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We propose a decision-making approach for optimizing the profitability of hydrocarbon

reservoirs. The proposed approach addresses the overwhelming complexity of the overall

optimization problem by suggesting an oilfield operations hierarchy that entails different time

scales. We discuss system identification, optimization, and control that are appropriate at

various levels of the hierarchy and capitalize on the abilities of permanently instrumented and

remotely actuated fields. Optimization is performed in real-time and is based on feedback. We

provide details on real-time identification of hybrid models and their use at the scheduling and

supervisory control levels. Case studies using field-calibrated simulation data demonstrate the

applicability and value of the proposed approach. Directions for future development are given.
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1. Introduction

1.1. Modeling for reservoir management

The widely cited end of Beasy oil era^ is creating unprecedented challenges for

hydrocarbon reservoir management. To successfully address such challenges, the oil

and gas industry is relying on a number of factors, one of which is new technologies.

Frequently referred to as Bsmart^ or Bintelligent^, among others [1], such technologies

offer exciting new capabilities for remote sensing (e.g., wellbore sensors, 4D seismic)

and actuation (e.g., internal control valves) of wells. The main value of remote sensing

and actuation is that they are critical enabling components in feedback-based decision-

making loops (whether manual or automatic), where (a) data are continually collected,
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(b) decisions are made, and (c) actions are taken. However, the full value of sensing

and actuation cannot be realized unless they are integrated with appropriate decision-

making methods. An important aid to decision making is mathematical modeling,

namely, the capability to predict, explicitly or implicitly, the future outcome of

deliberate actions, so that the Bbest^ actions can be decided upon. This, in turn, creates

the problem of (a) what kind of models to use, (b) what criteria to use to make

decisions, and (c) how. Addressing this problem in its entirety is beyond reach. Rather,

a meaningful decomposition of the problem is warranted. In that respect, a multilevel

decomposition of the field-wide optimization problem is shown in figure 1 [22]. The

proposed framework has the following key features:

� It casts field-wide optimizationYa problem of unmanageable complexityYas

multilevel optimization. Levels are separated according to time scale. At each

level, decisions are made at the pertinent time scale.

� It emphasizes real-time optimization, where the term Breal-time^ refers to making

decisions at a frequency commensurate with the time-scale of the corresponding level.

� It obviates the need to consider a variety of modeling and optimization paradigms,

depending on the pertinent level.

� It integrates field data for continuous learning of key features of the managed

system, based on a variety of models suitable for real-time operations.

The main message of this paper is that such a multilevel decomposition naturally

necessitates various modeling (and corresponding decision making) paradigms,

ranging, for example, from large-scale reservoir simulators used in sophisticated

alrgorithmic optimization to simple empirical models for fluid flow. Modeling

paradigms can be based on first principles, empiricism, or a combination thereof.

The choice of the appropriate paradigm is dictated by both technical and economic

criteria. In fact, the additional cost and infrastructure complexity that Bsmart^ or

Bintelligent^ solutions usually impart should be offset by increased value. When

properly selected and implemented, smart technologies have added value in many

occasions ([2] and references therein) and may be the only solution for well-identified

candidates such as deep offshore and remote developments.

1.2. Contents of this work

To demonstrate the capabilities of the proposed approach, we present a case

study concerning the interplay between the decision-making levels referred to as

scheduling, supervisory control/model predictive control (MPC), and regulatory

control in figure 1. At the supervisory control/MPC level, we implement a model

predictive (receding horizon) control scheme that underlies a scheduling optimization

level, which, in turn, suggests the best operating points (production flow rates) of a
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hydrocarbon producing field, as shown in figure 2, discussed in the sequel. The model

used at the MPC level is semiempirical, while the model employed at the scheduling

level is purely data-driven. For this study, we develop a software prototype, and test it

by using a commercial reservoir and well modeling environment as a virtual field.

Dynamic simulations show that the proposed strategy results in significant reduction of

water injected and produced, with simultaneous increase in overall oil recovery. The

self-learning reservoir management strategy is able to reduce cumulative water

production by almost 80% and reduce water injection by 55%, thus increasing project

profitability from 13% to 55%.

In the remainder of the paper, we first provide a critical presentation of

background material related to current practice in reservoir planning and control as

well as related experience of multilevel decision making in other industries. Next, we

discuss data and model identification in real time. Subsequently, we describe how the

simulation case study fits in the multilevel framework of figure 1, and present the case

study. Finally, we draw conclusions and offer recommendations for future work.

Figure 1. Field operations hierarchy after Saputelli et al. [22]. Arrows pointing down refer to decisions

passed from upper levels to underlying levels, whereas arrows pointing up refer to information passed

from underlying levels to upper levels. Note that feedback is essential for operations at all levels.

Feedback-based decisions are made at different time scales, using a variety of decision-making tools

corresponding to various modeling and optimization paradigms.
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2. Background on reservoir production planning and control

2.1. Current practices, challenges, and opportunities

In standard practice, engineers use a numerical reservoir model to simulate

multiple future production scenarios, and select the best one either heuristically or by

solving a related optimization problem. However, the selected scenario is hardly ever

followed in practice, due to various inevitable practical difficulties (e.g., budget

uncertainties, project delays, availability of resources, unforeseen disturbances and

upsets). As a result, what was the forecasted optimal production scenario at the time

when optimization was performed may actually be irrelevant to the actual production

conditions as production progresses (e.g., fewer wells drilled than planned, wells

completed in a different target zone, water injection rates off target). Consequently,

the modeling and optimization exercise must be repeated as new conditions and

production data become available [3]. But updating the reservoir model used by a

numerical simulator through history matching (adjustment of model parameters to

match production history) is a laborious task whose frequent repetition is often

unwieldy from a practical viewpoint. In fact, history matching may easily take a year

or two, during which time additional discrepancies are certain to arise between the

data used to update the model and actual production.

