Т.Д. Гутман

СТРУКТУРЫ ВЫСОКИХ ПОРЯДКОВ — ЛЕКСЕМЫ НЕЛИНЕЙНЫХ СРЕД

Природные объекты формируются в результате разномасштабных процессов, имеющих в общем случае пересекающиеся и взаимно зависимые структуры, определяемые различными системами параметров. Характерные для них соотношения могут (в нелинейных средах) выражаться в терминах структур высоких порядков над основными элементами. Приемы анализа таких объектов проиллюстрированы с учетом механики хрупко-пластических сред на примере временных сейсмических разрезов (сокращенно дент) с/п 1068302, с/п 128308 [Казанцев, Казанцева, 2001]; новых клиноформ Южно-Татарского свода [Казанцев, Загребина, 1992] (эти денты обозначены в [Гутман, 2004] через С1, С2 и С₃). Сформулируем «ключевые» структуры на их неделимых при макроанализе элементах (будем вперед называть их простыми).

Определение 1. Пусть г — тип элементов на объекте Q, md(r) — модель распределения элементов типа r на Q. Тогда дислокация (сокращенно тег) D типа r объекта Q — отклонение от модели md(r) на $Q_1 \subseteq Q$, где относительая мера Q_1 не пренебрежима, но достаточно мала, чтобы не нарушилась модель md(r) на Q «в целом». Дефект среды G — тег объекта, для которого G — структурная компонента. C(Md,Q) — случайная среда, распределенная по модели Md, составленная из элементов тех же типов, взятых в тех же количествах, что для Q. Ценз дефекта D на Q — вероятность, что на C(Md,Q) есть дефект «не меньший» (по мере, принятой для пары <тип r элементов; тип t тегов для элементов из r >), чем D[Гутман, 2004]. Назовем структуру на (Q,Md) с цензом Р Р-структурой на (Q,Md), определяемой Р-свойствами и Р-отношениями.

Гипотеза 1. Простые элементы денты С распределены случайно и независимо.

Обозначение 1. R^2 — плоскость. Pb — оценка сверху для цензов выводов.

Определение 2. Пусть H — набор кривых на R^2 , не пересекающихся попарно в строгом смысле (сокращенно HCT-набор). Если есть прямая, пересекающая каждую кривую из H в единственной точке, то H — трубка. Пусть e>0, v — мера угла на R^2 и M — HCT-набор такой, что для произвольной вертикали V выполняется: 1) V пересекает каждую кривую из M не более чем в одной точке; 2) для каждой пары $\{T_1, T_2\}$ соседних на V точек из объединения кривых набора M имеем: 2.1) точки T_1 и T_2 е-близки; 2.2) для кривых K_1 и K_2 из M, содержащих T_1 и T_2 соответственно, $\phi \le v$, где ϕ — острый угол между касательными к K_1 в T_1 и к K_2 в T_2 . Тогда M — (e,v)-поток кривых.

Определение 3. Сегмент S денты C — горизонтально-сквозной, если линеаменты распределены

на S с неравномерной плотностью и квазигоризонтальны на S.

Определение 4. Пусть e>0, v>0, и кривые на С с цензом Р разбиваются на классы макрокривых и микрокривых против гипотезы о статистической однородности распределения их длин. Назовем множество В микрокривых на С е-трубкой микрокривых, если В е-плотно на какой-либо трубке Т макрокривых. Если Т, кроме того, (e_1,v_1) -поток, то назовем Т обобщенным $((e,v),(e_1,v_1))$ -потоком на В.

Определение 5. Р-кластер (0<P<1) на $M \subset R^2$ отделенное с цензом Р подмножество M; Р-спица на денте C — Р-квазилинейный Р-кластер микрокривых на C.

Определение 6. Пусть H — набор кривых такой, что: 1) каждая точка T пересечения каких-либо двух кривых из H — конец для хотя бы одной из них; 2) каждая кривая D из H имеет общую точку хотя бы с одной кривой из $H\setminus\{D\}$. Тогда назовем H кустом кривых. Назовем Куст H правильным, если все элементы из H, лежащие по одну сторону (по разные стороны) от какой-либо кривой из H, содержащей их общий конец (назовем такую кривую стволовым элементом H), возрастают или убывают одновременно (противоположно направлены).

