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Correlation Migration Using Gaussian Beams of Scattered Teleseismic

Body Waves

by Robert L. Nowack, Saptarshi Dasgupta, Gerard T. Schuster, and Jian-Ming Sheng

Abstract Correlation migration for structural imaging using Gaussian beams is
described for the inversion of passively recorded teleseismic waves. Gaussian beam
migration is based on an overcomplete frame-based representation of the seismic
wave field and uses localized slant-stack windows of the data. Paraxial Gaussian
beams are then utilized for the backpropagation of the seismic waves into the me-
dium. The method can provide stable imaging of seismic data in smoothly varying
background media where caustics and triplicated arrivals exist. We develop Gaussian
beam migration for structural imaging, which allows for incident teleseismic waves
from beneath the structure, using directly scattered or surface-reflected phases. The
method is applied to synthetic data computed for a collisional-zone model, and the
inversions show that the Gaussian beam migration can image structure using passive
teleseismic data. The method is next applied to synthetic data that have been con-
volved with an observed pulse from the 1993 Cascadia experiment. The autocorre-
lation is computed and the autocorrelated data are migrated by using Gausian beams
for direct P-to-S scattered waves and surface-reflected waves. Although the migra-
tions of the autocorrelation data with the source pulse included have more noise than
the migrations of the impulsive source data, the subduction zone structure can still
be clearly identified in the migrated results without removal of the source pulses.

Introduction

Teleseismic data are now being used to image crustal
and deeper upper-mantle structure using broadband seismic
data from distant earthquakes. One approach is to use scat-
tered S waves from incident teleseismic P waves to image
the velocity structure beneath a seismic array. Receiver func-
tions are constructed by using the vertical P-wave compo-
nent to deconvolve the horizontal components (Vinnik,
1977; Langston, 1977, 1979; Owens et al., 1984). More re-
cently arrays of broadband stations have been deployed us-
ing teleseismic sources to image crustal and upper-mantle
structure. To image all the components of the seismic data
more general processing steps have been applied, such as
array stacking for the source time function (Li and Nabelek,
1999; Langston and Hammer, 2001), eigenimage analysis
(Rondenay et al., 2001; Ulrych et al., 1999), auto- and cross-
correlation techniques (Sheng et al., 2001, 2003; Schuster et
al., 2003, 2004; Yu et al., 2003) and multichannel decon-
volution (Bostock, 2004).

Initially, basic stacking techniques were used for the
imaging of receiver function array data (Dueker and Shee-
han, 1997; Zhu, 2000). More recently migration techniques
have been applied to P-to-S conversions from teleseismic
waves recorded by passive arrays (Bostock and Rondenay,
1999; Ryberg and Weber, 2000; Sheehan et al., 2000; Pop-

peliers and Pavlis, 2002; Pavlis, 2003). This has been ex-
tended to the imaging of surface-reflected phases by Bostock
et al. (2001) in a formal ray/Born migration approach and
applied to data from the Casc93 experiment by Shragge et
al. (2001) and Rondenay et al. (2001). Ghost reflections
from the free surface have been described by Sheng et al.
(2001, 2003), Yu et al. (2003), and Schuster et al. (2003,
2004) for both exploration and teleseismic imaging and have
also been used for daylight interferometric imaging with un-
known or random source signals (Rickett and Claerbout,
1999). In this article, the Gaussian beam migration method
is investigated for the inversion of teleseismic data with ap-
plication to passive imaging experiments.

Gaussian beam migration uses an overcomplete frame
of smoothly localized Gasussian windows to represent the
seismic data and paraxial Gaussian beams to propagate the
data back into the medium. Because, for Gaussian beam mi-
gration, the wave fields are decomposed into Gaussian
beams, the imaging condition then uses individual Gaussian
beams and allows for caustics as well as triplicated seismic
wave fields in the background medium. In contrast, Kirch-
hoff migration or ray/Born inversions require the first arriv-
als or most energetic arrivals at the scatterer and this results
in an incomplete imaging condition unless further analysis



is performed. This is an advantage of Gaussian beam mi-
gration over other high-frequency migration approaches and
is one of the reasons that Gaussian beam migration has be-
come one of the principal migration tools in the petroleum
industry. Nonetheless, even in the oil industry, Gaussian
beam migration is primarily used for structural imaging and
true amplitude formulas are still being developed (N. R. Hill,
personal comm., 2003; Albertin et al., 2004).