Because of the above, output from the numerical reservoir simulator is not

suitable for accurate short-term predictions that are necessary for optimization of daily

production. To address this, people have used alternative methods such as decline

curve analysisYwhich is not suitable for optimization [4]Yand inflow performance

relationships [5]Ywithout frequent update. Therefore, there would be significant value

in a mathematical modeling approach, which can make reliable short-term predictions

that are crucial for production-related optimal decision making.

Making use of the increased availability of real-time data in the field, many

pertinent propositions have also appeared that address data-driven decision making for

production-related issues using various tools, such as neural networks [6], Kalman

filtering [7], wavelets [8], system identification, and principal component analysis [9].

A good collection of related examples is presented by Saputelli et al. [22].

While individually important, such propositions must also be viewed in the

context of decision making for optimization of an entire oilfield operation, rather than

individual aspects of it, if industrial impact is to be maximized. Therefore, articulating

a framework that would facilitate the development and use of tools for (oil)field-wide

optimal decision making would both increase the value of existing tools and stimulate

the development of new ones.

2.2. Related experience

Multilevel decision making has been developed and extensively tested in the

petrochemical industry over the last few decades [10]. The need for separation of tasks
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according to time scale was realized early by practitioners in the field. Today,

technology is available that addresses issues at all levels of figure 1 for the

petrochemical industry. Even though challenges for further development remain,

there is a good foundation on which to build. This foundation can prove extremely

useful for related development in the oil industry. At the same time, it should be

stressed that significant differences exist between an oil refinery or petrochemical

plant and an oilfield. Therefore, efforts should be undertaken in earnest to identify

both technologies that are suitable for use and promising areas for development and

implementation of new technologies.

Despite having been extensively used in the petrochemical industry, multivar-

iable optimization has not penetrated the oil industry to the same extent. To the extent

that it is used, it lacks good real-time connection with the oilfield, and does not

consider the inclusion of data for continuous updating of models. Nevertheless,

multivariable optimization techniques have been used in many fragmented ways in the

oil and gas industry to support decisions related to tasks such as resource scheduling

[11], field development under uncertainty [12], automated history matching of

reservoir parameters [13], optimal well location and spacing [14], production

parameter settings [15Y19], and optimization of the displacement efficiency or

recovery factor [20]. Such optimization uses models that are generated off-line, either

by using first principles, or semiempirically, by using data acquired in the field.

3. Real-time system identification

The mathematical model of a system can be based on first principles (e.g.,

conservation of momentum, mass, and energy), empiricism, or combination thereof.

First-principles models can be combined with constitutive equations (e.g., Darcy’s

law, ideal gas law, pressure-drop relationships) to generate model structures that are

valid over a wide range of operating conditions. However, such models may be

cumbersome to develop and manipulate. Empirical models, on the other hand, may be

easy to develop, provided sufficient data are available, but may not be as accurate and

cannot be easily used outside the range of data used to fit the model parameters.

Hybrid models may employ a first-principles structure along with empirical

constitutive equations and rely on data to identify values of model parameters.

Because of this, hybrid models are often easier to develop and manipulate than raw

first-principle models, while maintaining model fidelity outside the range of the data

used for model parameter identification.

3.1. Hybrid models and system identification

System identification refers to the process of building mathematical models of

systems based on measured data [21]. The process by which one continuously uses
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data to identify values of the parameters of an empirical or hybrid model is often

referred to as learning. We call self-learning the process by which a system uses its

own past operating data to build a related model.

At this point, it should be mentioned that the term learning has been extensively

used in conjunction with neural networks to denote their ability to Blearn arbitrarily

complex non-linear mappings from available data.^ Even though the range of

mappings that neural networks can approximate is extremely wide, learning is not a

capability unique to neural networks, but one that is possessed by every parametric

model structure, including standard linear model structures [22].

When data are scant, as is often the case in practice, one has to balance the

accuracy of data fitting with the model’s predictive ability, via appropriate selection of

a model structure. In addition to model structure suggestions by first principles,

various quantitative statistical criteria can also be used to that end (e.g., cross-

validation [23], Akaike information criterion [24]).

For the above reasons, we propose to use hybrid models for self-learning

reservoir management. Our aim is to reduce the brittleness of purely empirical (black-

box) parametric models (such as neural networks) when extrapolating beyond the

training data by forcing conformance to physical laws.

3.2. Parametric reservoir model

The first step toward developing a model is to state what the model will be used for.

Models to be used for decision making must have explicitly designated sets of inputs and

outputs. In addition, the predictive ability of such models should be evaluated based on

how well they allow the optimum decision to be arrived at, rather than on the basis of

overall prediction quality.

