряду с ними в некоторых породообразующих и акцессорных минералах на электронном зонде JEOL 6400 установлены значительные содержания Sn, Ta, As и др.

Характерные особенности кристаллов кайраклита:

- а) мелкая размерность, колеблющаяся от микроиндивидов (0,01–0,2 мм) в виде включений в мусковитах до более распространенных кристаллов (в шлихах) в пределах 0,3–1,5 мм, и редко достигающих 3–3,5 мм.
- б) широкая распространенность переходных форм от черных индивидов графита к серым, белым и бесцветным таблитчатым кристаллам кайраклита, причем преобразование отдельной чешуйки графита (2H-структуры) в бесцветный кайраклит чаще всего наблюдается от краев к центру первого; более характерны плоские и менее — слабовыпуклые округлые или удлиненные чечевицеобразные формы кристаллов кайраклита; весьма примечательна скалываемость их по поперечным к удлинению трещинкам, дающим в разрезе остроугольные ромбовидные формы;
- в) часто наблюдаемые чечевицеобразные выпуклости на пинакоидальных поверхностях кристаллов графита, нередко имеющие ромбовидно ограниченную поверхность (за счет развития 3R струк-

туры); в шлихах эти формы обнаруживаются в виде черных, белых или бесцветных ромбоэдрических кристалликов кайраклита, иногда переходящих в октаэдры; интересно, что этот случай по форме кристаллов КРК аналогичен графитизированным кристаллам алмазов, описанных В.В. Слодкевичем [1982];

- г) частая встречаемость в бесцветных кристаллах кайраклита не только черных (реликтовых) включений аморфизованного графита, но и «минералов-спутников», особенно в виде частично разрушенных красных микрокристаллов рутила и, реже, корродированных включений граната и глаукофана;
- д) субидиоморфный и ксеноморфный характер выделений микрокристаллов (менее 15 мм) кайраклита в ассоциации с мусковитом и кварцем в интерстициях мелкозернистого «гранатита» весьма плотной прожилковой (мощн. 1–5 см) составляющей эклогитов; при этом микровключения КРК наблюдаются и в кварце.

Эти и другие наблюдения дают представление о том, что время зарождения и развития кристаллоформ кайраклита тесно связано периодом формирования эклогитов, кварцитов и сланцев, в особенности — с актами графитизации пород и, по-видимому, их неоднократной перекристаллизации с образованием «гранатитов», «льдистого» и гранулированного кварца, встречаемого в данном районе, так же как и в некоторых районах Урала, Казахстана и Сибири [Чесноков, 1963; Добрецов, Соболев, 1970; Добрецов и др., 1971].

ФИЗИЧЕСКИЕ СВОЙСТВА КАЙРАКЛИТА

Плотность наиболее свободных от видимых включений «однородных» тонко- и толстотаблитчатых кристаллов и обломков кайраклита (~90–95% объема) совместно с кристаллами, содержащими белесые зоны или незначительную тонкую примесь графита, рутила и фенгита (в количестве 120 шт. и весом 115 мг), определялась пикнометрически и составила 3,47 г/см³. Интересно, что это значение несколько выше, чем рентгеновская плотность (3,41 г/см³) чаоита с кратера Nordlinger Ries [Goresy, 1969] и находится в вилке плотностей (3,28–3,61 г/см³) импактных микроалмазов гексагональной формы из астроблем Рис и Попигай [Масайтис и др., 1995].

Твердость кристаллов (черных, серых, бесцветных) колеблется в пределах 4,5–5,5 и в среднем составляет ~5 по шкале Мооса.

Блеск. На участках всех проявлений кристаллы кайраклита отличаются характерным маслянистым блеском, иногда переходящим в алмазный. В некотором удалении от проявлений (от 1–2 до 10 км), особенно в аллювиальных песчано-галечных отложе-

ниях р. Сакмары и ручьев, поверхности кристаллов теряют блеск до матового. Следует особо отметить, что выборка кайраклита из тяжелой немагнитной фракции шлиха, в первую очередь, осуществлялась по масляному блеску (в совокупности с формами целых и сколотых немагнитных индивидов), надежно отличающему кайраклит от других минералов.

