
2329

Bulletin of the Seismological Society of America, Vol. 96, No. 6, pp. 2329–2347, December 2006, doi: 10.1785/0120050172

Rapid Estimation of Earthquake Source Parameters from Pattern Analysis

of Waveforms Recorded at a Single Three-Component Broadband Station,

Port Vila, Vanuatu

by M. N. Zhizhin, D. Rouland, J. Bonnin, A. D. Gvishiani, and A. Burtsev

Abstract The present study deals with rapid, automatic, estimation of some earth-
quake parameters (location, focal depth, and magnitude) in a region of rather high
seismic activity, in quasi-real time, through the analysis of incoming broadband re-
cords. The method can be applied, in particular, in poorly instrumented countries
with high seismic-risk potential. It can also be applied when the analysis of a very
important flow of data requires rapid, sophisticated, preferably automatic, data pro-
cessing. The method requires, as a minimum, a three-component broadband seis-
mographic station and a sufficiently populated database, that is, an instrument op-
erating for a time long enough to have accumulated an appropriate data set, used to
construct the knowledge base. The more extensive the knowledge base, the better
the accuracy of the method.

We proceed in several steps. First, applying the SPARS algorithm to the only
vertical component, available waveforms are classified according to the source lo-
cation taken from National Earthquake Information Center (NEIC) catalog; it results
in the sorting out of a subset of waveforms/events which will not be included in the
knowledge base. Second, each element of the knowledge base is validated according
to the epicentral distance with respect to the reference station (and eventually the
azimuth of the corresponding source). Third, new input waveforms are analyzed and
compared with one or more elements of the knowledge base to estimate their source
location and size. The method can be used to search for doublets (or multiplets); if
multiplets are found, their location and focal depth can be determined by using a
fuzzy event relocation method.

We have tested the capability of the proposed algorithms, processing (broadband)
waveforms collected during four and half years at the GEOSCOPE broadband station
PVC, operated by Institut de Recherche pour le Développement, formerly ORSTOM
(IRD) at Port Vila, Vanuatu. Among 650 events recorded at this station, 254 ones,
meeting a good criterion of quality, have been sorted. The results show that, in a
range of distances up to 1000 km, the method is capable of yielding, in a very short
time, the location of the input event, the accuracy depending on the local density of
known events in the vicinity. We also obtain a reliable estimation of the energy by
measuring the maximum surface wave (or S-wave) amplitude, related to the classical
magnitude MSZ.

Introduction

In countries facing a high level of seismic hazard, more
or less dense seismological networks have been installed;
and numerous articles have been devoted to describing the
capabilities of such networks for determining in real time
the source parameters (epicenter location, focal depth, mag-
nitude, and moment tensor). The accuracy of the various
parameters depends obviously on the density of the contrib-

uting stations (for a general review of the basic detection
algorithms, see Cuénot, 2003). On the one hand, in some
regions with high seismic hazard, the deployment of such
sophisticated networks is not easy, in particular, because of
a specific environment (e.g., vast oceanic domain surround-
ing the region, very rugged relief, etc.), and most often be-
cause of economical reasons. An alternative solution con-



2330 M. N. Zhizhin, D. Rouland, J. Bonnin, A. D. Gvishiani, and A. Burtsev

sists in using, for a rapid location, data recorded at a single
station. This could make up one step toward the design of
an efficient early warning system (Nakamura, 1988; Saita
and Nakamura, 2003)

Data-processing techniques, using single broadband
three-component instruments, have been developed, most of
them based on automatic P- and S- (and multiple-) wave-
detection algorithms, leading to an estimation of the source
location from azimuth and apparent surface velocity mea-
surements (Magotra et al., 1987; Roberts et al., 1989; Saita
and Nakamura, 2003) and/or of seismic moment (Talandier
et al., 1987; Reymond et al., 1991). Another, very different
approach consists in using pattern recognition methods to
extract, from broadband records, the information needed to
interpret them with respect to a knowledge base. Bonnin et
al. (1991) and Zhizhin et al. (1994, 1995) have developed a
method based on cluster analysis of nonlinearly aligned
traces: the Syntactic Pattern Recognition Scheme, hereafter
called SPARS. It consists in measuring, in a set of records,
the dissimilarities (Levenstein distance) between elements
of the set, leading to a nearest-neighbor classification of the
parameterized waveforms. The method has been success-
fully applied to seismological data collected at the GEO-
SCOPE broadband station in Nouméa (New Caledonia); data
processing has permitted clustering almost all earthquakes
of a given set among themselves (Zhizhin et al., 1995).

The method leads straightforwardly to the search, in a
cluster of events, of the so-called multiplets (Ishida and
Kanamori, 1978; Geller and Mueller, 1980). Several such
investigations have been conducted largely to increase the
resolution of travel-time propagation models, for event re-
location purposes and for fine local structure studies (Pou-
pinet et al., 1984; Fréchet et al., 1989; Got et al., 1994;
Poupinet et al., 2000). To find multiplets, these authors use
a precise time window (generally around the P and multiple
P phases) to compare the records among themselves,
whereas comparison of events with the SPARS algorithm
implies the analysis of the whole seismogram. This second
approach allows for searching multiplets in a very large set
with a great variety of events. Gaucher (1998) adapted and
implemented SPARS to identify multiplets in a set of 16,000
microseismic events recorded at a geothermal field, allowing
for a very precise relocation of events along planar structures
presumed to be fracture planes. Battaglia (2001) used the
SPARS technique to classify automatically different types of
seismic signals recorded at Piton de la Fournaise (Réunion
Island) volcano. Both authors then applied the master-event
technique to relocate microearthquakes (Gaucher), or seis-
movolcanic events (Battaglia); both authors needed, for re-
location purposes, to pick P- and S-phase arrival times.

In this article, we improve SPARS and associated algo-
rithms to automatically pick P- and S-phase arrival times
and to locate new events by a fuzzy location technique. For
testing the method we used data collected by the three-
component broadband station PVC, a contributing GEO-
SCOPE station, operated at Port Vila (Vanuatu). With these

data we generate a knowledge base that consists of wave-
forms and source parameters of well-located events taken
from National Earthquake Information Center (NEIC) cata-
logs. We present a technique for location of new events
based on the similarity of their waveforms with the events
in the knowledge base, with additional physical constraints
derived from the incoming signals.

Seismicity of New Hebrides Region
and Observatory Capabilities

The zone covered (Fig. 1) spreads over the whole part
of the New Hebrides arc, from Santa Cruz Islands (10� S)
to Matthew and Hunter Islands in the southern part of the
Fiji Basin (23� S).