Consider the water drive production system shown in figure 2, which depicts an

injectorYproducer configuration in a single-layer reservoir. Inputs to this model are the

well flowing pressures pwf1 and pwf2, which are manipulated by adjustment of corres-

ponding choke valves on the injector and producer. Outputs of this model are the

reservoir pressure P; the oil, water, and gas production rates, qo, qw, qg; the water cut

(percentage of water in the liquid production stream) fw; and water injection rate, qwi.

Note that even though water injection corresponds to an inlet flow of the physical

Figure 2. Waterflood in a single-layer reservoir with one water injection well and one production well.
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system, the water injection rate as a signal is an output of the system, i.e., its value is

determined by both the input signals to the system and the system itself, as shown in

figure 2.

The well flow rates can be predicted by use of first-principles equations as

described in Appendix A. Continuously acquired field data can be used to model the

reservoir through relationships such as,

qk
o qk

w qk
g qk

wi

h i
¼ 1 pk pk

wf 1 pk
wf 1

� �2

pk
wf 2 pk

wf 2

� �2
� �
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3
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; ð1Þ

and

pð Þk
h i

¼ e0 e1 e2 e3 e4 e5½ � 1 pk�1 qk�1
o qk�1

w qk�1
g qk�1

wi

h iT

; ð2Þ

where k refers to a time instant. The nomenclature and derivation of equations (1) and

(2) describe modeling of fluid flow rates and reservoir pressure by using simple

analytical equations in agreement with Vogel’s and Fetkovich’s empirical equations

for the well flow and HavlenaYOdeh for the pressure equation.

Note that the above model is purely inputYoutput and does not make explicit use

of the internal states of the system (i.e., pressure, saturations, etc.). While knowledge

of such internal states is generally valuable, it is not necessary for the purposes of

optimization performed in this study. This greatly simplifies both the identification and

optimization exercises.

3.3. Parametric model extensions for more complex geological models

Because models (Vogel’s, Fetkovich’s and HavlenaYOdeh) capture the main and

simplified physics features (i.e., well flow rate is a parametric combination of current

flowing pressure; pressure is a parametric combination of mass flow rates), they can be

used in a number of field cases where the variables to be estimated are also parametric

combinations of the measured variables. For example, consider now a reservoir with

two layers (figure 6). Flow rates may also be calculated by using equations (1) and (2).

Flow rates can be calculated individually for each layer or as the summation of fluid

rates in both layers. Average pressures can be calculated as the gross-rock volume-

averaged pressure from all layers, or individual average reservoir pressure for each

individual layer.

The simplified average pressure response may differ from the actual one up to a

constant value. This difference can be adaptively eliminated within few iterations of

the regression process (see BParameter vector estimation^). Therefore, the approxi-

mation is adequately absorbed by the identification coefficients.
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For future applications (e.g., different number of layers, wells, heterogeneous

distribution of rock properties), a new set of system identification equations may be

easily derived based on the required response and measured variables, as long as the

variables to be estimated are still parametric combinations of the available measured

variables.

3.4. Time scale effect on modeling

Note that equation (1) is based on the assumption that (a) the dominant time

constant, T1, corresponding to the dynamic response of ½ qk
o qk

w qk
g qk

wi�
T

to

½ pk
wf 1 pk

wf 2�
T

is much smaller than the dominant time constant, T2, corresponding to

the decline of the average reservoir pressure, p, and (b) the sampling period T, from

time instant k to k + 1, is much larger than T1, but comparable to or smaller than T2.

Consequently, in this case, equation (1) involves no dynamics under the preceding

assumptions. Equation (2) involves first-order dynamics. Obviously, if one used a

sampling period much smaller than T, then equation (1) would have to involve

dynamics, whereas if the sampling period were much larger than T, both equations (1)

and (2) would involve no dynamics. This makes it clear that what model one uses

directly depends on the time scale at which the model is used.

3.5. State-space representation and alternatives

Substitution of equation (1) into equation (2) can bring the system equations into

the standard state-space form,

xk ¼ f xk�1; uk�1
� �

yk ¼ g xk ;uk
� �

; ð3Þ

where, uk is the input vector ½ pk
wf 1 pk

wf 2�
T

at time instant k, yk is the output vector

½ qk
o qk

wqk
gqk

wi�
T

at time k, xk is the state vector ( p )k, whichYin this caseYis a scalar, and f

and g refer to the right-hand sides of equations (1) and (2). State-space representation

of a system is standard in system theory. There exists a large body of work, developed

over the last several decades, that can be used to analyze, optimize, and control

systems described by such equations [25]. In addition, alternative representations exist

in the time domain or in transform domains (e.g., Laplace or z domains). A particular

model structure that we are also going to use in this work is the finite-impulse-

response (FIR) model structure, which produces the output of a linear model by

convolution on its input as

yk ¼
Xn

i¼1

hiu
k�i; ð4Þ

The previously described inputYoutput models [equations (1) and (2)] are conve-

niently transformed into equivalent FIR models, which are used when required in the
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context of multivariate model predictive control formulation (Appendix B) represented

by the Supervisory control hierarchy of figure 1 and the block diagram of figure 5.