We test the Gaussian beam approach for structural im-
aging using synthetic teleseismic data for a collisional zone
model similar to that used by Schragge et al. (2001). In
addition to testing Gaussian beam migration algorithm for
passive imaging, we apply Gaussian beam migration to auto-
correlation data. The synthetic data with an impulsive source
pulse are convolved with an observed pulse from the 1993
Cascadia experiment data, and then migration is applied to
the filtered autocorrelation data including the source pulse.
Although the imaging results have more noise than for the
impulsive data, clear images of the structure are still ob-
tained. The correlation approach using Gaussian beams has
the potential of using all components of the seismic data in
addition to just the horizontal components for the imaging.
Although true amplitude imaging has not been used for this
study, based on synthetic tests in complicated background
media using seismic reflection data, the Gaussian beam
method can already provide improved structure images com-
pared with existing ray/Born and Kirchhoff imaging tech-
niques (Nowack et al., 2003).

Description of the Method

For an incident, teleseismic plane wave from beneath
the structure, the isotropic, elastic equation can be written

pii; — Gayp); — luCu + w )], =0, (1

where u; is the particle displacement, A and u are the elastic
constants, and p is the density (Aki and Richards, 1980).
The commas signify differentiation. Assuming a constant
density, and perturbing the elastic parameters as A(x) =
AoX) + 0A(x) and u(x) = po(x) + Jdu(x), this results in a
perturbed, particle displacementy; = u? + Ju;. To first or-
der, this can be written as L°[0u] = —0L[u°], where JL is
the first-order perturbation from the initial differential op-
erator L° with

Lo(éﬂ) = poii; — (lo(-l)éuk,k),i 2)
- [,Uo(l)(éui,k + 5uk,i)],]< = 0,

where
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Assuming further that the medium is a Poisson solid, then
64 = du = pof?, with @ and B being the P- and S-wave
speeds. The Q; term can then be expanded as
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This is similar to equation 13.22 of Aki and Richards (1980)
for a Poisson solid with constant density. For an incident
planar P wave, u? can be written at high frequencies as
W = A@ay p;e“T®" where T(x) is the travel time,
A(x) is the amplitude, p; = 07/dx; is the ray parameter vector
perpendicular to the incident teleseismic wavefront and

pi pi = o > The Q, term resulting from scattering is then
approximately
0; ~ —3(@lagyouu; + du (O w)pup
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In the frequency, domain equation (2) with the body
force term Q, from equation (4) can be rewritten as

S, (1% ) = f dx Qo) g fe).  (5)

where the integration is over the subsurface scattering lo-
cations. The Green’s function is g;, (x', x%, @) with the lo-
cations of the sources placed at the geophone locations x*
and with source components n in the background medium.
In the far field, the approximate high-frequency Green’s
function in the background medium can be written

g X w) ~ gh(x,x0) + g, x5 0), (6

where this includes the individual P and S phases propagat-
ing downward from the array to the scatterers. The incident
wave u? used for imaging here will be either an upward-
propagating direct P wave or a surface-reflected P and then
scattered as a P or § wave.

Approximating equation (5) with the highest-order fre-
quency term for Q; in equation (4) and using equation (6)
results in

ou, (x5, p',w) ~
=3 (wlap)® | dx'oux’) S()u) (x',p'w) (7

(gh(x', x5 w) + gh(x,x5w)),

where the dependence on the incident horizontal wave-
number components p* of the incident source wave field has
been included. Also, the source time function S(w) has been
incorporated with u? signifying the incident wave field for
an impulsive source. The terms with the derivatives of ¢ u
can be written in a similar fashion, but for the purposes of
structural imaging, I will consider only the first highest fre-
quency term. Alternatively, éerven)’/ (2000) incorporated the
derivative terms by using integration by parts applied to
equation (5). Using equation (7) to model the P waves on
the x; component and the S waves on the x, component, then
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Writing equations (8a) and (8b) as ou = Adu, then ad-
joint operators to these can be obtained from the definition
of the adjoint