The New Hebrides region, with high-potential seismic
and volcanic hazards (Louat and Baldassari, 1989; Eissen et
al., 1991; Robin and Monzier, 1994), is characterized by a
poor coverage of permanent seismic stations, due partly to
the vast oceanic environment, which does not favor a na-
tional plan for seismic-hazard assessment. Paucity of seis-
mographic stations in the Southwest Pacific is striking if
compared, for example, with the coverage in central and
southern Europe, whereas the frequency of occurrence of
major events is much higher in the former region than in the
latter. Therefore, the application of special data-processing
techniques based on single-station observations is of partic-
ular interest in the latter region.

The seismicity of New Hebrides, observed with tem-
porary regional networks, has been described in a few arti-
cles (e.g., Coudert et al., 1981; Kruger-Knuepfer et al.,
1986). Epicentral locations are published regularly in NEIC
and International Seismological Center (ISC) catalogs. When
comparing the locations obtained by these institutions, large
discrepancies are sometimes observed, due to the inclusion
of more phase data in the ISC computations. In addition,
the focal-depth estimate is poorly constrained because of the
lack of contributing regional stations. Figure 1a shows the
epicenters corresponding to earthquakes located by NEIC,
with good resolution on focal depth, whereas, in Figure 1b,
the epicenters without any resolution on focal depth (fixed
at the conventional value of 33 km) are plotted; we observe
that more than 45% of the events correspond to earthquake
focuses poorly determined in depth. This low resolution in
focal depth is understandable when considering the very
small density of stations operating in this region, within a
thousand of kilometers. Rosat (1999) underlines these dis-
crepancies by noticing that, in some cases, the epicenter lo-
cations reported by international agencies can differ by more
than 100 km from those calculated using local seismological
networks. Statistics on the largest differences of epicentral
distances calculated for events reported during the year 1994
in both NEIC and ISC catalogs on the one hand, and those
reported in the regional Institut de Rechercha pour le De-
veloppement, formerly ORSTOM (IRD) catalog (M. Reg-
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Figure 1. (a) Regional seismicity 1993–1998 (NEIC locations), with green dots for events with
focal depth h � 33 km, blue dots for events with depth 33 � h � 80 km, and red dots for events
with depth h � 80 km. The strongest events (with M �7) are especially marked with large black
triangles. Direction of the relative motion between the Indo-Australian and Pacific plates is indi-
cated by the arrow. The indented solid line indicates the New Hebrides trench and the direction of
subduction. (b) NEIC-reported events with unknown depth (black dots). The location of seismic
stations operating during this period are shown by red circles for permanent (GEOSCOPE) stations,
red triangles for broadband temporary stations, and small blue circles for short-period stations. The
locations of the four telemetered short-period stations on Efate Island, in the vicinity of Port Vila,
are not reported. Notice the poor coverage of the region by the broadband stations as compared
with the strong regional seismic activity.

nier, personal communication) on the other, are summarized
in Table 1.

Data Collection and Preprocessing: Building
the Knowledge Base

Data were collected at the seismological station PVC,
Vanuatu, during 1993–1998. Epicentral distances vary from
�30 to 900 km, the reference station itself being located in
the central part of the area under study. The station was
equipped, until May 1995, with a Streckeisen broadband
BRB instrument (Romanowicz et al., 1991; Morand and
Roult, 1996); then it has been upgraded with the very broad-
band VBB version. For the different instrument character-
istics of the station, we refer to Pillet et al. (1990), Morand
and Roult (1996), and Roult et al. (1999). Because of this
up-grading of the instruments, it was necessary to select an

Table 1
Statistics on Epicentral Distance Differences, DD, Induced by the
Different Events’ Locations (Epicentral Distance Is Taken with

Respect to PVC Station)

DD (km) No. of Events

NEIC/ISC catalogs
DD � 10 200
10 � DD � 20 79
20 � DD � 40 52
40 � DD � 80 21
80 � DD 9

Total 361

ISC/IRD catalogs
DD � 10 5
10 � DD � 20 8
20 � DD � 40 14
40 � DD � 80 15
80 � DD 9

Total 51



2332 M. N. Zhizhin, D. Rouland, J. Bonnin, A. D. Gvishiani, and A. Burtsev

Table 2
Statistics on Detection of Events as a Function of Event Geographic Latitude (see Fig. 5)

Latitudes (deg) Distance (km) CECM Detector LP Detector Not Detected Subtotal Region

�12 � lat � �10 650 � D � 900 3 8 1 12 Santa Cruz Island
�14 � lat � �12 450 � D � 650 11 13 2 26 Banks and Torres Island
�16 � lat � �14 200 � D � 450 15 10 6 31 Aoba and Santo Island
�18 � lat � �16 0 � D � 200 66 9 2 77 Mallcolo and Efate Island
�20 � lat � �18 0 � D � 200 31 8 8 47 Erromango and Tanna Islands
�22 � lat � �20 200 � D � 550 17 9 3 29 Walpole Island
�24 � lat � �22 550 � D � 800 11 19 2 32 Matthew and Hunter Island

Subtotal 154 76 24
Total 254

putational Methods section. Only half of these events are
assigned a computed focal depth in NEIC catalogs, the other
ones being reported with the 33 km conventionally fixed
depth. A set of nine vertical records at the PVC station, show-
ing the large diversity of events occurring from north to
south of the New Hebrides arc, is shown on Figure 2.

As a result of the data preprocessing we have built a
“learning set” or a “knowledge base” of well-identified
waveforms, to which the next incoming seismic signal can
be compared by using the computational methods presented
in the next section. Then we will try to interpolate the sim-
ilarity between the waveforms for relocation of the new
event by analogy with the identification information learned
from the knowledge base.

Computational Methods

In this section we combine traditional seismic methods
of waveform interpretation based on the wave detectors and
physical models of source and velocity structure together
with artificial intelligence reasoning by analogy based on the
assumption that similar waveforms originate from similar
seismic sources. Our three-component P- and S-wave detec-
tor provides estimates for epicentral distance, azimuth, and
event magnitude. Source locations of similar waveforms
from the compact granule in the knowledge base (earthquake
doublet or multiplet) provide fuzzy event relocation with
probability densities for the source coordinates, distance, and
focal depth. When used independently both approaches can
lead to erroneous conclusions due to noise in the data, com-
plexity of both the source and the propagation path, and the

Table 3
Events’ Focal Depth Distribution, Published in NEIC Preliminary

Determination of Earthquakes Bulletin

Depth Range Events Count

h � 33 53
h � 33 (arbitrary fixed) 154
33 � h � 80 12
80 � h 35

Total 254

appropriate channel, and to convert data by filtering and de-
convolution into a standard homogeneous format, namely
the velocity-deconvolved trace with Butterworth bandpass
filters. To test, at first, the quality of the records, mainly their
signal-to-noise ratio (SNR), we use the vertical 1-Hz contin-
uously sampling channel. Then, in a second step, to con-
struct the final knowledge base, we use the three-component
(with 5-Hz sampling rate) channels, velocity deconvolved.
We apply a bandpass filter between 1 Hz and 0.01 Hz, with,
in addition, a band-reject filter between 0.182 and 0.125 Hz
to reduce the microseismic noise. Details concerning the
geographical position of the events are reported in Table 2
(columns 1, 2, and 7), and statistics about the focal depth
range are given in Table 3. The privileged location of the
recording station, in the central part of the studied area, has
a main consequence that most of the recorded earthquakes
can have their “symmetrical double” (the same epicentral
distance with opposite azimuth); this means that the corre-
sponding seismograms can have a priori great similarities,
disregarding the fault mechanism effect. In the following
sections, we call such events “symmetrical.” The use of
three-component data sets must be therefore of great interest
to reduce the number of doubtful results. On the other hand,
the focal-depth diversity is relatively large along the arc, the
area under study being located at the borders of subducting
plates; noticing that the density of collected events decreases
rapidly with focal depth, this creates new difficulties again
in searching for events with neighbor hypocenters.