3.6. Parameter vector estimation

The right-hand side of equations (1) and (2) includes certain coefficients that are

estimated by regression using field data. For estimation to be possible, the collected

data must be informative enough, namely, they must correspond to sufficient

excitation of the process by its inputs. Because all coefficients appear linearly in

equations (1) and (2), standard linear regression can be used for their estimation. By

calling, y the measured values, and yc¼ Xb� the values predicted by the model, the

estimate of the coefficient matrix, b�; can be calculated as

b�� ¼ XT X
� ��1

XT y ¼ arg min
�

y� X�k k2

� �
; ð5Þ

which can be easily performed by standard numerical software and implemented on

basic control hardware, such as field controllers. In case the model coefficients appear

nonlinearly, then nonlinear regression can be used for their estimation.

Models such as the ones represented by equations (1) and (2) will vary with time.

Therefore, the predictive ability of such models must be continuously evaluated. If

such models are inadequate, they must be updated when new data become available.

The success of both the model evaluation and updating tasks depend on the actual data

collected, which must be sufficiently informative, as discussed below.

3.7. Need for informative data

It is a standard fact of linear regression that the variance of parameter estimator b��
in equation (5) is proportional to the matrix (XTX)j1. Consequently, the matrix (XTX)

must be at the very least invertible and preferably Blarge,^ namely, its smallest

eigenvalue must be much larger than zero. Because the matrix XTX contains

experimental data, it provides a direct characterization of what data are informative.

From a practical viewpoint, informative data refers to data that excite the process. This

should not be a problem in the oilfield, as permanent perturbations constantly excite

the system being identified. In the case that field-captured data may not be informative

enough, a persistent excitation process should be implemented [26].

3.8. Systematic dimensionality reduction

In many instances, data may be collected for a large number of variables or

excessively frequently, resulting in highly correlated measurements. For example, this

can happen in situations involving redundant sensors, oversampling, multiple wells, or

multiple reservoir layers. In such cases, further reduction of dimensionality is
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accomplished in a systematic way by using well-known multivariate analysis techniques

such as principal components analysis (PCA) [27] and partial least squares (PLS) [28].

3.9. Model capabilities and limitations

As already noted, equation (1) is based on an empirical constitutive equation,

namely, Vogel’s equation, and equation (2) is a combination of mass balances and

constitutive equations connecting flow and pressure. Because of that, models

represented by equations (1) and (2) combine well-tested empiricismYno pun

intendedYwith basic physics of well response to waterflooding (figure 2). Therefore,

similar equations can be used for multilayer reservoirs with multiple injectors and

producers (figure 6). For example, flow rates in a multilayer reservoir could be

individually calculated for each layer or as the summation of both layers’ fluid rates,

depending on the configuration of field sensors. Also, in a given reservoir

compartment, one could calculate the averaged pressure p over all layers, or,

depending on available flow data, the individual averaged pressure pi at each layer.

To identify the parameters of the models in equations (1) and (2), it is clear that

historical data that are informative enough must be available. For example, to identify

the coefficients b0, . . . , b5 in equation (1), nonzero water production {qw
k} must have

been observed, i.e., water must have broken through the producer well.

Because the model of equations (1) and (2) is approximate, it would have to be

adapted as production progresses.

3.10. Comparison with traditional reservoir simulation

The proposed approach trades rigor for simplicity. Numerical reservoir sim-

ulation (NRS) considers a large number of physical effects captured by partial

differential equations developed from first-principles and constitutive equations;

however, the process is fairly complicated and laborious. NRS models incorporating

the flow physics more directly will be preferable in cases where the long-term

nonlinear behavior is unknown, and when rigorous studies are required for reservoir

uncertainty management, e.g., field development planning, infill drilling, etc. In case

of an asset already in production, the proposed approach can easily make use of

historical data to match a model to measurements in a more automatic manner, leading

to continuous adaptation as more data become available.

4. Multilevel control and optimization

4.1. Control and optimization for reservoir management

Well fluid rate control has been related to optimization of fluid displacement in

porous media [29,30].
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With the onset of intelligent wells, there has been an increasing need for

development of control applications that will actuate this hardware. There have been

attempts to model downhole valves and segmented well architectures [16], and to

create optimization control routines [14,31,32] that will automatically adjust valve

settings to optimize well and field throughput [17Y19].

Some advanced recovery processes and novel architectures have also been

subject to control and optimization treatment. Queipo et al. [33] suggested a surrogate

model for the optimization of steam-assisted gravity drainage (SAGD) processes.

4.2. Multilevel decision making

The model presented in the previous section (equations (1) and (2)) is a good

example of separation of time scales at different levels of the field operations

hierarchy shown in figure 1. To make it even more clear how time scales are separated

between levels, we show in figure 3 the specific locations where elements of equations

(1) and (2) would fit, namely, from the scheduling level downwards. It is clear that

details at additional levels may be explored.

4.3. Supervisory/model predictive control level

Model predictive control (MPC) is a class of computer control algorithms that

explicitly use a plant model for on-line prediction of future plant behavior and

Figure 3. Field operations hierarchy for equations (1) and (2). Additional actuation and measurements are

suggested for each level for more general cases.

L. Saputelli et al. / Real-time reservoir management 71



computation of appropriate control action through on-line optimization of a cost

objective over a future horizon (figure 4), subject to various constraints [34,35]. Of the

optimal input values calculated over the optimization horizon, the first value is

implemented on the controlled process. The process is then left to operate until the

next time point, when additional measurements are collected. The optimization

horizon is subsequently shifted by one time point, and the on-line optimization

problem is reformulated and solved. The entire procedure is repeated in the future.