Оптическая микроскопия. Показатели преломления (ПП) изучались пока только по мелким и тонким бесцветным гексагональным кристалликам кайраклита, а таже по поперечным сколкам, в канадском бальзаме, в масле и в расплаве серы (ПП 2,0– 2,2), в том числе в присутствии кристаллов рутила (ПП 2,6–2,9), граната (ПП 1,87), алмаза (ПП 2,4–2,7) и пирротина, а также по границам раздела включений кайраклита в фенгитах, по включениям граната, глаукофана и графита (ПП 1,5–2,0) в самих кристаллах кайраклита. В результате предварительно установлены:

- Показатель преломления кайраклита выше 2,2, ниже 2,4;
- Двупреломление высокое, Np-Nm ~ 0,04-0,05;
- Отражательная способность R ~ 35-40%;
- cNg = 22° (при четком погасании).

Рис. 1. Термограмма кристаллов кайраклита Дериватограф Q–1500D (Венгерский оптич. з-д). Скорость нагревания 10°/мин; навеска 110 мг + 260 мг Al₂O₃. Чувстви-

Термостойкость. О термостойкости бесцветных кристаллов кайраклита можно судить по дериватограмме порошка пробы весом 110 мг (использован после определения плотности), в которой при нагревании до 1000°С никаких изменений не обнаружено (рис. 1), тогда как все пробы графитов, ассоциирующих с кайраклитом (18 проб), показывают различной интенсивности кривые выгорания в интервале от 370°C до 850°C.

Рентгенография графитов и кайраклитов

Рентгеноструктурный анализ образцов проводился на дифрактометре ДРОН–3М при ускорительном напряжении 40 кВ и токе пучка 30 мА, с использованием графитового монохроматора. Были исследованы 4 порошковые пробы из двух проявлений кайраклита, в том числе: крупночешуйчатый графит (БРК–13, до 110°), переходные формы графита в кайраклит (БРК–04/1, до 90°), визуально «чистые» бесцветные кристаллы кайраклита размером от 0,5 до 2,0–2,5 мм, весом 120 мг (КРК–1, до 150°) и кристаллы граната (КЯ–1).

Результаты съемок указанных проб отражены в таблице, соответственно под №№ 2, 3, 4 и 7. Для сравнения в таблице приведены литературные данные по дифрактограммам порошков графита (№ 1), чаоита (№ 5), лонсдейлита и алмаза (№ 6), адля оценки степени «зараженности» наших проб использованы дифрактограммы (справочные данные) граната (№ 8), рутила (№ 9), омфацита (№ 10),

глаукофана (№ 11) и мусковита (№ 12).

Сравнительный анализ табличных данных выявил следующие главные особенности кайраклита (КРК–1).

1. В кайраклите, хотя и сохранился ряд линий межплоскостных расстояний (здесь и далее все d/n межплоскостные расстояния даны в ангстремах) графита, но интенсивность главной линии последнего d/n = 3.355 (J = 100%) сильно ослаблена (в № 4 d/n = 3.352, J = 30%), а многие линии вовсе отсутствуют. Это, безусловно, свидетельствует о существенном преобразовании графита в кайраклит, тогда как наличие некоторых слабых линий графита в нем говорит лишь о присутствии реликтовых микрочастиц, часто фиксируемых микроскопически.

2. В дифрактограмме межплоскостных расстояний ячейки кайраклита (\mathbb{N} 4) отсутствуют такие очень сильные линии чаоита (\mathbb{N} 5), как d/n (J%): 4.470 (100), 4.260 (100), 4.120 (80), а также сильные, средней и малой интенсивности линии: 3.220 (40), 2.940 (20), 2.550 (60), 2.240 (40), 2.100 (40), 1.910 (20); присутствуют

лишь некоторые сильно ослабленные (близкие к кайраклиту) линии: 3.710; 3.030; 2.280; 1.983; 1.496.

Напротив, в кайраклитах присутствует целый ряд собственных острых и четких рефлексов, не зависимых ни от графита, ни от чаоита: 2.848 (10); 2.615 (15); 1.749 (35); 1.743 (30); 1.642 (20); 1.473 (30); 1.435 (8); 1.277 (9); 1.273 (9); 1.027 (10), также не совпадающих ни с одним минералом таблицы.

Более того, в кайраклите проявлены почти все линии алмаза и лонсдейлита (см. колонки № 4 и 6), хотя и значительно менее интенсивные.