Records, sorted for the observation period 25 December
1993 to 30 June 1998), correspond to about 650 earthquakes
located by NEIC, with magnitudes greater than 4. Neverthe-
less, to avoid bias due to the microseismic noise, which is
commonly important in such island sites, we disregarded
most of the events recorded with magnitude less than 4.5.
Moreover, to ensure a good S-wave detection, it is necessary
to severely control the noise on the horizontal components,
because of the presence of a higher noise level on these
components. This additional criterion leads to a reduction of
the number of waveforms in the knowledge base, in partic-
ular, disregarding the lowest-magnitude events. Finally the
records meeting a good criterion of quality have been re-
stricted to a set of 254 events, as it is described in the Com-
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detection of P arrivals in the location of acoustic emissions.
Comparison of capabilities of some detectors is illustrated
on Figure 3.

A simple idea behind CECM is that in any P wave, the
3D particle motion occurs along one direction, and there is
no particle motion in the plane perpendicular to this direc-
tion. Thus, a correlation of energy dissipating in the direction
of the P-wave motion with the energy dissipated in other
directions, will be close to zero. On the other hand, in case
of random motion in seismic noise, on average, we have the
same amount of energy dissipated in all directions. If we
assume that the seismic noise is a multivariate Wiener sto-
chastic process, then the energy dissipated in each channel
will be proportional to the registration time, Ex(t) � t (Went-
zell, 1981). Thus, the energy will be correlated between
channels. The deterministic component in the stochastic sig-
nal (in our case, the P-wave arrival) will temporarily destroy
the established cross-channel correlation.

Figure 2. Plot of various vertical seismograms, velocity-deconvolved, bandpass
filtered (1–0.01 Hz) with a frequency band-reject filter (0.182–0.125 Hz). The records
are plotted from top to bottom according to decreasing latitudes ranging from �10� S
to �22� S. Epicentral distance and focal depth are indicated on the right of each trace
with mention of the body-wave magnitude mb and, if available, surface-wave magnitude
MSZ. Each record (trace) is aligned on its individual event origin time.

limited number of analogies found in the knowledge base.
When properly combined, they can constrain the analyst de-
cision space to allow rapid earthquake location and alert, if
not as a fully automated procedure, then as a visual decision
support component of an expert system.

P- and S-Wave Detectors for Regional Seismograms

In our attempt to elaborate a robust and sensitive P-
wave detector, we have tried several different methods, in-
cluding the short time average to long time average (STA/
LTA) detector, the linear polarization detector, and the
multiresolution detector using wavelet-transform (Anant and
Dowla, 1997), as well as the so-called LP detector routinely
applied for the processing of GEOSCOPE data (Romanowicz
et al., 1991). We obtained the best results using a modified
version of the component energy comparison method
(CECM), proposed in Nagano et al. (1989) for automatic
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time at which the coefficient R(t, T) reaches a local mini-
mum, as shown in Figure 4. To reduce the number of false
detections, we introduce an experimentally determined
threshold for the candidate local minima values R(t, T)
� 0.6.

Following Nagano et al. (1989), we also examine SNR
in a time window T centered at the preliminary P-wave ar-
rival time, SNR � 20 log (Psignal (t0)/Pnoise (t0)), where the
average amplitudes of signal and noise are defined as:

t �T/201 2 2 2P (t ) � x (i) � y (i ) � z (i ) , (4)�signal 0 �T i�t �T/20

t01 2 2 2P (t ) � x (i) � y (i) � z (i) . (5)�noise 0 �t i�10

The detected P wave is considered to be below noise
level if SNR �20 dB. The P-wave arrival time tp is more
precisely determined by fitting a parabola to several values
of R(t, T) before t0 and finding the time moment when the
fitted parabola intersects with time axis. By this we pick the
first statistical evidence of the P arrival before the well-
developed wave train at t0.

To determine the azimuth from the event source to the
station, we use standard polarization analysis of the P wave
(Frölich and Pullein, 1999) in a fixed-duration time window
Ta � 8 sec after the arrival time tp. Other authors (Cicho-
wicz, 1993) have used polarization analysis to detect P and
S arrivals; in the present article, statistics on amplitude dis-
tribution between components and wave trains are applied,

Figure 3. Location of the events used in this study. (a) Events for which both P
and S waves are detected by the P-S detector algorithm. The P wave for most of them
is also detected by the LP detector. (b) Events detected only by the LP algorithm. (c)
Events not detected by either algorithm. The indented solid line indicates the New
Hebrides trench and the direction of subduction. The white circles correspond to the
lack of this trench between Espiritu Santo and Malicolo Islands.

In our version of the CECM algorithm, we correlate the
energy dissipated in a moving time window T � 25 sec
between the three components of the seismic record. The
total energy dissipated in each direction (e.g., along discrete
time channel x(i)) is defined by

t
2E (t) � x (i). (1)x �

i�1

The choice of the initial time moment t � 1 may seem
arbitrary: the only requirement is that it is “fixed” long time
before t: for example, at each hour boundary. To be less
sensitive to the direction of the P-wave arrival, we analyze
a product of the energy correlation coefficients between x-z
and y-z channels (z is the vertical component of the motion;
x and y are in the horizontal plane; x is north–south; y is
west–east):

R(t,T ) � R (t,T )R (t, T ) , (2)xz yz

where the energy correlation between x-z channels is defined
by

t�T

E (i)E (i)� x z
i�tR (t,T ) � , (3)xz

t�T t�T
2 2E (i) E (i)� x � z� i�t i�t

and Ryz(t, T) is defined by the same formula changing x into
y. The P-wave arrival t0 is preliminarily determined as the
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Figure 4. Example of P and S detections. (top and
top middle) Vertical and transverse components with
P- and S-arrival marks and amplitudes in micrometers
per second, the transverse component calculated ac-
cording to NEIC location. (bottom middle) Dimen-
sionless P-wave CECM detector output with solid line
for energy correlation across the channels; candidate
local minima are marked by a star, SNR plotted with
a dashed line, and threshold SNR regions marked as
dotted segments. (bottom) Dimensionless S-wave de-
tector output.

where

2 2 2a(t ) � x(t) � y(t) � z(t) ,�i (8)
t ts max1 1

l � a(t ), l � a(t ) .p i s i� �t � t t � ts p max si�1 i�ts

The optimal S-wave arrival time ts should make maximum
the value of the likelihood function L(ts) (Fig. 4).

