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ABSTRACT 

We present a novel technique to simulate numerically the 
measurements performed by a borehole induction-logging tool in 
3D anisotropic rock formations. The simulations are based on an 
integral equation formulation. Previously, such a formulation was 
considered impractical for solving large-scale problems due to the 
resulting large full matrix. To overcome this difficulty, we assume 
a uniform background model and make use of a uniform grid 
whereupon there is no need to construct explicitly all of the entries 
of the full Green's function matrix. 

Using a uniform background model, the entries of the 
corresponding electric and magnetic Green's tensors are relatively 
easy to calculate. In the presence of a uniform grid (not necessarily 
cubic), it is only necessary to calculate the first row of the resulting 
electric Green's function matrix. Further, because the matrix is 
block Toeplitz, it can be rewritten into a block circulant form, and 
therefore matrix-vector multiplication can be efficiently performed 
with two FFTs and one inverse FFT. This strategy reduces the 
computation cost from O(NxN) to O(NxlogZN). In addition to the 
substantial computer savings, the FFT technique also substantially 
reduces memory storage requirements because only the first row 
and the first column in the block Toeplitz matrix are needed to 
perform the computations of the remaining entries of the matrix. 

Numerical simulations of the measurements performed with 
an induction tool in dipping and anisotropic rock formations are 
benchmarked against accurate 3D finite-difference and ID codes. 
These benchmark exercises show that the newly developed integral- 
equation algorithm produces accurate and efficient simulations for 
a variety of borehole and formation conditions. 

INTRODUCTION 

The advent of a commercial electromagnetic (EM) multi- 
component borehole logging tool with capabilities to measure 
electric anisotropy, has spearheaded efforts to simulate numerically 
the tool's response in complex 3D logging environments (Wang and 
Fang, 2001; Avdeev et al., 2002; Newman and Alumbaugh, 2002). 
Modelling formation electric anisotropy effects is of significance 
to the accurate petrophysical interpretation of induction logging 
tool responses and to date remains an open challenge (Moran and 
Gianzero, 1979; Klein, et al., 1997; Gianzero, 1999; Kriegshauser 
et al., 2000). 
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So far, both finite difference (FD) and integral equation (IE) 
approaches have been developed to solve a general full 3D 
anisotropic problem. The FD approach is flexible in handling the 
complexity of formation models but is time consuming in solving 
problems with fine structures (Wang and Fang, 2001; Newman and 
Alumbaugh, 2002). On the other hand, the IE method is perfect 
for solving a small-scale problem. For a large-scale problem, 
the IE approach is usually considered inefficient because of the 
associated computer expenses in solving a large and full stiffness 
matrix. However, recent developments suggest that the IE method 
could also be used for the solution of large-scale problems within 
reasonable computer resources (Gan and Chew, 1994; Liu et al., 
2001; Avdeev et al., 2002; Hursan and Zhdanov, 2002). Moreover, 
the IE approach has the advantage to yield an approximation that is 
exceedingly faster to compute than with alternative finite-difference 
approaches (e.g., Born, 1933; Habashy et al., 1993; Zhdanov and 
Fang, 1996; Fang and Wang, 2000; Gao et al., 2003). In this paper, 
we describe yet novel developments on the IE approach and their 
application to simulate the response of a borehole induction tool in 
the presence of anisotropic formations. 