(Adu, ou)s s o, = (A*ou, ou),,

where the parentheses indicate the inner products with re-
spect to the variables indicated by the subscripts, the overbar
indicates a scalar complex conjugate, and A* is the adjoint
to A. In addition, this relation holds for homogeneous bound-
ary conditions. The adjoint operator can be obtained from
this relation in a straightforward manner as du = A*du. For
equations (8a) and (8b) the adjoints can be written

) ~ =3 j dp' f dool2r)(@la)’ )

f dx® SV W\ ph o) 8 Waxw) duy (p%w)
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where Ju,(x%, p*, w) are the observed seismic data, g;; and
g3 are the Green’s function components from the geophone
positions x® to the subsurface scatterer positions x’, the
source time function is S(w), and w is frequency. The over-
bars again indicate scalar complex conjugates. The impul-
sive source wave field is represented by u? (x/, p’ w) for an
incident plane wave from below specified by the horizontal
wavenumber components p*. The complex conjugated terms
can be understood as the cross-correlation of the backpro-
pagated observed seismic data with the incident source field
and is equivalent to the imaging condition given by Claer-
bout (1976). Equations (9a) and (9b) can then be used for
migration of teleseismic data for structural imaging in either
2D or 3D. Correlation migration is a kinematic formulation
of the imaging problem and can be related to the adjoint
operator of equation (8). Even in the petroleum industry with
large amounts of data this provides excellent structural im-
ages (Hill, 2001). However, for the imaging of passively
recorded teleseismic data, the data quality may not warrant
the use of more complete imaging formulas based on the
data coverage currently available.

In the Gaussian beam migration approach, the Green’s
functions are decomposed into Gaussian beams. The sum-
mation of Gaussian beams for forward modeling is an
asymptotic method for the computation of wave fields in
smoothly varying inhomogeneous media, which describes
high-frequency seismic wave fields by the summation of par-
axial Gaussian beams (Popov, 1982; éerveny et al., 1982;
Nowack and Aki, 1984). Reviews have been given by Cer-
veny (1985a, 1985b), Babich and Popov (1989), and more
recently by Nowack (2003). An advantage of the summation
of Gaussian beams for constructing more general wave fields
is that the individual Gaussian beams have no singularities
along their paths. Also, no two-point ray tracing is required
and triplicated arrivals are naturally incorporated into either
the forward or inverse modeling.

A criticism of early implementations of Gaussian beam
summation was given by White et al. (1987) in terms of
completeness and accuracy of the summations. More re-
cently, however, overcomplete frame-based summations of
Gaussian beams have been developed based on windowed
and wavelet transforms to address issues of completeness.
With Gaussian windows, this was referred to as frame-based
Gaussian beam summation by Lugara er al. (2003). In an
overcomplete frame-based approach, the wave field is de-
composed into beam fields that are localized both in position
and direction (Fig. 1a) and then propagated into the medium.
In this type of decomposition, position plays the role of time
and wavenumber plays the role of frequency in a time-
frequency style decomposition. Gabor originally suggested
using modulated and translated Gaussian windows for win-
dowed Fourier analysis. Although a basis cannot be formed
by using a windowed Gabor frame, an overcomplete frame
expansion can be constructed that has the additional benefit
of providing redundancy in the expansion (Feichtinger and
Strohmer, 1998). Overcomplete representations of seismic
wave fields in terms of coherent states and related Gabor
windowed transforms were also described by Thomson
(2001), and Thomson (2004) investigated the seismic head
wave problem by an overcomplete Gabor representation of
beams.