Extensive experience in the downstream industry [10] as well as rigorous

analysis [36,37] have proven the theoretical and practical value of MPC.

4.4. Need for control-relevant models

Because MPC explicitly uses a model in the on-line optimization, certain

features of that model are critical for good feedback control performance. For

example, consider a system satisfying the steady-state relationship y = Gu between

an input vector u and output vector y, and assume that a model eG is built. For this

system to be stabilizable by a feedback controller with integral action, the inequality

Re½�ðGeGG�1Þ� > 0 must be satisfied [38]. It is not unusual (e.g., when a system is ill

conditioned) for this inequality to be violated by models eGG , which would otherwise be

considered very good approximations of G.

4.5. Comparison of optimal control and MPC

A number of articles [20,29,30] have appeared about the use of optimal control

for upstream problems. In comparison with optimal control, where the optimal profile

of an input over a given horizon is calculated once, MPC solves an optimal control

problem over the moving horizon not just once but repeatedly. Each time, the moving

horizon has been shifted by one time point and new measurements are collected and

inputoutput

setpoint

k time

inputoutput

setpoint

k timek+1

inputoutput

setpoint

k time

inputoutput

setpoint

k timek+1

Figure 4. Moving horizon (shadow area) for model predictive control (MPC).
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used to update the related optimization problem. Because of that, MPC is a feedback

control strategy.

4.6. Self-learning reservoir management (a two-level control and optimization)

The following discussion shows that a self-learning reservoir management

strategy can be achieved by combining the following three elements:

(a) Data-driven hybrid modeling,

(b) Supervisory/model predictive control,

(c) Scheduling optimization of the short-term net present value (NPV).

Figure 5 shows the structure resulting from interconnection of the above three

elements. As shown in figure 5, the captured model at the Supervisory/MPC level

(lower level) feeds a reservoir performance forecast block, which generates the fluid

flow functions to be used in the NPV objective function. Optimization of the NPV

objective function produces the setpoints that are fed to the MPC level (upper level).

4.7. MPC Example

Consider now the injectorYproducer problem in a two-layer reservoir (figure 6).

Layers 1 and 2 are the producing units with distinctive (i.e., 10:1) permeabilityY
thickness (kh) values, separated by an impermeable shale barrier. Inputs to this model

are the well flowing pressures pwf1, pwf 2, and pwf 3, which are manipulated by
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adjustment of corresponding choke valves on the injector and producer. Outputs of this

model are the reservoir pressure P; oil and water production rates, qo1, qo2, qw1, and

qw2 at the individual layers 1 and 2; and water injection rate, qwi.

In Appendix B, we show the development of the basic elements of an MPC

structure that includes simultaneous parametric identification of a reservoir model, as

shown in figure 7. The structure of figure 7 includes an identification loop (upper part)

and a feedback control loop (lower part). The identification loop identifies a model as

structured inputYoutput relationships similar to those of equations (1) and (2). This

model is used by the lower part of figure 7, where an MPC controller implements

process input for the next time step, based on the error between the setpoint and the

actual process output. The objective function used for the MPC controller in closed

loop (figure 7) is described by equation (B6).

Figure 8 shows an example of the structure of figure 7 in action, where the

injectorYproducer problem of figure 6 is tested. The MPC parameter values in table 1

are used.

In the upper-left plot of figure 8, the setpoint of the average reservoir pressure is

10,000 psia and is kept within some constraints by the Baggressive^ manipulation of

the injector input (middle right of figure 8).

The setpoint for oil production (upper middle of figure 8) from each layer is

changed to about 5,000 STB/D at t = 80 days. Bottomhole pressure (lower-left of
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Figure 7. Model predictive control level and simultaneous identification implementation diagram.

Figure 6. Waterflood injectorYproducer problem in multilayer reservoir. The producer has two

independently controlled valves, whereas the injector has a single valve controlling total water injection.
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figure 8) in both layers is continuously adjusted to meet the setpoints. Because layer 1

has better reservoir properties, i.e., larger kh, the behavior of the bottomhole pressure

is always above the one for layer 2, in order to meet the same target.

The change in oil production setpoint (at t = 80 days) is captured as a disturbance

in the injector; after a short period, the injector is back on injection, and saturates its

input to 15,000 BPD (barrels per day). After 150 days, reservoir pressure increases

toward the upper limit.

4.8. Scheduling level

In the context of the field operations hierarchy (figures 1 and 3), a scheduling

level is implemented (figure 5) to optimize the short-term NPV objective function

Table 1

MPC parameters values (for example, in figure 7)

Identification and prediction parameters Input constraints Output constraints

Days for identification = 30 days 6,000 < pwf1 < P 10,000 < P < 13,000

Prediction (moving) horizon = 10 days 6,000 < pwf2 < P 0 < qo1 + qo2 + qw1 + qw2 < 12,000

Simulation time = 500 days 0 < pwf3 < 12,500 0 < qwi < 15,000

Figure 8. MPC injectorYproducer problem.