Integral equation techniques require of the calculation of a 
dyadic Green's function for an assumed background model and 
entail the solution of a full matrix linear equation resulting from 
the discretisation of the anomalous scattering medium (anomalous 
domain). The background model can be chosen arbitrarily as long 
as the Green's function remains amenable to efficient computations. 
In subsurface geophysical applications, a layer background is 
usually assumed for the computation of the Green's functions 
(e.g., Hohmann, 1983; Wannamaker et al., 1983; Xiong, 1992; 
Avdeev et al., 2002). The integral equation approach becomes 
less efficient when the number of cells used in the discretisation 
of the anomalous domain is relatively large. A large number of 
cells substantially increase both the computation time required to 
solve the large full matrix equation and the memory required for 
storage. In the paper of Xiong and Tripp (1995), a block system 
iteration method was used to solve the linear-system equation. 
This extends the capability of the IE method to deal with large 
problems. However, the problem size still remains very limited. 
The overall computational complexity was measured at O(NxN), 
where N is the total number of cells in the calculation. The memory 
requirement was roughly O(Nx N) bytes. On the other hand, Avdeev 
et al. (2002) and Hursan and Zhdanov (2002) reported a CG-FFT 
(Conjugate Gradient - Fast Fourier Transform) approach (Catedra 
et al., 1995) to perform the computations. The CG-FFT method 
can achieve the computation complexity of 0(Nxlog2N). However, 
in these papers FFT techniques were applied in the horizontal 
directions only because of the assumption of a layer background. 
The overall computational complexity was of the order of 
O ( N ~ x N ~ x N z x N z x l o g ~ x x l o g ~ ~ ,  where Nx, Ny, and N are the 
number of cells in each coordinate direction, respectively. The 
reported memory size was roughly 0(NxxNyxNzxN2) bytes. This 
approach is efficient when N is small. In well logging applications, 
this is not the case. Moreover, the time required for the calculation 
of the Green's function becomes critical when N, is large. 
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approach, which entails a computational complexity of the order 

239 Exploration Geophysics (2006) Vol37, No. 3 



Fang, Gao, and Torres-Verdin Efficient 3D EM Modelling using Integral Equations 

of O(Nxlog,N), the FFT technique needs to be applied in all three 
coordinate directions. The same auuroach has been used to solve . . 
scattering problems in the presence of an isotropic formation by 
Gan and Chew (1994), and Liu et al. (2001). However, to date 
there are no equivalent algorithms reported in the open technical 
literature to solve a full 3D anisotropy diffusion problem. In this 
paper, we apply the CG-FFT type method to simulate the response 
of an induction borehole tool response in the presence of dipping 
and anisotropic rock formations. To this end, a uniform isotropic 
formation background model is used and the anomalous domain is 
uniformly discretised in each coordinate direction. Such a strategy 
requires of the explicit calculation and memory storage of only the 
first row of the associated electric Green's function matrix, thereby 
substantially improving the efficiency of the algorithm. Likewise, 
presence of anisotropy in the scattering medium can be easily 
handled using the same technique - average effective conductivity 
- presented in the paper by Wang and Fang (2001). 

The accuracy and the speed of the newly developed algorithm 
mainly depend on the grid size, which in turn is controlled by 
both detailed formation structure and tool configurations. For the 
examples described in this paper (128x64~128 grid size), it takes 
about 40 minutes of a SUN Workstation's CPU time (900 MHz 
floating-point processor) to produce accurate solutions for a single 
logging tool position. 

NOMENCLATURE 

Ohmic conductivity 
electrical permittivity of free space. 
dielectric constant. 
magnetic permeability of free space. 
angular frequency (2zj). 

time 
time convention 

Cartesian coordinates, equivalent to 
x % + ~ + z i .  

superscript, denotes transpose. 
denotes a 3x3 tensor. 
magnetic field generated in x-direction by a 
y-directed source (the second subscript 
represents the source direction). 

INTEGRAL EQUATION METHOD 

Basic Equations 

Following the paper of Hohmann (1983), the integral equations 
for electric and magnetic fields can be written as 

and 

where E(r) and H(r) are the electric and magnetic fields, respectively, 
and r is the location vector. E,(r) and H,(r) are the electric and 
magnetic fields, respectively, associated with a background medium 
of dielectric constant E, and Ohmic conductivity ob', at location 
r. Accordingly, the background's complex conductivity is given 
by U, = u; - im,,E, (time harmonic, e-'" ). At low frequencies, the 
expression for the background conductivity simplifies to oh =ab'. 

In general, the background model can be arbitrarily chosen 
as long as the Green's function can be calculated in an efficient 
and expeditious manner. In the method proposed in this paper, 
the simplest possible choice is made, i.e., that of a homogeneous, 
unbounded, and isotropic background model. The reasons for such 
a choice are: (1) the Green's functions and background fields can 
be calculated in a very efficient manner, (2) the complexity of 
electrical anisotropy does not need to be considered at this stage, 
and (3) many special features ensue as the result of using uniform 
grids in constructing the numerical integral equation matrix. 