Similarity of Seismic Waveforms

A brief account of the concept of syntactic dissimilarity
applied to seismic waveforms is given in the appendix.
Waveforms are parameterized by applying a wavelet decom-
position, leading to waveform representation in the form of
“scalograms.”

Analysis of the waveform similarities is based on the
assumption that relatively close (in 3D space) seismic
sources with similar rupture mechanisms produce similar
waveforms at the same recording site. Estimation of the
waveform dissimilarity is mathematically equivalent to the
embedding of the set of waveforms w � W into a metric
space D, taking the value of dissimilarity as a metric or dis-
tance between waveforms in D. The preceding assumption
on the “continuous” mapping from a set of sources S onto
the seismic waveforms r(•):S r W with proper choice of
observation conditions and waveform dissimilarity measure
d(•,•) will manifest itself in the mathematical fact that the
multiplets of seismic events will form dense clouds (granules
or clusters) in the embedded metric space.

To elaborate a multiplet-detection algorithm, we have
to define how to calculate dissimilarity d(•,•) between the
seismic waveforms and what is a granule in the resulting
metric space D. Obvious candidate for the measure is the
maximum cross-correlation (Joswig, 1990):

d(w ,w ) � max|R(t,T )|1 2 t

T

�w̄ (i � t), w̄ (i)�� 1 2
� max , (9)i�1

t � ��w � �w �1 2

where by �•,•� we denote the inner product of three-com-
ponent vectors, and by �•� we denote their Euclidean norm.

The cross-correlation reaches its maximum when the
waveforms are linearly dependent. It is insensitive to the
phase shift between waveforms (e.g., different origin time),
but it is sensitive to local nonlinear distortions of timescale
(e.g., different S-P delays). In our earlier studies we pro-
posed nonlinear alignment of scalograms by means of dy-
namic programming technique. A global estimate of dissim-
ilarity (called syntactic distance) between the waveforms
takes into account both local delays in arrival times and dif-
ference in frequency content and energy envelope of these

because it proved more robust (see the following text for
discussion).

Our S-wave detector is based on two assumptions:
(1) the probability density functions for distribution of
seismic-signal amplitudes a(t) in the Hilbert transform en-
velopes of the P- and S-wave trains pp (a(t)) and ps (a(t)) are
normal with significantly different means but similar vari-
ances N(lp, r) and N(ls, r); (2) the signals within each of
the wave trains can be considered as quasi-stationary (see
Nagano et al., 1989). Then arrival time ts of the S wave will
divide the signal in the time window between P-arrival tp
and maximum degree of polarization tmax (which for regional
seismograms occurs within the S wave) into two homoge-
neous segments tp � ts � tmax with the likelihood

t ts max

L(t ) � log p (a(t )) p (a(t )). (6)s � p i � s i
i�t i�t �1p s

For normal distribution functions pp (a(t)) and ps (a(t)), the
likelihood formula will be

tst � t 1s p 2L(t ) � � log [a(t ) � l ]s i p�2 t � ts p i�1

tmaxt � t 1max s 2� log [a(t ) � l ] , (7)i s�2 t � tmax s i�ts
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phases. Syntactic distance has been defined by Levenstein
(1965). Similar time-warping technique was developed in
the 1970s for speech recognition (Rabiner and Juang, 1993,
chapter 4). The first application of time warping to seismic
discrimination was reported in Liu and Fu (1982).

Waveform Database Granulation

To analyze the internal structure of a waveform collec-
tion and to search for “neighbor” waveforms for fuzzy-event
relocation, we use cluster, also known as granulation, anal-
ysis based on dissimilarity measure of the entries. Given a
set of N waveforms w1, . . .,wN represented by scalograms
S1, . . .,SN with known matrix of pairwise syntactic dissimi-
larities dij � DLev (Si,Sj) (definition of Levenstein distance
is given in the appendix), we want to introduce a set of
concepts that can regroup the data into a set of granules
(clusters, multiplets) and discover unseen (hidden) structure.

A simple definition of database granule around a given
waveform wi will be a set of K-nearest neighbors to wi, that
is, the first K waveforms wj from the database with the min-
imal values of dissimilarity dij, where K is a given constant.
In reality, the diversity of waveforms and varying number
of events from different granules in the database require a
more flexible estimate of the granule size K. In this study,
we define an optimal K in the interval Kmin � 1 to
Kmax � 7 by analyzing how fast the diameter of granule is
growing with addition of a new neighbor: slow down of the
diameter growth indicates that the optimal granule size is
reached. Let us denote by Dj � di,j�1 � di,j, the diameter
growth after addition of the neighbor wj. Addition of wave-
forms to granule stops when one of the conditions j � Kmax

or Dj � Dj�1 is reached. We illustrate the granulation al-
gorithm in Figure 5 (top), where the optimal granule size
estimate is 2. Granule waveforms are plotted in Figure 5
(bottom), with granule center at the top and neighbor wave-
forms ordered by increasing syntactic dissimilarity to the
center.

Granule-size estimation is a more difficult task than per-
formance measurement in the supervised learning process.
A compromise approach was proposed by Gaucher (1998)
in his Ph.D. dissertation: he used diameter of the granule
source region in space as an additional constraint for the
waveform granule growth.

Fuzzy Event Relocation

The fuzzy event relocation method is a nonlinear tool
for estimating quantitative seismic-event parameters. It is
similar to K-nearest neighbors classifier, but instead of dis-
crete (or nominal) classification (such as explosion, earth-
quake type of event, etc.) it applies to continuous parameters
such as the source depth and epicenter coordinates. Using
the values of these parameters for events with the K-nearest
neighbor waveforms similar to the unknown event, we are
able to construct a nonlinear mapping, namely the kernel-

density estimate, which predicts the searched parameters for
the unknown event.