тельность весов 200 мг

Таблица Межплоскостные расстояния элементарной ячейки графита, графит–кайраклита и граната из максютовского комплекса (авторские №№: 2, 3, 4)

Мусковит [Михеев, 1957]. Табл. 830			d/n(J)	9.97(10)	4.97(7)	4.47(6)		4.29(1)			3.86(4)	3.68(6)	3.59(2)		3.32(10)		3.20(4)		2.98(6)	2.97(6)		2.82(4)		2.58(4)
нвфомувиЛ	ты, 1981]	11	d/n(J)	8.228(100)	4.853(13)	4.463(20)	4.448(34)				3.842(22)			3.381(15)			3.211(7)		3.047(53)	2.931(9)			2.692(57)	2.580(5)
тилефмО	[Минера.	10	d/n(J)	6.38(15)			4.40(40)										3.179(100)		2.970(100)	2.893(90)	2.872(35)			
. 296 . 266 . 266	киМ] гитуЧ гдвТ	6	d/n(J)										3.598(3)			3.242(9)								
ьмандин– сартин)	(Михеев, 1957] Табл. 734, 735, 736	8	d/n(J)									3.70(1)		3.32(2)		3.24(1)				2.892(7)		2.752(1)		2.589(10)
Гранаты (алп пироп–спес	4002 I-RN	7	d/n (J)	5.980(12)	Γ 4.834(4)			4.368(4)						M 3.341(3)						OK 2.892(7)		2.767(4)		2.594(100)
Лонедейлит Алмаз [Рост, 1978] [Михеев, 1957]. Табл. 28, РSChp 4/1			d/n(J)																					
822-02 2042L тиовР			d/n(J)			4.470(100)			4.260(100)	4.120(80)		3.710(40)					3.220(40)		3.030(60)	2.940(20)				
Кайраклит бесцветные кристаллы КРК-I		4	d/n(J)					K 4.332(6)				ГфЧК 3.700(3)		ГфК 3.352(30)		PK 3.240(100)			M4K 3.000(30)	OГpK 2,899(20)	K 2.848(10)	MK 2.810(5)	K 2.615(15)	ГГрМ 2.592(8)
Графит – кайраклит БРК-04/1			d/n(J)						4.272(15)				3.501(15)	3.349(100)			3.209(20)	3.138(15)	2.997(12)	2.869(11)		2.801(8)		2.570(10)
Графит кр./чеш. БРК-13			d/n(J)		5.013(40)				4.272(20)		3.897(10)		3.505(15)	3.352(90)	3.327(80)	3.250(18)	3.208(20)		2.997(20)	2.868(12)		2.804(12)	2.710(7)	2.578(9)
1, 29 1, 29 1, 29	чМ] тифвqТ пдвТ		d/n(J)									3.692(8)		3.352(100)										