Green's Function 

The electric Green's tensor included in equations (1) and (2) 
can be expressed in closed form as 

where p,, is free space magnetic permeability, the scalar function 
g(r,rn) satisfies the wave equation 

whose solution can be explicitly written as 

where k,2 = iq,,oh . 

The magnetic Green's tensor is related to the electric Green's 
tensor through the expression 

Finally, the tensor a5 = b - G,! = A? - I O ~ ~ A E , E , ?  is the complex 
conductivity contrast within scatterers, where Ae, = E, - E,, , 
A?= 5'- 0:; and 7 is the identity matrix. 

Numerical Solution 

Equations (1) and (2) are Fredholm integral equations of the 
second kind. A solution of these equations can be obtained using 
the method of moments (MOM). By discretising equation (1) in the 
anomalous domain and by assuming the field quantities in each 
cell as constant, we can obtain the full matrix equation: 

- 
where 5 is the tensor Green's function matrix, &? is an 
anomalous tensor conductivity matrix that can be computed using 
the technique described in Wang and Fang (2001), Es (= E - E,) 
is an anomalous electric field vector, E is the total electric field 
vector, and E, is the normal field vector consistent with the 
assumed background model. 

Solving equation (7) involves the following difficulties for 
large-scale problems: (a) matrix filling time is substantial, (b) 
very large memory storage, and (c) time-consuming solution 
of the complex linear system. For a large-scale 3D problem, 
often the solution to EM scattering cannot be obtained with a 
direct method. For instance, in a case of 1 million discretisation 
cells, 0.2 CPU seconds are needed to compute 10 000 entries 
(each entry is a 3 by 3 tensor) of the linear-system matrix. It 
will take approximately 231 days to compute the entries of the 
full matrix without solving it. The memory requirement is also 
critical. For the above hypothetical case, more than 33 gigabytes 
of memory are needed if every entry is kept in static memory. 
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Obviously, such requirements place rather impractical constraints 
to most of today's computer platforms. 

However, there is no need to calculate all entries in the MOM'S 
linear-system matrix when the grid is uniform in each coordinate 
direction. Due to the fact that the Green's tensor and its volume 
integration depend only on the relative position of a given pair 
of cells, only the entries of the first row are needed to perform 
the calculations. The remaining entries can be substituted and 
sign adjusted from the entries of the first row. This strategy 
entails a computation approximately 100 times faster than the 
direct calculation. In the above scenarios, if every entry must be 
accessed, the matrix filling time would still be more than two 
days. Fortunately, by further studying the symmetry properties of 
the Green's tensor matrix, it can be shown that the matrix actually 
exhibits a block Toeplitz form. Toeplitz matrices possess several 
unique properties. First, Toeplitz matrices have a constant diagonal 
and can be fully described by their first row and first column: 

In this sense, it can be said that a Toeplitz matrix resembles a 
sparse system. Thus the storage can be dramatically reduced. 
Second, Toeplitz matrices can be easily transformed into their 
kin matrices - circulant matrices (Golub and Van Loan, 1996, 
page 201), with the associated Toeplitz matrix embedded in the 
circulant matrix, i.e., 

Explicitly, the circulant matrix has the form: 

Fig. 1. Diagram showing a 5-layer electrical conductivity model and 
associated geometrical dimensions (not to scale). 

The first column of the circulant matrix is composed of 
the elements of the first column to,  = [ t o t ,  ... tn_,IT and the reverse 
arrangement of the first row tmw = [ t  _,n_, ,  t  _,"_,, . . .t_,lT of the associated 
Toeplitz matrix 7 , i.e., 

where zeros are added to make the dimension of c equal to an 
integer power of 2. The circulant matrix can be formed using c and 
the identity matrix, namely, 

where R = (e, e, ... en e l )  and e, is the k-th column of the 
identity matrix. 

An important property of the circulant matrix is that the 
multiplication of a circulant matrix and a vector can be performed 

Transmitter 

1.2 

Receiver1 

0.72 

Receiver2 

Fig. 2. Assumed tool configuration for borehole induction logging (not 
to scale). 

using the FFT. In equation form: 
- 

y = E x  = ifft ( fft (c) * ~t (x)) , (13) 

where c is the first column of the circulant matrix, and * stands for 
element-wise multiplication. 