L. Saputelli et al. / Real-time reservoir management 75



subject to current reservoir model and physical constraints. The objective function

used for the scheduling level in closed loop is described in Appendix D. The

optimization exercise reduces to

max NPVk
� �

¼ max
uk

1
;uk

2
;uk

3

XN

k¼1

auk
1 þ buk

2 þ cuk
3 þ d

( )
ð6Þ

where u1, u2, u3 are the decision variables corresponding to the bottomhole pressures

(pwf1, pwf 2) of reservoir layers 1 and 2 for the producer, and the pressure of the water

injection well, pwf 3; and a, b, c, and d are the resulting coefficients after combining

locally linearized versions of the models of equations (1) and (2) with equation (D1),

as explained in Appendix D. In general, the time point k would correspond to a time

scale larger than the time scale of the MPC level (figure 3). For simplicity, in this work

we consider equal time scale for both the scheduling and MPC levels. The value of N

was selected to correspond approximately to 1 month, which is three times the MPC

horizon length (figure 4).

The constraints are imposed by the reservoir, wells, surface equipment, cost, and

schedule. For example, in finding the solution for optimizing the deliverability of a

well, the physical constraints are given by the reservoir productivity and the tubing

performance, as shown in figure 17, where the shaded area denotes the polytope of

feasible solutions.

A linear programming optimization routine was used to find the optimum solu-

tion of equation (6). The solution vector is the set of operating variables that optimizes

reservoir performance and value. This set of operating variables is the setpoint (qo,sp,

qw,sp, qg,sp, and qwi,sp) of the MPC level that underlies this optimization level.

The above optimization exercise is carried on with the information available at

every time step, assuming that future reservoir behavior is described by the current

model. In subsequent time steps, that model is going to be updated and the NPV will

be continuously refined.

5. Case study

5.1. Data-driven reservoir performance predictionYexample

In this section, we show an application of the methodology that we presented in

the previous sections. All reservoir data were generated by computer simulations using

the commercial reservoir simulator Eclipsei [39]. The simulator was calibrated using

field production data (explained in Appendix C). The decision-making variables

(inputs) and controlled variables (outputs) of that system are shown in figure 6.

To test the identification procedure, identification algorithms were used to

identify the relationships between inputs and outputs in the context of equations (1)

and (2). The identification algorithm considers the last 30 days of history, and
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produces a model used to make predictions for the next 30 days. The results are shown

in figure 9. Thirty-day-ahead predictions are shown after day 60. A good agreement is

observed at the average reservoir pressure (yi K P), which is depicted in the upper left

chart of figure 9. Oil rate fitting and prediction can be seen in the upper middle of

figure 9, for which an exponential decline curve (red line) is also shown for

comparison. The water production rate is presented in the upper right of figure 9.

Although the model cannot predict the onset of water before water has broken

through, it is progressively adapted to the new wellbore conditions, i.e., it is

transformed to represent water increase. A minor deviation in the prediction of water

production can be observed (upper right of figure 9 at t = 740 days). However, the

trend is preserved. Prediction of sudden changes in water injection rate (middle right

of figure 9) was less accurate; however, the main features were captured.

Figure 10 shows the evolution with time of the identified parameters. One could

appreciate the variation of each coefficient along time, i.e., the adaptability of the

model to Blearn^ the system’s variations. However, this is an indication of the

difficulty to predict future performance for large horizons.

Variations in parameter estimates over time should not be directly related to

physical process; however, they could be justified by the continuous and simultaneous
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Figure 9. Reservoir performance prediction using parametric models.
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variations occurring near the reservoir, more profoundly near the wellbore, such as oil,

water, and gas relative permeability, viscosity, and formation volume factors as a

function of the changing pressure and phase saturations. Notice that in general the bias

terms (a0 and c0) are well behaved and tend to have a constant value. One could also

impose constraints in the way these parameters are allowed to change. This could

bring even more stability to the model prediction performance.

5.2. Closed-loop reservoir management example

A five-spot waterflooding pattern is studied to understand the behavior of the

closed-loop reservoir management strategy under the complexity of a field-wide

production. A multilayer reservoir with five distinct kh values is used. Rock and fluid

properties are described in Appendix C.

The five-spot waterflooding problem is exposed to both noncontrolled and

multilevel controlled (self-learning reservoir management) strategies. Figures 11Y14

show the simulation results under both strategies.

Figures 11 and 12 show the distribution of fluids (oil saturation) at the end of the

simulation (2,200 days). The noncontrolled case (figure 11) showed early water
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breakthrough in layer 1 (upper layer of high permeability), which reduced the

ability of the well to flow under current vertical lift performance constraints. The

ultimate recovery is impaired due to the inability of the well to lift high water cut

flow rates.

The simulation under the self-learning reservoir management strategy (figure 12)

shows a more uniform distribution than the one under no control (figure 11); water

breakthrough was detected and controlled; bottomhole pressure inputs in the watered

areas were reduced up to full zone shutoff. This permitted better vertical lift on the

well. For the same period of time, recovery was accelerated at a minimum effort.

Although the vertical sweep efficiency looks better for the self-learning reservoir

management case, both cross sections (figures 11 and 12) show similar fluid

distribution, i.e., there are no dramatic differences.

However, it is noticeable that water breakthrough in layers 1 and 2 is delayed for

the self-learning reservoir management case (figure 12). In the following graphs

(figures 13 and 14), rates and cumulative fluids are compared for each case.

Oil rate and cumulative oil (figures 13 and 14) look slightly better for the self-

learning reservoir management case, i.e., there is only a 5% increase in oil recovery,

which is equivalent to an increase in net present value of about US$5 million over the

project life.

Figure 11. Five-spot water drive problem under no control management.
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However, a more remarkable result is shown for the water produced and injected.