Геологический сборник № 5. Информационные материалы

	0	,		ι		t	0	<	< T		
7		с С	4	c	0	/	8	6	10		12
				2.550(60)					2.541(35)	2.571(16)	2.55(7)
						$\Gamma 2.517(7)$			2.521(15)	2.522(28)	
494(10		2.495(12)					2.471(4)	2.488(8)	2.474(50)		2.49(4)
		2.458(8)	MY 2.455(5)	2.460(40)			2.462(7)			2.451(2)	2.45(4)
403(2.389(8)				A 2.367(22)	2.356(6)				2.38(4)
.286(7			F4K 2.282(8)	2.280(60)		K 2.271(19)	2.261(6)	2.294(2)	2.258(15)	2.285(16)	2.34(2)
.136(5		2.129(5)		2.240(40)						2.243(17)	2.24(1)
					JI 2.17(2)						
	_				Л 2.18(4)			2.189(7)		2.162(8)	2.19(4)
				2.100(40)		2.115(18)	2.102(6)		2.112(60)	2.144(15)	2.13(6)
					JI 2.067(10)				2.083(15)		
			LA 2 064(12)		A 2.061(10)					2.065(1)	
					A 2.05(10)	A 2.048(10)	2.049(1)	2.053(3)		2.058(7)	
993(3	6	1.997(30)	TMK 1.993(3)	1.983(20)					2.014(20)	1.997(7)	1.99(8)
					A 1.932(6)	A 1.932(6)					
			A 1.923(2)		A 1.922*			1.870(4)			1.82(2)
820(8		1.819(10)		1.910(20)		1.876(19)	1.869(7)	1.800(2)	1.799(25)		
			ГpK 1.782(2)				1.789(4)				
			K 1.749(35)								
			K 1.743(30)				1.738(3)				
			OM 1.725(7)						1.726(40)		1.72(2)
			ГрК 1.709(12)				1.705(5)				
		1.661(7)	PK 1.687(30)			Гф 1.670(14)	1.663(7)	1.689(10)			
.647(8	1.649(7)	MK 1.647(8)					1.624(8)			1.65(6)
			K 1.642(20)			O 1.606(27)	1.595(9)		1.602(30)		1.60(2)
543()	(0)	1.544(6)	ΔΟ1.558(9)						1.588(30)		
		1.539(6)				Δ Γφ 1.548(30)	1.539(10)				
			O 1.530(3)						1.529(10)		1.51(4)
			ЧКЛ 1.499(8)	1.496(20)	Л 1.498(9,5)				1.525(20)		1.50(6)
			ГрР 1.481(8)			P 1.475	1.441(6)	1.482(3)			1.42(4)
			ГрРМ 1.453(4)			P 1.448(12)	1.441(6)	1.453(4)			1.45(2)
			ΔK 1.435(8)								
			MLpK 1.425(5)				1.426(2)				1.426(2)
1.421			K 1.423(5)								
			ГрК 1.389(4)				1.388(4)				
			MFp 1.373(3)			1.374(6)	1.379(1)	1.362(6)			1.37(2)
354()	(2)	1.351(7)	ГрМР 1.344(2)				П 1.345(1)	1.347(3)			1.34(10)
:1	()	(.)									

Институт геологии Уфимского научного центра РАН

12	1.29(4)																							
11																								
10																								
6								1.149(2)			1.093(4)	1.082(2)			1.041(5)				0.963(3)	0.903(2)	0.889(4)	0.845(5)		
8	1.289(8)			1.259(9)		1.230(6)	1.181(2)	1.163(6)	1.131(3)		1.099(4)		1.079(9)	1.054(9)						0.936(6)	П 0.891(3)	0.858(8)	0.832(5)	П 0.819(2)
2	Δ Сп 1.296(10)			JI 1.264(11)		Сп 1.238(5)	Сп 1.173(3)		1.125(5)				A 1.075(11)	Сп 1.058(7)		K 1.027(7)		Δ Γφ 0.998(7)		0.940(8)	0.898(5)			
9	1			JI 1.262(8)* JI 1.260(35.5)	JI 1.257(6)		A 1.170(1)						Л 1.076(6)	A 1.075(3) JI 1.075(40)		JI 1.030(6)					A 0.892(11) A 0.885(4)		Л 0.825(25)	A 0.818(30) A 0.813(6)
5																								
4	A MITpK 1.293(2)	K 1.277(9)	K 1.273(9)	ГрЛК 1.265(1,5)		Δ ΓpK 1.220(2)	AK 1.171(1.5)	ГфРК 1.150(4)	ΔK 1.138(3.5)	K 1.118(5)	Δ K 1.090(1.5)	P 1.082(4.5)	ПЛ+А 1.077(7)		Δ P 1.043(4)	JIK 1.028(10)	K 1.027(10)	Δ Γ pK 0.996(3)	PK 0.964(2.5)	P 0.904(3)	ГрА 0.897(3.5)		JIK 0.824(40)	ПА 0.821(30)
3																								
2	1.297(8)																							
1	L					1.230(6.5)		1.155(10.5)	1.135(2)	1.118(1.5)								0.992(7.5)	0.962(1.5)			0.839(1.5)	0.827(9.5)	

167

Примечание. Для сравнения кайраклита с основными минералами углерода (№№ 1, 5, 6) и качественной оценки в них и в гранате (КЯ–1) примесных минералов, приводятся литературные данные (№№ 8, 9, 10, 11, 12). Аббревиатуры означают: Гф – графит, К – кайраклит, Ч – чаоит, Л – лонслейлит, А – алмаз, Гр – гранат, П – пироп, Сп – спессартин, Р – рутил, О – омфацит, Г – глаукофан, М – мусковит, а их сочетания – соответствующие смеси. Значения d/n с символом * приведены по В.Г. Фекличеву [1989]; Михеев [1957], № 28 – по ХRDС, 1943, 3346; D – линии муассанита (SiC), совпадающие или близкие со значениями d/n кайраклита и альмандина.