The kernel-density estimate (Silverman, 1986) is a
computer-intensive method, which is an alternative to the
classical histogram and involves smoothing the data while
retaining the overall structure. The nonlinear mapping f̂(x)
essentially is a weighted sum of Gaussian kernels �(x) �

, scaled to have a unit area below the graph:1 2exp(x /2)
2p�

n1 x � xif̂ (x) � w � . (10)� i � �nh hi�1

The kernel estimate, when calculated with an appropriate
value of h, gives a good estimate of the population-density
function without making any assumptions, for example, that
it is a normal distribution. The only complication lies in
estimating the appropriate values of wi and h, which control
the contributions of individual neighbors and the degree
of smoothing. In our study, the weights w � (d �i i

, with , are propor-
K K1¯ ¯ ¯0.1d) (d � 0.1d) d � d� �j j� Kj�1 j�1

tional to dissimilarities di of the waveforms of the K-
neighborhood to the unknown event, and their bandwidth

is proportional to the searched parameter2h � 1 � r�
standard deviation r within the K-neighbors sample,

K
1 2r � (x � x̄) .� j�K�1 j�1

The heuristic formulas for the weight wi and bandwidth h
are designed to assure single-mode shape of the kernel den-
sity for typical neighborhood sizes, K � 2, . . ., 4. The
method is directly applicable for the source depth estimate.
Generalization of the formulas for the 2D case of epicenter
coordinates is straightforward.

Our method of fuzzy event relocation relies on the as-
sumption that syntactically similar seismic waveforms are
generated by earthquake sources that are close in space (with
close epicenters and focal depths) and similar in rupture dy-
namics (with similar focal mechanisms). Here we do not
claim that the spaces of all possible seismic waveforms and
earthquake sources are topologically equivalent; we only
suppose that the assumption holds true locally, that is, very
similar waveforms may be generated by sources on the same
fault or in the same source region (it is observed during the
earthquake-generation process that focal mechanisms are not
necessarily equal, but that they are compatible with an av-
erage regional stress tensor; this can be explained by the
concept of self-organized criticality; A. Cisternas, personal
communication). We also suppose that variation of the earth-
quake magnitude is reflected by scaling of amplitudes of
seismic waveforms and does not affect the local relation be-
tween similar waveforms and their sources.
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Figure 5. Granulation. (top) Granule di-
ameter growth with the vertical line represent-
ing the optimal granule size � 2. (bottom) The
upper seismogram (granule center) is com-
pared with the knowledge-base members and
the seven nearest neighbors found are shown
with increasing dissimilarity from top to bot-
tom.

We illustrate the method for two sets of three-wave-
forms neighborhoods drawn on Figure 6, with the probabil-
ities for source location and depth. The values of kernel den-
sity f̂(x) are calculated on a regular grid, with step of 5 km
for depth and 0.25 deg for latitude and longitude estimates.
The “arbitrary” depth value of 33 km is ignored in the cal-
culations. We take as the most likely event location the grid
cell with the highest values of the kernel density.

Epicentral Distance and Magnitude

The epicentral distance can be estimated from the time
difference DtS�P � tS � tP of the time arrivals of P- and
S-body waves, under the assumption that the crustal struc-
ture is known along the path and taking into account the

effect of focal depth. Precise determination of the propaga-
tion times of body waves can be derived along each path
owing to the numerous tomographic models published. In
our iterative process, no velocity structure can be defined a
priori, but we should keep in mind that the main purpose of
this work is to locate an event relative to another one using
similarity between waveforms; however, a mean value is
readily available by referring to regional propagation laws.
In the present study, we make use of the hodochrones tP and
tS derived from regional observation of P and S waves (Du-
bois, 1971) in the distance range 300 to 800 km:

t � D / 7.878 � 3.18 andp (11)
t � D / 4.506 � 7.67 ,s
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Figure 6. Two examples of fuzzy event relocation. The first example (left half) corresponds to an event that occurred in a
region densely covered in the knowledge base; the second example (right half) corresponds to an event that occurred in a region
sparsely represented in the knowledge base. (top) The top seismogram is relocated using the locations of its two nearest
neighbors. (top middle) Location probability with the brightest zone corresponding to the most likely location of epicenter;
longitude/latitude in degrees, dots represent the locations of the neighbor events, numbers represent similarity order, and the
triangle shows the catalog location. (bottom middle) Distance probability with the vertical line for the catalog location and the
maximum of the black line for the most likely distance estimate from the procedure described in the text. (bottom) Focal depth
probability with the same conventions as for the location and individual event kernels shown by the dashed lines.
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the nearest neighbors have been compared and the records
displayed for a visual inspection allowing validation of the
quality of the performance of the clustering procedure. At
this stage, eight events with a bad SNR, or with additional
disturbing signal (e.g., two events superimposed), have been
disregarded and 246 events have been retained in the knowl-
edge base.

The results of the classification according to the shortest
Levenstein distance criterion are the following. For 146 re-
cords, another record is found in the knowledge base that
corresponds to an epicentral distance differing from the ini-
tial one by less than 10%. For 48 other events, the epicentral
distance between the initial event and the associated cluster
differs by less than 20%. And for 18 more events, the epi-
central distance between the event and the cluster differs by
less than 30%. In the first category (less than 10%), 43 events
have an epicentral distance that differs by 2% only from the
corresponding nearest event found in the knowledge base
(for some of them the difference in distance is less than a
few kilometers). Figures 7 and 8 illustrate selected cases of
very good fit: doublets (Fig. 7) and multiplets (Fig. 8). To
summarize, among the 246 events processed, 212 events
(86%) had, at least, one neighbor according to the K-nearest
classifier, with which the corresponding relative epicentral
distances are less than 30%. These observations justify the
use of the syntactic waveform similarity for fuzzy event re-
location.

On the other hand, the 34 events for which the “nearest”
waveform events found are too far away in space from the
one under consideration (failure of the fuzzy relocation pro-
cedure) must be further examined. Among them, a signifi-
cant portion of “false” associations corresponds to deep
events; this is explained by the fact that the density of events
included in the data set drops dramatically when focal depth
increases and this is why the classification fails in many of
these cases. Other cases correspond either to records with a
low SNR value, or multiple-events records.

We should also notice that, in several cases which we
claimed as successfully paired, the “nearest” waveform
neighbor is in fact located in space “symmetrically” to the
initial event with respect to the reference seismic station
(PVC). Indeed, the paths of seismic waves for these “sym-
metrical” events are geometrically similar and, therefore, no
radical differences in the propagation times, nor in the wave-
forms, are expected: the Levenstein distance between the
records is short. The case of symmetrical events is just a
particular one owing to the tectonic structure (curvilinearity)
of the region. To explain the similarity of the waveforms,
we notice that the structures encountered along the ray paths
are comparable. Indeed, for example, records from earth-
quakes occurring either near Santa Cruz Islands (to the north
of the Archipelago) or on Hunter Fracture Zone (to the
south) are similar because the structures traveled both cor-
respond to the uppermost part of the subducted Pacific plate,
at the same distance from the plate border. This type of sym-
metrical relocation errors may occur in other areas with lin-

where D is in kilometers, tP and tS are in seconds. A com-
bination of both equations yields the law

D � [( t � t ) � 4.5] � 10.5s p (12)
� (Dt � 4.5 ) � 10.5 .s�p

Bias due to extrapolation of the law toward short dis-
tances (D �100 km) can appear and a more important one
can be expected when dealing with deep earthquakes. These
possible biases are discussed in the next section.