Определение 7. е-цепь (e>0) — упорядоченный набор элементов $\{g_i\}_{i\in 1,k}$ ($k\ge 2$) такой, что расстояние между любыми g_i и g_{i+1} для $i\in 1,k-1$ не больше е. Плоское множество D монотонно, если (x_1-x_2) $(y_1-y_2)\ge 0$ для любых точек $t_1=(x_1,y_1)$ и $t_2=(x_2,y_2)$ из D.

Для горизонтально-сквозных сегментов дент характерны кусочно линейные надвиги, часто составляющие наборы кустов, ограниченных по краям сегмента дугообразными квазивертикальными надвигами, «вогнутыми» внутрь сегмента [Гутман, 2004]. Пусть e>0, $H-(15^\circ)$ квазилинейная кривая на денте С, в е-окрестности О которой повышена концентрация тегов какого-либо типа X (см. определения 1 и 3) на элементах денты какого-либо типа Ү (назовем их (X,Y)-тегами); k — число (X,Y)-тегов на O; n — число (X,Y)-тегов на C; p — ценз вывода, что Н — спица-надвиг, против конкурирующей гипотезы 1. р вычисляется как вероятность, что на случайном множестве точек V, |V|=n, независимо распределенных на описанном около С прямоугольнике, есть (15°) квазилинейная е-цепь Z, |Z|≥k [Гутман, 2004]. Если множество М (Х, У)-тегов на О составляет Рb-кластер на множестве (X,Y)-тегов на С, то р (при модельной гипотезе 1) меньше вероятности, что случайное множество точек W, |W| = k, независимо распределенных на R², есть (15°)-квазилинейная е-цепь. Тогда p<2 $(15/180)^{k-1}/k!$ [Гутман, 2004]. При более грубых ограничениях на форму спицы, p < 1/u(M), где u(M) — отношение длин

главной и ортогональной к ней осей рассеяния для $M; 1/2^{|M|-1},$ если M монотонно [Гутман, 2004].

Определение 8. Пусть H-Pb-кластер кривых и $H_1 \subseteq H$, составляет Pb-высокую долю от H, причем множество Q правых (левых) концов кривых из H_1 или их однотипных особых точек Pb-квазилинейно. Тогда Q-Pb-квазилинейный край.

Отметим, что Рь-квазилинейные края — дефекты на дентах (см. определение 1) и часто образуют кусты. Ценз куста на множестве кривых определенного типа Ј (например, квазилинейных краев) часто достаточно оценить, учитывая отдельные проявления куста; например, выполнение одного или обоих из условий: 1) повышенная по сравнению с фоновой концентрация кривых типа J, составляющих куст; 2) пространственная структура куста. По теореме Байеса, учитывая независимость условий (1) и (2), имеем: ценз Р куста равен P_1P_2 , где P_i для $i \in 1,2$ — ценз выполнения i-го условия. Оценка сверху для P_2 — вероятность P_3 правильности случайного куста с фиксированной схемой ветвления при конкурирующей гипотезе 1. Значит, Р≤Р₁ Р₃ [Гутман, 2004].

На C_1 выделились с цензом 10^{-6} поток макрокривых и обобщенный поток микрокривых; спицы

и квазилинейные края на микрокривых. На C_2 спицы смежны с разрывами квазигоризонтальных горизонтов значимой мощности; квазилинейные края на микрокривых образуют с цензом 10^{-6} правильные кусты; на C_3 спицы смежны с квазилинейными краями на концах трубок микрокривых (с цензом 1/16) [Гутман, 2004].

Разработана в терминах цензов формализованная схема анализа структур произвольных конечных порядков в фиксированных контекстах — наборах форм выражения закономерностей и их мер в ассоциированных с ними пространствах [Гутман, 2004].

Литература:

Гутман Т.Д. Структурный анализ в терминах стохастических шкал на примере сейсмограмм «время — плотность»: Монография. Уфа, 2004. 58 с. Деп. в ВИНИТИ 04.11.2004, № 1733—B2004.

Казанцев Ю.В., Загребина О.И. О методах выделения разрывных нарушений на временных сейсмических разрезах МОГТ // ДАН. 2002. Т. 387. № 3. С. 370—373.

Казанцев Ю.В., Казанцева Т.Т. Структурная геология юго-востока Восточно-европейской платформы. Уфа: Гилем, 2001. 234 с.