An early framelike decomposition of seismic wave
fields without using the language of frame theory was given
by Hill (1990, 2001). By physical reasoning Hill derived an
overcomplete discrete sampling of the seismic wave field
and the component beams were then backpropagated into
the subsurface using paraxial Gaussian beams. The back-
propagation of surface seismic data from a single Gaussian
beam for P scattering of an incident teleseismic P wave is
shown in Figure 1b for the model shown in Figure 2. The
initial beam width is approximately 30 km. In a related
effort, Wu developed beamlet migration using Gabor-
Daubechies frame operators to decompose observed seismic
data and propagation using complex phase screens (see, for
example, Wu and Chen, 2001, 2002). Although the relation
between beamlets and paraxial Gaussian beams is still being
investigated, the use of paraxial beams may be a faster high-
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Figure 1. (A) Frame-based Gaussian beam de-
composition. Initial wave fields are decomposed into
Gaussian windowed beam components that are then
launched at different angles into the medium. (B) Ex-
ample of the backpropagation of a single Gaussian
beam with a low-frequency initial beam width of 30
km for a pPp phase for the model shown in Figure 2.

frequency alternative. Recent examples of Gaussian beam
migration for reflection data include Nowack et al. (2003)
and Gray (2005).

The Gaussian beam expansion for the elastic Green’s
function in a heterogeneous medium with initial position x*
and final position x" can be written (Cerveny et al., 1982;
Cerveny, 1985a, 1985b; Cerveny, 2000)

gy s 0) = f ¥ (G0) u @ a o), (10)

where uf;»}" is the individual Gaussian beam, ¥(y, w) is the
weight function for the summation of the beams, and y spec-
ifies the ray coordinates for the beams. The form is similar
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in 2D and 3D with the differences in the weights for the
individual Gaussian beams (éerveny, 2000). This can be
used to describe either the far field P- or S-wave component
of the Green’s function. Each paraxial Gaussian beam can
be written as

Ui (x5 w) = UP(xty) eTEEDm0, (1)

where Uﬁb (x', x%, y) are the Gaussian beam amplitudes in-
cluding the geometric spreading, any R/T coefficients, the
ray-dependent source strength and the polarization vector at
the positions along the beam’s central ray. The phase func-
tion T(x', x*, y) is paraxially approximated for positions off
the central ray; therefore, two-point ray tracing is not re-
quired. The phase along the central ray is real, and the cur-
vature matrix of the wavefront for a paraxially approximated
Gaussian beam is complex and positive definite. The real
part represents the curvature of the wavefront and the imagi-
nary part tapers the amplitude away from the central ray
forming a beam solution. The geometric spreading is also
complex, as well as nonsingular and regular along the entire
beam. The beam parameters are specified by the real and
imaginary part of the complex curvature at some point along
the beam and represent the beam width and wavefront cur-
vature at that point. The dynamic ray equations can then be
used to compute these values at other points along the ray
(éerveny, 2000). The beam parameters are commonly spec-
ified at either the initial or end point of the beam.

Following Hill (2001), I specify the initial beam param-
eters with planar wavefronts at array positions along the sur-
face. If the initial point of the Green’s function in equation
(10) is at a slightly shifted location along the surface, a phase
compensation term can be used to adjust the Green’s func-
tion as:
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(12)

where the beams are now being specified by the initial hor-
izontal wavenumber components p®. The phase term in equa-
tion (12) performs a slight adjustment of the phase from
position x" to position x¢ along the geophone array.

For simplicity, I will describe the 2D case for the scat-
tered S waves on the horizontal component for an incident
teleseismic plane P wave. The scattered P wave on the ver-
tical component and the 3D extensions are analogous. The
division of unity formula for Gaussian functions in the 2D
case can be written as

1 ~ g 2 o~ = xbn2a”

\/2710 L
for xX* = LAL and AL < 20, where ¢ is the width of the
Gaussian functions at the surface. Hill (2001) provides a
similar formula for the 3D case. Inserting the division of
unity formula into equation (9a), using the far-field S-wave
component of the Gaussian beam expansion of the Green’s
function in equation (12), and assuming a single incident
source wave represented by pj results in