Magnitude for local and regional events can be obtained
using a variety of formulas, depending on the instruments
used and on the seismic waves under investigation. Differ-
ences in the results, in particular, due to the periods of the
sampled amplitudes, lead to a lot of discussions that are out
of the scope of the present paper. Because we are dealing
with broadband instruments, we decided to use the Praha
formula:

M � log (A/T ) � 1.66 log (D) � 3.3 � C , (13)s max s

where A, T, and D are, respectively, the displacement in
micrometers, the period in seconds, and the epicentral dis-
tance in degrees; and CS is a calibration constant for station
correction (Vanek et al., 1962). This magnitude, according
to the authors, can be computed in a large-frequency domain,
for a very large range of distances; in addition, it converges
to MSZ values published by NEIC for epicentral distances
greater than 10�. This magnitude MS can be easily deter-
mined directly from the velocity-deconvolved velocity rec-
ord, (A/T)max � Vmax/2p; it can be used for oceanic path as
well as continental, at distances lower than 1000 km, without
restricting the period value (Rouland et al., 1986). The pro-
cedure for calculating the magnitude at each station consists
in picking automatically the maximum of the signal from the
velocity-deconvolved record, whatever the apparent period
is, in the temporal window defined by the extreme group
velocities 4.0 and 3.0 km•sec�1 (Rouland et al., 1992, 2003).
Notice once again that this calculated value is equivalent to
the common surface magnitude value MSZ, issued by NEIC,
for distances greater than 1000 km. This procedure does not
apply to deep events and can yield values differing strongly
from mb.

Results and Discussion

Syntactic Recognition of Vertical Components Only

When trying to compare events from the New Hebrides
Archipelago using SPARS algorithm to assign them to dif-
ferent subregions, we have to take into account the fact that
the seismic activity spreads over a long, narrow north–south
area. In our study we have divided the area into seven lati-
tudinal sections each with a 2degree span. The selected 254
events have then been classified, applying SPARS, according
to the K-nearest neighbor criterion: for each latitude section,
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Figure 7. Two examples of doublets well constrained (small aerial extent of bright,
high-probability zone). Upper pair of traces corresponds to remote earthquakes (D �
556 km, unknown depth for the first event; D � 539 km and h � 94 km for the second
event). Lower pair of traces corresponds to deep earthquakes (D � 179 km, h �
172 km, for the first event; D � 148 km and h � 152 km for the second event). In
each case, the upper trace is from the event under test and the lower trace corresponds
to the closest neighbor in the SPARS knowledge base.

ear tectonic structure, especially at the plate boundaries, but
it can be solved by combined use of the fuzzy event relo-
cation and the polarization analysis of the detected P-wave
arrivals.

Other cases of observed faulty clustering, not due either
to bad SNR or to equivalent epicentral distances with very
different azimuths, are less easy to get successful results
from, and it becomes hazardous to try to specify the location
of an incoming event, in particular, in using the fuzzy re-
location method. Therefore, at this stage, the method needs
improvement with a more advanced signal processing, in
particular, using three-component records and developing an
appropriate P-S detector is desirable.

Phase Detection in Three-Component Records

To ensure having a secure knowledge base for further
applications, we consider that each element of this base must
show well-identified seismic phases, principally the body
waves, disregarding the remote events located at the border
of the area displaying fully developed surface waves. The
P-S detector algorithm was applied to all three-component
records collected in the primary knowledge base (254
events); 154 of them provide reliable P and S detections
(Table 2). The distances calculated through regionalized for-
mula (see previous section) are in good agreement with those
published in ISC and/or NEIC catalogs and confirm our
choice of Dubois’s regional P and S travel-time tables. In



Rapid Estimation of Earthquake Source Parameters from Pattern Analysis of Waveforms 2341

Figure 8. Examples of multiplets well constrained in this study (small aerial extent
of bright, high-probability zone). The upper three traces correspond to regional earth-
quakes (D � 256 km, h � 23 km for the first event; D � 260 km and h � 15 km
for the second event; D � 279 km and depth is unknown for the third event). The
lower three traces correspond to local earthquakes of unknown depth at distances D �
61 km, D � 47 km, and D � 52 km. In each case, the upper trace is from the event
under test and the lower traces correspond to the nearest neighbors in a granule found
in the SPARS knowledge base.

the case of nearby earthquakes (epicentral distance less than
150 km), the difference of a few tens of kilometers between
observed values (this study) and published ones (catalogs)
are compatible with the errors generally accepted in routine
location and the uncertainty in the procedures of focal depth
estimation. Comparison between these measured and pub-
lished epicentral distances is illustrated in Figure 9a. A bias
is observed at large distances (greater than 350 km); it can
be explained because we use only one formula to link the
epicentral distance to the observed S-P time difference. An-
other reason to observe a quite large difference between the
two values is that we do not take into account the contri-
bution of depth in the regionalized formula: the P-S detector

algorithm does not yield depth information (see, for exam-
ple, event marked “1” on Fig. 9a). In addition, differences
observed at shortest distances are most probably coming
from uncertainties in the catalog’s locations.

The preceding discussion is applicable when comparing
magnitudes estimated in this study and those published in
catalogs. Comparison between mb values and the ones ob-
tained in this study is illustrated in Figure 9b. Miscalcula-
tions in evaluating the epicentral distance have a direct im-
pact on magnitude estimation. We must also be careful in
comparing mb, which is most often understood as a mean
value, with magnitude calculated using records of individual
stations. Moreover, the extension at short distances of the
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use of Praha formula (13) is questionable; nevertheless, the
observed differences are in the same order as those published
by different institutions (see, e.g., numerous examples in Le-
breton, [1997]).

In the preceding section, we suggest constructing a re-
liable and robust knowledge base by analyzing P and S
waves: this requires essential information contained in each
set of three-component records. This step in data processing
allows elimination of, in particular, noisy seismograms, but
also “complex” ones for which we encounter difficulties an-
alyzing automatically the body waves. By running SPARS

algorithm on this new “clean” database, we considerably
increase the possibility of finding events that are statistically
close to each other, commonly called doublet (or multiplet,
if more than two items) if their relative locations correspond
to a priori given criteria, as summarized in Table 4. In this
study, the search for such events includes similarity of all
the waves characterizing the whole record, instead of pre-
cisely adjusting part of the waveforms. Our approach could
be a first step in dealing with a very large amount of data.
The initial purpose of the present study, however, was to
classify events according to their geographical location.