Таким образом, для кайраклита характерно не только отсутствие сильных линий чаоита, но и наличие в нем линий алмаза, с явным проявлением «независимых» собственных отражений. Поэтому на основе приведенных данных и с учетом большей плотности кайраклита (3,47 г/см³) по сравнению с чаоитом (3,43 г/см³) можно считать, что в треугольной диаграмме углерода по Р.Б. Хайнманну и С.Е. Евсюкову [2003], в аллотропном ряду алмаз чаоит — графит кайраклит должен занимать самостоятельное место между алмазом и чаоитом (рис. 2).

3. Еще одна особенность кайраклита, вытекающая из сравнения с дифрактограммами сопутствующих минералов, — частое присутствие в нем линий граната (11 линий), рутила (8), мусковита (12) и, реже, омфацита (4) и глаукофана (4). Это и понятно, так как кристаллы кайраклита образовались не только в среде графита, но и в непосредственном соприкосновении с упомянутыми минералами, а в процессе роста захватывали их в виде микровключений.

В дифрактограммах переходной разновидности графита к кайраклиту (проба БРК–04/1) и крупночешуйчатого графита (БРК–13) присутствуют не только многие рефлексы кайраклита, но и ряд линий мусковита, рутила и омфацита, а также сильно ослабленная линия чаоита (например, в № 5, d/n 4.260, J = 100%, а в № 2 и 3 — d/n 4.272, J = 20%и 15%), то есть явно прослеживается существовавший специфический для кайраклита процесс более глубокого преобразования графита и, по-видимому, далее идущий переход кайраклита в другую алмазо-

Рис. 2. Предполагаемое место кайраклита (С?) в треугольной диаграмме аллотропных форм углерода, разработанной Р.Б. Хайманном и С.Е. Евсюковым [2003]

содержащую модификацию углерода, и, в конечном счете, в алмаз.

К вышеизложенному следует добавить, что в связи с уточнением не только долей участия в кристаллической структуре кайраклита гексагональной (2H) и ромбоэдрической (3R) фаз графита, но и необходимостью детального исследования самой кристаллической структуры кайраклита, параметр элементарной ячейки и рентгеновская плотность минерала пока не определены. Авторы надеются, что они будут представлены в следующей работе.

Пострентгенографические минералогические исследования

К вышеописанным данным рентгенографии необходимо добавить следующее.

После первого этапа минералогических, а затем рентгенографических исследований трех проб (№№ 2, 3, 4 в таблице) и сопоставления межплоскостных расстояний в кристаллах кайраклита с d/n ассоциирующих с ним четырех минералов (рутила, омфацита, глаукофана и мусковита), как указано выше, присутствуют не только линии этих четырех минералов, но и, очень часто, граната, а также лонсдейлита и алмаза. Чтобы полностью убедиться в этом, была сделана порошковая дифрактограмма представительной пробы граната (КЯ-1) из Караяновской площади развития эклогитов. В таблице данные по ней показаны в колонке 7; в колонке 8, приведены эталонные значения альмандина по В.И. Михееву [1957], а в колонке 6 — по алмазу и лонсдейлиту. Сопоставление значений d/n кайраклита, гранатов и алмазов (колонки 4, 6, 7 и 8) показывает, что линии алмаза и лонсдейлита присутствуют не только в кайраклите, но и в гранате КЯ-1. При этом последний содержит также линии графита, мусковита, омфацита, глаукофана, рутила и кайраклита и спессартина (Сп), а в пробе кайраклита, по-видимому, некоторые линии граната отражают заметное содержание в нем пиропового минала (см. например, d/n 1.345, 1.077 и 0.819).

> Это обстоятельство заставило нас вернуться к более детальным поискам кайраклита и алмазов в шлифах, аншлифах, тонких (0,05– 0,1 мм) полированных пластинках образцов эклогита, «гранатита», а также в отдельных полупрозрачных или слабоокрашенных кристаллах кайраклита. Исследования проводились под микроскопом Neophot–21 в отраженном, проходящем и комбинированном свете (микроскоп нами дополнен верхним осветителем) и в темном поле, а также сопровождались

наблюдениями под поляризационным и бинокулярным микроскопами. Результаты оказались весьма интересными и кратко заключаются в следующем.