@) ~ -3 f dool(27)Cy () S(@) (&, p )
L

dp§ —
L (P pl.o) DEhpipLw).  (13)
P3

where x* is the discretely sampled beam center, and Cy(w)
= (w/ozo)2 (AL)/(\/27T o) with ¢ given below at a low-
frequency reference level, and S are the individual Gaus-
sian beams for the far-field scattered S-wave Green’s func-

tion. The overbars again signify complex conjugates. Also,

D pf, pi, ) (14)

_ fdxg 5M|(xg,p“§,0)) ef(ngx")z/Zaz eiwp‘?(ngx")

are the local horizontal slant stacks of the observed data
ou, (x5, pj, w) in the x* coordinate that have been Gaussian
windowed at the distances x* = L AL and at the dip angle
related to p{. A similar formulation is obtained for equation
(9b). The terms that downward propagate the windowed
slant-stack data are just the paraxial Gaussian beams
usPS(x', x5 p§, w) for the S-wave component of the Green’s
function initiating from the beam-center locations. The re-
sulting formulas are similar to those given by Hill (2001) for
prestack migration where here we have used an incident pla-
nar source from beneath the structure instead of a common-
offset, surface source geometry.

The incident planar wave field from the source u!
(x', pl, ) could be decomposed into Gaussian beams but
could also be computed by other methods. For the examples
shown here we assume a teleseismic source, in which case
the source can be approximated by a plane wave incident
from beneath the structure with ray tracing used to obtain
the approximate incident wave field at the scattering points.

An important aspect of Gaussian beam migration is that
localized beam stacks at given array locations are used for
the Gaussian beam migration. Thus, if the original geophone
spacing is relatively dense but irregular, this could be ac-
counted for in the beam stack in a manner such that the beam
centers x* = LAL are still regularly spaced. Issues related
to trace interpolation and aliasing were investigated by Neal
and Pavlis (1999, 2001) by using a stacking procedure to
smooth and interpolate the wave-field data with a Gaussian
smoothing window for a given slowness vector to align the
traces. In the present formulation, a local beam stacking can
be used to form a regular array of beam centers for the Gaus-
sian beam migration as well.

For a Gaussian beam specified at the initial position on
the ray, the beam width at a given frequency @ can be written
as 0 = Wy(w,/w)”, where W, is the width of the Gaussian
beam at a low-reference frequency w,. The spacings of the
beam centers in x“ and ray parameter p$ depend on the fre-
quency of the data. In 2D, a choice given by Hill (1990) is

w 172
AL -~ 2(_7') WU N

Wy

where o, is the low-reference frequency for the data and wy
is the highest effective frequency in the data (Hill, 1990).
pf must also be adequately sampled to avoid aliasing with

1 1
g —
At = 4 W, (w,0p)'"
(see Hill, 1990, equation 34b, or Hale, 1992, equation 15).
From wavelet and window analysis, for a critically sam-
pled Gabor frame, then ALAk = 27 (Feichtinger and Stroh-
mer, 1998). However, for a stable reconstruction of the wave
field recorded at the geophones, the beams must be over-
sampled such that ALAk < 27z (Daubechies, 1992). For
k = wpf, and Ak = wAp§ for a fixed w, then with the
previous local beam sampling in x“ and p$, this results in
ALAk = (7/2)(w/wy). Thus, at the highest frequency in the
data with @ = @y, the decomposition frame used in the
Gaussian beam migration algorithm is oversampled by a fac-
tor of 4 and is even more oversampled at lower frequencies.
This results in a stable decomposition of the source wave
field into Gaussian beams with a fixed set of paraxial beams
on a location and ray parameter lattice used for all frequen-
cies. Also, an oversampling of 4 or more results in the Gaus-
sian functions and their dual functions being essentially the
same. Even fewer beams can be used provided that the ear-



lier inequality is satisfied, but then the dual functions must
be used (Feichtinger and Strohmer, 1998). Using the values
of W,, AL, and Ap{, an image for each source can be nu-
merically evaluated by the backpropagation of the beams
down into the medium.