Figure 9. (a) Distances determined in this
study by means of the P-S detector algorithm
are plotted versus the epicentral distance com-
puted from NEIC catalog. Ds-p is the distance
derived from the picking of P and S arrivals.
The solid line is the best-fit regression line; its
slope (1.2) comes mainly from the difference
between the adopted values of TP/TS hodo-
chrones and the actual ones, but also results
partly from a focal depth effect (see, for ex-
ample, point labeled “I,” which corresponds to
an event 178 km deep). (b) Magnitudes cal-
culated according to the Praha formula (this
study) are plotted versus published values from
NEIC catalog. The solid line is the regression
line constrained to a slope of 1. CS corresponds
to the so-called “station correction” in Praha
formula (see text). Values in excess correspond
either to a distance not well constrained by the
P-S detector algorithm (point labeled “1”), or
to a strong focal depth effect (points labeled
“2” and “3”).
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We have tried to apply polarization analysis; however,
because of the slab structure, the P arrivals are complex due
to the combination of direct and multiply reflected P waves
in a very short time after the P onset, not always compatible
with the accuracy of P detection. In addition, a given un-
certainty on P detection results in a relatively small error on
epicentral distance, whereas the location of the source could
induce large errors on azimuth which would have a strong
impact on polarization. The location of the reference source
(from the knowledge base) at a given epicentral distance
does not provide the right azimuth, used for validation of
the estimated polarization, to be checked against the output
of the polarization analysis.

Conclusions

We have successively investigated two complementary
applications of artificial intelligence techniques associated
with well-established physical models of earthquakes,
among many other possible, to the automatic recognition of
the incoming seismic signal. First, we have applied the tech-
niques of pattern recognition to seismic waveforms. Indeed,
this technique requires a learning approach, which must be
performed under the supervision of an expert, and ends up
with a ‘learning set’ of well-identified waveforms, to which
the next incoming signal can be compared; similarity be-
tween the new signal and the waveforms of the learning set
can then be measured.

A second application has been investigated: how pick-
ing P- and S-phase arrival times can improve and comple-
ment the fuzzy relocation of seismic events based on simi-
larity of their waveforms. Once P- and S-wave arrivals are

picked, similarity of waveforms can be more certainly in-
terpreted in terms of common source zones. Indeed, as more
waveforms are analyzed, the knowledge base is enlarged and
improved, and it allows better and better controlled cluster-
ing of the earthquake sources zones.

Computing time is not a limiting factor for the useful-
ness of the process: the most time-consuming step is the
computation of Hilbert and wavelet transforms on a few hun-
dreds of samples; the techniques investigated could be used
for automatically offering the seismologist on duty in an
observatory a very first, just-in-time, estimate of the source
parameters of an incoming waveform: very few minutes (1–
2?) are sufficient to have a long-enough waveform (i.e., up
to the incoming of Rayleigh waves).

Implementation of this approach for surveillance of lo-
cal earthquake activity (within a distance of a few hundreds
of kilometers) allows a single recording station to yield a
rapid insight, within a few tens of seconds, onto potentially
damaging events. In a certain sense, this technique is com-
plementary to, but almost more rapid, than the usual detec-
tion networks. Recent developments of signal analysis
linked with a very good knowledge of the local structure
allow to process only the beginning of the P wave leading
in a few seconds to a very fast alarm, that is, an early warning
system (Wu and Kanamori, 2005). In addition, our technique
could be used to implement information for rapid assessment
of the damage potential of earthquakes.

The efficiency of the proposed signal-processing algo-
rithms applied to local seismic-network observations and
combined with the know-how of seismologists, may also
help to better locate and understand the seismicity of an ac-
tive and tectonically complex seismic region. On the other

Table 4
Events Included in the Database Showing Good P and S Waves, and Located According

to Similarity of the Waveforms

Latitude Range
(deg)

No. of
Events

With Fuzzy
Location*

With Single
Neighbor†

With a
Symmetrical
Neighbor‡ P-S only§

Satisfactory
Relocation

(%)¶

�12 � lat � �10 3 0 2 1 0 67
�14 � lat � �12 11 3 4 3 1 64
�16 � lat � �14 15 3 3 4 5 40
�18 � lat � �16 66 35 17 6 8 79
�20 � lat � �18 31 4 8 6 13 38
�22 � lat � �20 17 4 6 6 1 59
�24 � lat � �22 11 4 4 3 0 73

Total 154 53 44 29 33 63

*“With fuzzy location” means that the event is located from a well-defined cluster considered as a multiplet.
†“With a single neighbor” means that the event to locate forms a doublet with another event.
‡“With a symmetrical neighbor” means that the event to locate is associated by SPARS with an event at the

same distance but in the opposite direction relative to PVC station.
§“P-S only” means that no waveform similar to the one exhibited by the event under examination has been

found in the knowledge base; nevertheless P and S are well detected, corresponding to “good” epicentral distance
with respect to PVC.

¶The last column summarizes the percentage of events properly relocated (With Fuzzy Location � With
Single Neighbor); the latitude of PVC is about 16� S: notice that in this latitude section there are many satisfactory
relocations (79%).
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hand, the routine application of the algorithms developed in
this article may be attractive to determine event parameters
in large volume data flows provided by risk-monitoring seis-
mological networks, as well as in monitoring volcanic activ-
ity (Rouland et al., in preparation).
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Appendix

Syntactic Dissimilarity of Seismic Waveforms

Our definition of the single-component waveform dis-
similarity is derived from the speech recognition field. First,
we parameterize the waveforms by using time-frequency
representation. We use continuous time wavelet transform
especially developed for broadband signal analysis. Second,
we compare the time-frequency diagrams and use the “best
match” residual as the waveform dissimilarity measure.
The obvious candidate for the measure is maximum cross-
correlation (Joswig, 1990). The cross-correlation reaches its
maximum when the waveforms are linearly dependent. It is
insensitive to the phase shift between waveforms (e.g., dif-
ferent origin time), but it is sensitive to local nonlinear dis-
tortions of timescale (e.g., different P-S delays). In this study
we propose nonlinear alignment of scalograms by means of
dynamic programming technique. A global estimate of dis-
similarity (called syntactic distance) between the waveforms
takes into account both local delays in arrivals times and
difference in frequency content and energy envelope of these
phases. Syntactic distance was defined by B. Levenstein in
1965 (Levenstein, 1965). Similar time-warping technique
was developed in the 70 sec for speech recognition (Rabiner,
1993, chapter 4). The first application of time warping for

seismic discrimination was reported by K. Fu in 1982 (Liu
and Fu, 1982).

Continuous wavelet transform (CWT) is defined as a L2

projection of signal x(t) onto a family of analyzing functions:

W x(a,b) � �x,h �h a,b (A1)
��

1 t � b¯� x(t)h dt (a � 0) ,� � �aa� ��

where the family of functions

1 x � b
h (t) � ha,b � �a|a |�

is generated from a “mother” wavelet h(t) by means of trans-
lation in time by translation parameter b � R (to select a
part of signal to be analyzed) and dilation taking |a| � 1 or
compression taking |a| � 1 by scale parameter a � R \ {0}
(to focus on a given range of oscillations in the selected part).

The term keeps the energy of the scaled wavelet equal to1

a�
the energy of the original mother wavelet.