- В плотном мелкозернистом (0,3–1 мм) «гранатите» (обр. КЯ–21) кристаллы кайраклита размером 0,1–0,5 мм в ассоциации с преобладающим в цементе породы мусковитом и редким кварцем имеют подчиненное значение и занимают интерстиции кристаллов граната (в объеме породы содержание кайраклита составляет лишь доли процента).
- 2) В более крупных (3-5 мм) порфиробластовых красновато-розовых кристаллах граната из караяновских эклогитов, содержащих, как известно [Алексеев, 1975; Бутин и др., 1976; Головня и др., 1977; Захарова и др., 1995; Захарова, Захаров, 1999], значительные (до 17-23%) доли пиропового минала, нами обнаружены мелкие «изометричной» формы бесцветные кристаллики алмаза размером от 0,03 до 0,15 мм. Находятся они в относительно «чистых» полупрозрачных кристаллах альмандина в виде единичных (от 1 до 2-3 шт.) индивидов-включений, чаще тяготея ближе к центру минерала-хозяина. Количество таких алмазосодержащих кристаллов граната в нескольких изученных препаратах из одного образца (КЯ-25) довольно значительное и составляет 5-15% от общего их количества. Обнаруживаются они по высокому рельефу на хорошо отполированной поверхности граната в аншлифе и полированной пластинке, сильному блеску, по более высоким, по сравнению с гранатом, показателям преломления, изотропности. Опознаются в темном поле, косом освещении и особенно по оставлению ими черты на полированной поверхности пластинки искусственного рубина.
- 3) В полупрозрачных серовато-белых, «бесцветных» и бледно-зеленоватых уплощенных и удлиненных кристаллах кайраклита из шлиховых проб также были обнаружены микрокристаллики алмаза. Отличительной особенностью их является приуроченность сразу к нескольким субпараллельным (поперечным к удлинению кристаллов кайраклита) трещинкам. Здесь они как бы участвуют в «залечивании» этих трещинок в виде многочисленных микрокристалликов размером в пределах 5-15 мкм. Нам же представляется, что они возникли за счет материала собственно «минерала-хозяина» в ходе его частичной перекристаллизации вследствие проявления повторных сверхвысоких давлений на данном участке развития рассланцованных графитизированных эклогитов на юго-восточном крыле брахискладки, широко представленной породами кайраклинской свиты.

В заключение отметим, что в предлагаемой статье представилось возможным привести лишь са-

мые необходимые сведения об обнаруженной новой кристаллической форме проявления в природе минерала углерода, связанного с хорошо известными на Южном Урале высокобарическими графитоносными эклогит-глаукофановыми сланцами и кварцитами максютовского комплекса.

Теперь перед авторами встала серьезная проблема более углубленного изучения начатых работ с целью выяснения геологических, минералого-петрографических, термобарических и других аспектов кайраклитовой, карбидной и алмазной минерализации в регионе. Хотя для продолжения работ мы располагаем рядом возможностей (значительным объемом систематизированной литературы, образцами, обработанными шлиховыми и протолочными пробами, лабораторной базой для минералогических, термобарогеохимических, химико-аналитических и термических исследований в ИГУНЦ РАН, а также возможностью проведения рентгенографических, электронно-микроскопических и микрозондовых анализов в ИПСМ РАН в г. Уфе), однако выполнение ряда других методов исследований минералов и пород возможно только в специализированных лабораториях, то есть в содружестве с сотрудниками других НИИ.

Авторы сознают, что представленные в статье сведения еще далеко не полны и не дают всесторонней характеристики как самого нового минерального вида углерода (кайраклита) и тесно ассоциирующих с ними алмаза, лонсдейлита и других минералов, так и геологических и других условий их проявления в коренных и рыхлых отложениях Присакмарья.

Поэтому крайне необходимо продолжение всех видов начатых работ, постановка некоторых новейших методов лабораторных исследований и особенно проведение полевых геолого-поисковых работ с целью накопления достаточного количества кайраклито- и алмазоносного концентрата для исследований.