As water breaks through (t = 50 days) in the high-permeability layers, it is detected

and controlled in the self-learning mode (figure 6), where the simulation shows the

continuous control and adaptation to better performance. As more water is produced
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Figure 14. Oil cumulative comparison (five-spot water drive problem).

Figure 15. Water rate comparison (five-spot water drive problem).
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from flooded layers, automatic regulatory action will reduce the contribution from

them (until shutoff), while meeting business objectives (water handling cost).

Therefore, water rate was minimized for the self-learning case.

In the noncontrolled case, injected water is a response of the volume required to

maintain constant pressure in the reservoir. The more water is produced, the more

water needs to be injected to replace the produced volume (figure 15).

As a comparative result, the self-learning case (figure 16) was able to reduce

cumulative water production by almost 80%, and reduce water injection by 55%. With

an average price of 2.5$/bbl of water handling costs, either for compression or

treatment, this rounds up to an additional project net present value of US$92.5 million,

over the period of 2,200 days.

6. Suggestions for further directions

6.1. Continuous feedback adjustment

Tracking of setpoints of reservoir pressure, and production and injection rates

(outputs) was effected by on-line adjustment of the flow settings (valve openings) of

injectors and producers (inputs) in a feedback fashion. This was made possible by

Figure 16. Water cumulative (five-spot water drive problem).
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having an adequate dynamic model that could predict the effect of inputs on controlled

outputs. This model was continuously updated and used by the feedback controller

(MPC), which was fed with optimal setpoints by an upper NPV optimization level.

This approach is different from previous approaches found in literature, where

optimization was attempted off-line in a fragmented fashion over a single time-scale.

6.2. Disturbance rejection

The MPC strategy was able to reject disturbances such as bottomhole pressure

changes in adjacent completions, or pressure changes from the injector. A deeper

analysis and disturbance rejection strategy may be developed as a consequence of

these observations.

6.3. Number of sensors and actuators

The dependence of the ultimate outcome of the self-learning reservoir

management strategy on the number and location of sensors and actuators was clearly

demonstrated. By comparing various alternatives of increasing sensing and actuating

capability, the current framework can guide further work to determine the optimal

number and location of sensors and actuators required to implement an effective

reservoir management strategy.

6.4. Limited optimization ability

Once the physical constraints were reached (minimum bottomhole and wellhead

pressure), the controller’s role was only to monitor the reservoir response, and no

further inputs could be implemented. Thus, the system was not able to improve beyond

this point. This creates an opportunity to interface the proposed strategy with an upper

level of optimization that would select a different range of constraints or resizing of

the system, for example, by making decisions to add new wells.

6.5. Persistence of excitation

No controller degradation was observed because identification was performed in

closed loop. Model/process mismatch was acceptable for control purposes. Proper

input excitation may be required for guaranteeing a well-conditioned information

matrix during identification. If necessary, persistent excitation may be also embedded

into the MPC algorithm, and the setpoint parameter would be changed by the

allowable flow constraints. Remotely operated actuators (smart well completions and

automated wellheads) will permit controlled continual excitation so that enough

information is captured for identification.
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6.6. Fault-tolerant controller

Further strategies may be added to the system to counter possible sensor or

actuator faults. System redesign may also be suggested for enhanced fault tolerance,

e.g., by hardware redundancy or virtual sensors.

6.7. Extension to additional levels of the hierarchy in figure 1

The approach presented in this paper, particularly the concepts of moving

(receding) horizon and adaptation can also be used at higher levels of the operations

hierarchy, reaching the capacity planning level.

7. Discussions and conclusions

In this work we have presented a methodology for self-learning reservoir

management. The key features of that methodology are the following:

� A multilevel hierarchy of oilfield operations separates the real-time decision-

making problem for an entire oilfield into a series of individual problems at

different time-scales. The individual problems are computationally tractable by

having relatively small dimensionality while they maintain relevance to the overall

problem of optimizing an entire oilfield. This methodology has proven its value in

the downstream industry and has the potential to greatly impact upstream

operations.

� While modeling activity is commonplace in the upstream industry, what constitutes

a useful model for a particular decision-making objective is not immediately

obvious, yet it could have great impact on how real-time decisions are made. Model

accuracy should be balanced with model simplicity and ease of use. In fact, it is

estimates of those model features that are critical for a particular decision-making

task that need to be optimized rather than an overall model quality index.

� Even though it may be applied at different time scales and different forms, feedback

is indispensable for decision making. Models that are suitable for feedback-based

decision making should be developed at all levels of the oilfield operations

hierarchy.

Case studies were undertaken to demonstrate the proposed methodology. The

studies were based on simulation data from a commercial simulator that was calibrated

using historical production data. In one case study, application of the proposed

methodology showed significant reduction of water injected (õ55%) and produced

(õ80%), with simultaneous increase in overall oil recovery (õ5%) over 2,200 days.

The net result was that self-learning reservoir management strategy was able to
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increase project profitability from 13% to 55%, corresponding to a net present value

increase of US$ 92.5 million over the specified period. All shown case studies used

homogeneous layer-cake reservoir models and exploitation scenarios of realistic

complexity. Particular attention should be paid in future cases on more complex oilfied

models. It is evident that with this paper, we have barely scratched the surface

regarding what multilevel optimum decision making can bring to the upstream

industry. Various possibilities for modeling, optimization, and control exist at all

levels of the hierarchy shown in figure 1. This will be explored in our future work.