Thus, if an iterative method is used to solve the linear system, 
then the matrix-vector multiplications B.(zE,) and z.(zE,) in 
equation (7) can be performed using the FFT. Consequently, only 
the first row and the first column are needed in the tensor Green's 
function matrix to perform such an operation. This approach also 
substantially reduces memory storage requirements and the CPU 
time required for the calculation of the entries of is much less than 
the time otherwise required to compute all the entries separately. 

Note that the use of the FFT requires that the vector be 
expanded to a length equal to an integer power of 2 with zeros 
according to the dimension of c, namely, 
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The final solution is the top n elements in y' 

By making use of the FFT the computation cost can be reduced 
from O(N2) to O(Nx1ogfl. For large N, the time savings can be 
substantial. 

The iterative method used to solve the system of linear equations 
is the biconjugate gradient stabilised solver, or BiCGSTAB(l), 
developed by Sleijpen and Fokkema (1993). This method has 
been shown to be one of the most efficient solvers. Further, we 
increase the solver efficiency by making use of the contraction 
integral equation described by Zhdanov and Fang (1997) and by 
Hursan and Zhdanov (2002), instead of using a standard Jacobi 
pre-conditioner. In our case, the use of a contraction operator is 
equivalent to solving for % E ~  instead of solving for Ea in equation Fig. 3. Comparison of the Hz signal simulated with the new algorithm 
(7), where and a 1D code assuming a 1D formation. The tool and the formation 

form an angle of 60". Results for 14 kHz and 154 kHz are shown on 
- 2 ~ e a , T + ~ a  this figure. a= 

2JReo ,  ' 

(16) 

ficcordingly, equation (7) becomes 

Conceptually, the above equation can be formulated in an 
iterative manner: 

where C is a contraction operator. 

Following Zhdanov and Fang (1997), the following inequality 
remains: 

where 

The smaller theJ3, the faster the convergence will be. Applying 
a similar idea to that of Singer et al. (2002) to the whole domain, 
an optimal background conductivity can be selected as: 

a, = Jmin (a). max (a) . 
With the simultaneous use of both the contraction IE and the 

optimal background model, an improvement of approximately 
three fold in numerical performance is achieved compared to that 
using a standard Jacobi pre-conditioner. 

After obtaining zE0 from the solution of equation (17), the 
magnetic field can be calculated at receiver locations using 
equation (2), in which the total electric field is replaced by 

Fig. 4. Comparison of the H_ signal simulated with the new algorithm 
and a 1D code assuming a 1D formation. The tool and the formation 
form an angle of 60". Results for 14 kHz and 154 kHz are shown on 
this figure. 

NUMERICAL VALIDATION 

Figure 1 shows the model used in this paper to test the newly 
developed algorithm. This model was adapted from an example 
proposed by Wang and Fang (2001) and consists of 5 horizontal 
layers. The top and bottom layers of the model are isotropic and 
have a resistivity of 50 O m .  The third layer is also an isotropic 
layer, with a resistivity of 50 i2.m and a thickness of 14.4 ft. The 
second and fourth layers are anisotropic with a horizontal resistivity 
of 3 L2.m and a vertical resistivity of 15 a.m. Thickness of these two 
layers is 2.4 f t  and 12 ft, respectively. Moreover, invasion may exist 
for these last two layers, with an invasion depth equal to 36 in, and 
with the resistivity in the invaded zone equal to 3 a.m. The borehole 
has a diameter of 9.6 in. and a resistivity of 1 a .m.  . 'i r 
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Fig. 5. Comparison of the Hyy signal simulated with the new algorithm Fig. 7. Comparison of the HU signal simulated with the new algorithm 
and a 1D code assuming a 1D formation. The tool and the formation and a 3D-FDM code assuming a 1D formation with borehole and 
form an angle of 60". Results for 14 kHz and 154 kHz are shown on invasion. The borehole has a dip angle of 60". Results for 14 kHz and 
this figure. 154 kHz are shown on this figure. 

Rerub for formation with borehole and idon,  Mp-60 Degme 
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Fig. 6. Comparison of the Hz signal simulated with the new algorithm 
and a 3D-FDM code assuming a 1D formation with borehole and 
invasion. The borehole has a dip angle of 60". Results for 14 kHz and 
154 kHz are shown on this figure. 