Вообще отбор крупнообъемных проб можно ускорить и провести с малыми затратами средств, поскольку известны сами проявления и методы рационального извлечения из пород изучаемых минералов и пород. Однако целенаправленное продолжение работ по данной проблеме может быть форсировано и будет плодотворным только в том случае, если это привлечет должное внимание (кроме ИГ УНЦ РАН) и других заинтересованных научно-исследовательских организаций, а также получит необходимую финансовую поддержку.

Литература:

Алексеев А.А. Минералогия, минеральные ассоциации и метаморфические фации максютовского эклогитглаукофансланцевого комплекса // Магматизм, метаморфизм и рудоносность Южного Урала / БФАН СССР. Уфа, 1975. С. 154–199. Алексеев А.А., Меньшикова Р.Т., Аршинов Ю.П. Этапы метаморфизма и интрузивного магматизма в зоне Урал-Тау Южного Урала в палеозое // Вопросы изотопной геологии Урала и востока Русской плиты / БФАН СССР, Уфа, 1976. С. 62-67.

Бокий Г.Б., Порай-Кошиц М.А. Рентгеноструктурный анализ. М.: Изд-во МГУ, 1964. Т. IV. 489 с.

Бутин В.В., Алексеев А.А., Гревцова А.П. К вопросу о времени проявления метаморфизма высоких давлений на Урале // Геология метаморфических комплексов Урала. Свердловск: Изд-во УПИ, 1976. Вып. 127. С. 61–65.

Вализер П.М., Котляров В.А., Ленных В.И. Ассоциация тальк + фенгит в породах максютовского эклогит-глаукофансланцевого комплекса (Ю. Урал) // Магматизм и глубинное строение Урала: Тез. докл. VI Уральского петрогр. совещ. Екатеринбург, 1997. Ч. 1. С.173–174.

Вдовыкин Г.П. Новая гексагональная модификация углерода в метеоритах // Геохимия. 1970. № 9. С. 1145–1148.

Верещагин Л.Ф., Калашников Я.А., Фекличев Е.М. и др. К вопросу о механизме полиморфного превращения графита в алмаз // Докл. АН СССР. 1965. Т. 162. № 5. С. 1027–1029.

Веселовский В.С. Углерод, алмазы, графиты и угли и методология их исследования. М.; Л.: НКТП СССР, 1936. 176 с.

Гамера Ю.В., Гостинцев Ю.А., Корсунский Б.Л., Фортов В.Е. Диаграмма состояния системы графит – алмаз – фуллерит // Докл. АН СССР. 1999. Т. 366. № 3. С. 354–356.

Головня С.В., Хвостова В.П., Макаров Е.С. Гексагональная модификация алмаза (лонсдейлит) в эклогитах метаморфических комплексов // Геохимия. 1977. № 5. С. 790–793.

Добрецов Н.Л., Соболев Н.В. Эклогиты в метаморфических комплексах Казахстана, Тянь-Шаня, Южного Урала и их генезис // Проблемы петрологии и генетической минералогии. М.: Наука, 1970. Т. 11. С. 54–76.

Добрецов Н.Л., Лаврентьев Ю.Г., Поспелова Л.Н., Соболев В.С. Особенности минералогии и генезиса эклогит-глаукофансланцевых комплексов на примере Южного Урала // Геология и геофизика. 1971. № 7. С. 3–15.

Екимова Т.Е., Лаврова Л.Д., Надеждина Е.Д., Петрова М.А. Коренная и россыпная алмазоносность Северного Казахстана. М.: ЦНИГРИ, 1992. 168 с.

Захарова А.А., Захаров О.А. Геология, петрология и металлогения массива Маскрт зоны Уралтау // Ежегодник–1997 / ИГ УНЦ РАН. Уфа, 1999. С. 170–178.

Захарова А.А., Захаров О.А., Фазылянов Л.Г. Новые данные по металлогении зоны Уралтау // Ежегодник– 1994 / ИГ УНЦ РАН. Уфа, 1995. С. 87–89.

Кейльман Г.А., Болтыров В.В. О дислокационном метаморфизме // Геология метаморфических комплексов Урала. Свердловск: Изд-во УПИ, 1976. Вып 127. С. 55–60.

Лаврова Л.Д. Новый тип месторождения алмазов // Природа. 1991. № 12. С. 62–69.