Alternative but related forms of asymptotic synthesis
and inversion of seismic data include wavepath migration
(Sun and Schuster, 2001), coherent states (Thomson, 2001,
2003; Albertin et al., 2001), and the Maslov method (Chap-
man and Drummond, 1982; Xu and Lambere, 1998). Other
early applications of Gaussian beam lattice expansions for
migration include Costa et al. (1989), Lazaratos and Harris
(1990), and Alkhalifah (1995).

Equations (9a) and (9b) are similar to a standard dif-
fraction stack in exploration migration. For structural im-
aging, Schuster et al. (2003, 2004) used stationary-phase
arguments to obtain migration imaging formulas. In the fol-
lowing examples, we use the previous adjoint formulas in-
corporating Gaussian beams, which are correct in the lead-
ing-order phase terms. We term this correlation migration
using Gaussian beams. For true-amplitude migration, com-
plete weighting factors also need to be incorporated in ad-
dition to the terms in the adjoint inversion formulas. An
initial effort to obtain a true-amplitude Gaussian beam mi-
gration for the reflection case was presented by Albertin et
al. (2004). For the reflection case, approximate Kirchhoff
weights were given by Zhang et al. (2000), and a decon-
volution approach operating directly on the adjoint image
was presented by Hu and Schuster (2000). Nonetheless, Hill
(1990, 2001) and Nowack et al. (2003) showed that Gaus-
sian beam migration images for structural imaging can still
provide excellent images compared with Kirchhoff migra-
tion images.

Applications of Gaussian Beam Migration

To illustrate the Gaussian beam algorithm for passively
recorded teleseismic data, a synthetic model has been de-
rived based on the model of Shragge et al. (2001) for an
idealized collisional zone model shown in Figure 2. Vertical
and radial component ray/Born synthetics have been gen-
erated and are shown in Figure 3, where the scattering is
incorporated by using point scatterers within a background
two-layer model similar to that used by Shragge et al. (2001)
for their test migrations. More complete finite-difference
simulations have been performed by Nowack et al. (2004),
and similar inversion results were found for the Gaussian
beam imaging. The source is a plane P-wave incident from
beneath the structure at a 20° angle from the vertical with a
Gaussian pulse width of 1 sec. The seismograms in Figure
3 have been laterally shifted by using the incident angle and
are displayed in a form similar to those of Shragge et al.
(2001). The modeled phases include the direct ps phase and
the surface-reflected pPp, pPs, pSp, and pSs phases. Note
that for simplicity the initial P has been left off of the des-
ignations for the surface-reflected phases. Thus, the pPp in-
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Figure 3. Ray-Born synthetics for the collisional
zone model in Figure 1. The source P wave is incident
at 20° from the vertical. The scattering is incorporated
by using point scatterers embedded in a two-layer ve-
locity structure. The modeled phases include the di-
rect ps, and the surface-reflected pPs, pSp, pSs, and
pPp phases. The seismograms have been laterally
shifted to correct for the incident angle. The direct P
phase would arrive at time zero but has been muted
out.

dicates the wave that travels to the free surface as a P wave,
reflects at the free surface as a P, and gets scattered back as
a P. In Figure 3, the direct P arrival will arrive at zero time
but has been muted out.

In Figure 4, Gaussian beam migration has been applied
to different phase types in Figure 3. For these examples a
beamwidth W, of 30 km was used for the low-reference
frequency o, of 0.1 Hz, and a high-frequency wy, of 2 Hz
was also specified. Nonetheless, a range of values of W,
could be used following the relationships given by Hill
(1990) by using physical arguments and the general frame
inequalities given previously. In Figure 4a, the surface-
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Figure 4.  Gaussian beam migration of synthetic receiver functions. (A) Gaussian
beam (GB) migration of the surface-reflected pPp phase on the Z component. (B) GB
migration of the ps-direct P-to-S scattered phase on the X component. (C) This shows
the GB migration of surface reflected pPs phase on the X component. Note the better
depth resolution compared with the migration of the ps phase. (D) Product of the ps

and pPs GB migrations.