It is also assumed that the borehole may have a dip angle 
relative to the formation layering. Simulation results are computed 
for dip angles of 60" for two cases of rock formation model: first, 
the formation is assumed to exhibit no invasion and no borehole, 
i.e., it is assumed to consist of a 1D stack of layers. A second 
model does assume a rock formation with borehole and invasion. 
Invasion and borehole parameters for this model are as described 
earlier. We compared simulation results with those provided by 1D 
code and the 3D Finite Difference Code (3D FDM in the figures) 
written by Wang and Fang (2001). In the descriptions and figures 
below, the identifier "3D IE." refers to the solution developed in 
this paper. 

Rerub of fonnatlon with borehole and ldon,  Dip60 Degree 
4 I I I I I I I I I  

, , , , , , m s a  , , , , , , # # *  

9.5 - 1  J 4; b 0 I 11, 2.5 
C Wm) x lo' 

Fig. 8. Comparison of the Hyy signal simulated with the new algorithm 
and a 3D-FDM code assuming a 1D formation with borehole and 
invasion. The borehole has a dip angle of 60". Results for 14 kHz and 
154 kHz are shown on this figure. 

Figure 2 shows the borehole induction tool configuration 
assumed in the numerical simulations. It consists of one transmitter 
and two receivers moving in tandem along the borehole axis. The 
spacing between the transmitter and the first receiver is 1.2 m (L,), 
and the spacing between the transmitter and the second receiver 
is 1.92 m (L,). The measurement is assumed to be a combination 
of the imaginary response in the first receiver (H,) and the second 
receiver (H,), given by the formula 
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Figures 3-5 show simulation results (HL2 H_, H , , )  obtained 
with the new algorithm assuming a ID anisotropy rock formation 
with a dip angle of 60". Simulation results for two frequencies 
(14 kHz and 154 kHz) are compared with those obtained with the 
ID code and the finite difference code (3D FDM) developed by 
Wang and Fang (200 1 ). 

Figures 6-8 show simulation results (H7; H r ,  H, , )  obtained 
with the new algorithm assuming a 3D rock formation (borehole 
and invasion) and a dip angle of 60". Simulation results for two 
frequencies (14 kHz and 154 kHz) are compared against those 
obtained with the 3D FDM code. By comparing Figure 6 with 
Figure 3, one can visualise borehole and invasion effects for the 
two simulated frequencies, both in the magnitude and shape of the 
tool's response. 

The above simulation exercises consistently show that the 
newly developed algorithm yields accurate results in the presence 
of reasonably complex 3D anisotropy models. A grid size of 
1 2 8 x 6 4 ~  128 was constructed to perform the calculations at 
14 kHz. Accordingly, the discretisation in each direction was made 
uniform and equal to 0.1 mx0.2 mxO. 1 m. The average CPU time 
required for the calculations was approximately 40 minutes per 
tool location using a 900 MHz Sun Workstation. Simulation of 
154 kHz model responses required of a grid size of 64x64~128. 
The discretisation in all three directions was made uniform with 
step sizes equal to 0.1 m. These calculations required an average 
CPU time of approximately 20 minutes per tool location using a 
900 MHz Sun Workstation. 

CONCLUSIONS 

This paper describes a novel integral equation approach 
for simulating multi-component EM responses in complex 3D 
conductive media that includes the presence of anisotropy in 
electrical conductivity. The algorithm assumes a homogeneous 
and isotropic whole space as the background and uses a uniform 
discretisation grid in each coordinate direction. Such combination 
of simulation parameters allows one to take full advantage of the 
CG-FFT method to efficiently compute and store the entries of 
the linear system matrix. Furthermore, the use of a contraction 
integral equation with an optimal background model provides 
additional efficiency to the computations involved in the novel 
simulation algorithm. The combined use of the FFT and the 
iterative linear-system solver BiCGStab(1) makes it possible to 
approach large-scale simulation problems. Numerical simulations 
that include more than one million cells can be performed within 
one hour of CPU time on a 900 MHz Sun Workstation. Benchmark 
comparisons performed against 1D and 3D finite-difference codes 
indicate that the new simulation algorithm provides accurate and 
efficient solutions. 
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