Ленных В.И. Эклогит-глаукофансланцевый пояс Южного Урала. М.: Наука, 1977. 160 с.

Ленных В.И., Перфильев А.С., Пучков В.Н. Особенности внутренней структуры и метаморфизма альпинотипных офиолитовых массивов Урала // Геотектоника. 1978. № 4. С. 3–22. *Маракушев А.А., Бобров А.В.* Специфика кристаллизации эклогитовых магм в алмазной фации глубинности // Докл. РАН. 1998. Т. 358. № 4. С. 526–530.

Масайтис В.Л., Шафрановский И.Г., Федорова Г.И. Апографитовые импактные алмазы из астроблем Рис и Попигай // Зап. Всес. минерал. об-ва. 1995. Ч. СХХІV. № 4. С. 12–19.

Минералогические таблицы: Справочник / Под ред. Е.И. Семенова, О.Е. Юшко-Захаровой, И.Е. Максимюк и др. М.: Недра, 1981. 399 с.

Михеев В.И. Рентгенометрический определитель минералов. М.: Госгеолтехиздат, 1957. Т. 1. 868 с.

Пучков В.Н. Новые данные по геологии хребта Урал-Тау и проблема их геодинамической интерпретации // Ежегодник–1993 / ИГ УНЦ РАН. Уфа, 1994. С. 55–63.

Рост Р., Долгов Ю.А., Вишневский С.А. Газы во включениях импактных стекол кратера Рис и находка высокобарических полиморфов углерода // Докл. АН СССР. 1978. Т. 241. № 3. С. 695–698.

Симаков С.К. К вопросу об образовании алмаза в метаморфических породах земной коры // Докл. РАН. 1995. Т. 340. № 6. С. 809–811.

Сладков А.М., Кудрявцев Ю.П. Алмаз, графит, карбин — аллотропные формы углерода // Природа. 1969. № 5. С. 37–44.

Слодкевич В.В. Параморфозы графита по алмазу // Зап. Всес. минер. об-ва. 1982. Ч. СХІ. Вып. 1. С. 13–33.

Специус З.В., Сафронов А.Ф. Некоторые особенности состава рутила в эклогитовых ассоциациях и в парагенезисе с алмазом // Зап. Всес. минер. о-ва. 1986. Ч. СХV. Вып. 6. С. 699–703.

Станцо В.В. Углерод // Популярная библиотека химических элементов. М.: Наука, 1983. Кн. 1. С. 77–95.

Томсон Н.Н., Полякова О.П., Полохов В.Н., Митюшкин Н.Т. Металлогеническое значение углеродистого метасоматоза // Известия АН СССР, Сер. геол. 1989. № 8. С. 78–88.

Фекличев В.Г. Диагностические константы минералов: Справочник. М.: Недра, 1989. 479 с.

Хайманн Р.Б., Евсюков С.Е. Аллотропия углерода // Природа. 2003. № 8. С. 1–11.

Чесноков Б.В. Изменение состава гранатов при метаморфизме эклогитов при метаморфизме эклогитов Южного Урала // Известия АН СССР. Сер. геол. 1961. № 7. С. 40–48.

Чесноков Б.В. Эклогиты Южного Урала и их практическое значение // Магматизм, метаморфизм, металлогения Урала: Тр. 1-го Уральского петрогр. совещания. Свердловск, 1963. С. 257–263.

Чухров Ф.В., Звягин В.Б., Жухлистов А.П. и др. К характеристике структурных особенностей природного графита // Изв. АН СССР, Сер. геол. 1986. № 7. С. 3–15.

Юсупов С.Ш., Мельников Е.П., Фаттахутдинов С.Г. РТ-условия грануляции жильного кварца Урала: Препринт / ИГ БФАН СССР. Уфа, 1979. 47 с.

Bostick Benjamin C., Jones R.E., Ernst W.G. et all. Lowtemperature microdiamond aggregates in the Macsyutov Meafmorphic Complex, South Ural Mountains, Russia. American Mineralogist. 2003. Vol. 88, P. 1709–1717.

F.El. Goresy. Eine neue Kohlenstoff-Modifikation aus dem Nordlinger Ries. Naturwissenschaften, Jahrbuch. 1969. 56 H.10. P. 493–494.