reflected pPp phase on the vertical component has been im-
aged and the subduction zone and Moho can be seen. The
small artifacts are from other phases included in the synthetic
data not imaged by this particular imaging condition. Figure
4b shows the image of the directly scattered Ps phase on the
radial component and is also well imaged. The pPs surface-
reflected phase is migrated in Figure 4c, and in this case the
nonimaged ps phase is still visible at the shallower depths.
The pPs image in Figure 4c is less stretched vertically than
the image of the ps phase in Figure 4b and therefore provides
better vertical resolution. To reduce the artifacts in the in-
dividual images in Figure 4, the images have been multipli-
catively combined; the result is shown in Figure 4d. How-
ever, a more comprehensive procedure based on combining
the images by a coherence-weighted stack has been devel-
oped by Sheng et al. (2003).

One of the problems in the imaging of teleseismic wave
fields is the separation of the source wave field from the
scattered wave field. As an example of including a source
wave field, an observed trace from the 1993 Cascadia exper-
iment was convolved with the synthetic data shown in Fig-
ure 3. The resulting seismograms are shown in Figure 5 and
for this case are not strictly minimum phase. Figure 5a dis-
plays the horizontal component and Figure 5b displays the
vertical component of the synthetic data convolved with a
source pulse. Figure 5¢ and d shows the results of the filtered
autocorrelation of the traces in Figure 5a and b. In these plots
only the positive lags are shown and the zero-lag signals have
been muted out. As a result of incorporating the primary
wave, the autocorrelation has the effect of duplicating the
scattered waves while also compressing the source time
function.
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Figure 5.
the 1993 Cascadia experiment. In these plots, the synthetic data, including the direct
wave, are convolved with an observed vertical component trace from the 1993 Cascadia
data set. (A) The X component record section is shown convolved with the observed
trace. (B) This shows the Z component record section convolved with the observed
trace. (C) This shows the filtered autocorrelation of the convolved X component.
(D) This shows the filtered autocorrelation of the Z component.

Figure 6 gives the results of a Gaussian beam migration
of the filtered autocorrelation data in Figure 5. Figure 6a
shows the migration results of imaging the pPp phase on the
vertical component and Figure 6b shows the migration re-
sults of imaging the pPs phase on the horizontal component.
In both cases, the images of the subduction zone structure
can be easily seen but are not as clear as in the impulsive
source case presented earlier. This is expected, because for
this case no prior source separation was performed. Al-
though source field separation techniques such as multi-
channel deconvolution can also be performed, seismic im-
aging and migration methods are still required on the
processed seismic data to construct a subsurface image.
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Synthetic seismic data convolved with an observed seismic pulse from

Conclusions

In this study, correlation migration using Gaussian
beams has been described for the imaging of passively re-
corded teleseismic waves. Gaussian beam migration is based
on an overcomplete frame-based representation of the seis-
mic wave field that uses paraxial Gaussian beams for the
backpropagation of the seismic waves and utilizes localized
slant-stack windows of the data. This can provide stable im-
aging of seismic data in smoothly varying background media
where caustics and triplicated arrivals can exist. We devel-
oped Gaussian beam migration for structural imaging that
allows for teleseismic waves incident from beneath the struc-
ture to image directly scattered or surface-reflected phases.
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Figure 6.
autocorrelations. (A) Gaussian beam migration of the Z component autocorrelation for
the pPp phase. The result is lower frequency than the equivalent receiver function
migration, but the primary parts of the structure can be seen. (B) Gaussian beam mi-
gration of the X component of the autocorrelation for the pPs phase.

We applied the method to synthetic data computed for a
collisional-zone model and the results show that the Gaus-
sian beam migration can image structure using passively re-
corded teleseismic waves. We then applied the Gaussian
beam imaging method to synthetic data that were convolved
with an observed pulse from the 1993 Cascadia experiment.
The filtered autocorrelation is computed and then imaged
using Gaussian beam migration for direct P-to-S scattered
waves and surface-reflected waves. Although the migrations
of the autocorrelation data with the source time function in-
cluded have more noise than the migrations of the impulsive
source data, the subduction zone structure can still be clearly
identified in the migrated autocorrelation results.
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