This timescale expression has an equivalent time-
frequency expression, obtained by using the formal identi-

fication , where f0 is the central frequency of the
f0f �
a

mother wavelet at a scale a � 1. When the scale factor a is
changed, the duration Dt and the bandwidth Df of the wavelet
are both changed, but its shape remains the same; the CWT
can be seen as a filter bank analysis composed of geomet-
rically distributed bandpass filters with constant relative
bandwidth Q � Df/f. In this article we utilize Gaussian
weighted tone (or Morlet) wavelet 2 2h(t) � exp{�t /D t }0

with experimentally selected time reso-exp{2 p i f t}* 0

lution Dt0 and f0 set to the Nyquist frequency of the discrete
time signal.

Scalogram Definition

We define the scalogram of signal x(t) as the squared
modulus of the CWT Shx(a,b) � |Whx(a,b)|2. It is an energy
distribution of the signal in the timescale plane.

In practice, the effective frequency band of digital seis-
mic waveforms is limited. We may compress the discrete
version of scalogram by changing the timestep from the
original sampling interval to the experimentally defined
translation step (time frame) Dt. We also restrict the number
of central frequencies (and number of scales) to K logarith-
mically equally spaced values fmin � fm � fmax, am � fmax/
fm, 1 � m � K. That leads to a discrete scalogram:

21 t � nDt
DS (m,n) � x, h ,h �	 � �
�ama� m (A2)
m,n � Z, 0 � n � T /Dt, 0 � m � K .
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For a given n, the values DSh(•,n) represent an “instantane-
ous energy spectrum” at the nth frame.

We use logarithmic normalization to reduce variations
of absolute amplitudes in discrete scalograms:

DS (m,n)hNDS (m,n) � 10 log , (A3)h � �R

where the maximum is taken over allR � max(DS (m,n))h
m,n

the frames and scales. Finally, we apply a simple threshold
denoising to the normalized scalograms (typical value of the
threshold D � 60 dB):

DNDS (m, n)h

D � NDS (m,n), if NDS (m,n) � D (A4)h h� �0, if NDS (m,n) � Dh

Steps (A2) to (A4) give us a sequence of frames each
parameterized by the instantaneous spectrum Sn �
DNDSh(•,n), and we use this structural pattern next to esti-
mate waveform dissimilarities. An example of the structural
pattern (A4) is shown in Figure A1.

Suppose that two seismic records are represented by the
discrete scalograms and ; weS � S ,…,S T � T ,…,T1 M 1 MS y

call S a source pattern and T a target one. We determine a
structural dissimilarity (Levenstein distance) between the re-
cords using a nonlinear alignment of their patterns, thus the
durations MS and MT need not to be very different. The pur-
pose of the alignment is to find a monotonic transform of
timescales of the two records, which synchronizes the onsets
of similar structural phenomena (such as P- and S-phase ar-
rivals) by global minimization of accumulated sum of local
spectral distortions d(Si ,Tj). The result of alignment is a pair
of time-warping functions i � k(l), j � m(l), l � 1, . . ., L,
satisfying the constraints of:

• endpoints

k(1) � 1, m(1) � 1
k(L) � M , m(L) � M (A5)S T

L � M � MS T

• monotonicity and local continuity

k (l � 1) � k (l ) � 0 or 1 , (A6)
m (l�1) � m (l ) � 0 or 1

which minimizes the accumulated distortion between the
patterns

D (S,T) � min d (F , G ) . (A7)Lev � loc k (l ) m(l )� k (�),m (�) l

The sum is over the path k(•),m(•) in the i,j-plane satisfying
(A5) to (A6) (Fig. A2).

To define local spectral distortion values, consider three
elementary editing operations: insertion of a frame into a
pattern, deletion of a frame from a pattern, and match (or
substitution) of two frames in two patterns. Then the map-
pings k(•),m(•) may be interpreted as a composition of these
editing operations applied to the source pattern to obtain a
target one, and the accumulated distortion (A7) may be seen
as a sum of weights of the editing operations involved in the
composition.

To visualize the alignment results, we introduce an
empty frame (gap), denoted by “null”:

• If k(l) � k(l � 1), then we insert the null frame into the
target pattern (� delete the frame Sk(l) from the source
pattern)

• If m(l) � m(l � 1), then we insert the null frame into the
source pattern (� insert the frame Tm(l) into the source
pattern)

• Otherwise k(l � 1) � k(l) � m(l � 1) � m(l) � 1,
match of instantaneous spectra (� substitute the frame Sk(l)

by Tm(l) in the source pattern).

Interpolation of the local spectral distortion values for
the null frame (weights of insertions and deletions) brings
nonlinearity to the alignment in contrast to the widely used
linear cross-correlation (Joswig, 1990). To make the gap null
indistinguishable from a zero energy frame (with no signal),
we use:

2deletion: d (S , null)� �S �loc i i

2insertion: d (null, T )� �T � (A8)loc j j

2substitution: d (S , T ) � �F � G �loc i j i j

where �•� stands for Euclidean vector norm.
Extended patterns S* � S1

* , . . ., SL
* and T* � T1

* ,
. . ., TL

* including the null frames help to “visualize” the
result of the nonlinear alignment. For example, the path in
Figure A2 can be interpreted as:

*S � S , S , null, S , S , S1 2 3 4 5

match match insert match delete match
*T � T , T , T , T , null, T1 2 3 4 6

k (l) � 1, 2, 2, 3, 4, 5
aligned time l � 1, 2, 3, 4, 5, 6

m (l) � 1, 2, 3, 4, 5, 5

We search for the optimal path k(•), m(•) and accumu-
lated distortion (A6) using a dynamic programming algo-
rithm with the complexity O(N2), where N stands for max-
imum number of frames in a pattern. Because of the endpoint
constraints, we can rewrite (A7) in terms of MS and MT as
DLev(S,T) � D(MS,MT). Since the local spectral distortions
do not depend on the positions of frames in the pattern, the
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Figure A1. Example of the discrete scalogram. (top) Vertical component of a seis-
mic record. (bottom) Time-frequency surface of normalized wavelet transform coeffi-
cients (scalogram, see text).

Figure A2. Optimal path for nonlinear alignment
of the two patterns S* � S1

* , . . ., SL
* and T* � T1

*

, . . ., TL
* . Vertical arrows are used for insertions, di-

agonal arrows are for substitutions, and horizontal ar-
rows are for deletions.

minimal partial accumulated distance along a path k(•), m(•)
connecting (1,1) and (i,j) is

D (i � 1, j) � d (S , null )loc i

D (i, j ) � min D (i � 1, j � 1) � d (S ,T ) (A9)loc i j�D (i, j � 1) � d (null,T ).loc j

Starting from D(1,1) � dloc(S1,T1) and recursively filling the
MS � MT matrix D(i,j) using (A7), the algorithm stops at
the sought value DLev(S, T) � D(MS,MT).
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