Nomenclature

a0 Oil rate parametric coefficient (STB/day)

a1, a2, a4 Oil rate parametric coefficient (STB/day/psi)

a3 Oil rate parametric coefficient (STB/day/psi2)

b0 Water rate parametric coefficient (STB/day)

b1, b2, b4 Water rate parametric coefficient (STB/day/psi)

b3 Water rate parametric coefficient (STB/day/psi2)

c0 Gas rate parametric coefficient (MSCF/day) (not to be confused with oil

compressibility, co, for oil)

c1, c2, c4 Gas rate parametric coefficient (MSCF/day/psi)

c3 Gas rate parametric coefficient (MSCF/day/psi2)

d0 Water injection parametric coefficient (STB/day)

d1, d2, d4 Water injection parametric coefficient (STB/day/psi)

d3, d5 Water rate parametric coefficient (STB/day/psi2)

CF
k Total fixed costs (overhead, leases, capital cost) at time interval k

Cwp Cost of treatment and disposal of produced water per unit barrel [$/STB]

Cwi Cost of treatment and compression of injected water per unit barrel

[$/STB]

e0 Pressure parametric coefficient (psi)

e1, e2, e4 Pressure parametric coefficient (dimensionless)

e3, e5 Pressure parametric coefficient (l/psi)

DTk Size in days of the time interval

FIR Finite impulse response

FOPR Field oil production rate (STB)
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FOPT Field oil production cumulative (STB)

FPR Field pressure (psia)

FWIR Field water injection rate (STB/day)

FWIT Field water injection cumulative (STB/day)

FWPR Field water production rate (STB/day)

FWPT Field water production cumulative (STB/day)

i Annual discount factor

i1, i2 Injector 1, injector 2

J* Productivity index above bubble point (STB/day/psi)

IT
k Total capital investment on field assets (wells, surface facilities) at time

interval k

k Time interval number

MIMO Multiple inputs and multiple outputs

MPC Model predictive control

N Number of measurements or intervals

n Number of regression coefficients

Np Cumulative produced oil (STB)

NPV Net present value

nU Number of inputs

nY Number of outputs

p1, p2 Producer 1, producer 2

Pb Bubble point pressure (psi)

Po Net selling revenues of oil [$/STB]

Pg Net selling revenues of gas [$/SCF]

qwi Water injection rate (STB/day)

qk Flow rate at time k (STB/day)

qp,sp Setpoint of flow rate of phase p (STB/day)

qpi Flow rate of phase p, well i (STB/day)

qp
k Daily production of oil [STB/day], water [STB/day], and gas [SCF/day]

at time interval k
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qwi
k Daily injection of water [STB/day] at time interval k

rk Tax rate at time interval k

uF Future moves of the input variable vector

ui Input variable number i

We Cumulative water injected (STB)

WOPR Well oil production rate (STB/day)

Wp Cumulative water production (STB)

yi Output variable number i

Appendix A: Parametric porous media modeling

Fluid rates

Oil, water, and gas rates are linearly related to a pressure integral function, which

declines monotonically as time passes, or simply a linear relation between average

reservoir pressure P and the well flowing pressure, pwf , as,

qo tð Þ / kh

pD

Z P

pwf

kro

�o�o

ffi fL pwf ;P
� �

; ðA1Þ

qw tð Þ / kh

pD

Z P

pwf

krw

�w�w

ffi fL pwf ;P
� �

; ðA2Þ

qg tð Þ / �g GOR� Rsð Þkh

pD

Z P

pwf

kro

�o�o

ffi fL pwf ;P
� �

; ðA3Þ

where k is the absolute permeability [md], h is the pay thickness [ft], krp is the relative

permeability of phase p [fraction], bp is the formation volume factor of phase p [rbbl/

STB] or [rbbl/SCF], mp is viscosity of phase p [cp], GOR is the producing gas oil ratio,

and pD = ln(re /rw) at steady state or pD = ln(0.472re /rw) at pseudo-steady state

conditions.Without loss of generality at any particular time, oil, water, and gas flows

can be represented (in oilfield units) as,

qo ¼
kkroh pe � pwf

� �
o

141:2�o�o pD þ s½ �; ðA4Þ

qw ¼
kkrwh pe � pwf

� �
w

141:2�w�w pD þ s½ �: ðA5Þ
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For which flow functions can be simply modeled as

qk
o ¼ a1 � pk þ a2 � pk

wf ; ðA6Þ

qk
w ¼ b1 � pk þ b2 � pk

wf ; ðA7Þ

qk
g ¼ c0 � qk

o; ðA8Þ

Recall that Vogel’s backpressure and Fetkovich’s equation for which flow above

and below the bubble point pressure are

qo ¼ J� p� pbð Þ þ pb J�

1:8
1� 0:2

pwf

pb

	 

� 0:8

pwf

pb

	 
2
" #

; ðA9Þ

qo tð Þ ¼ J � p� pbð Þ þ J�

2pb

p2
b � p2

wf

h i
: ðA10Þ

Therefore, oil, water, and gas flows can be modeled as

qk
o ¼ a0 þ a1 � pk þ a2 � pk

wf þ a3 � pk
wf

� �2

; ðA11Þ

qk
w ¼ b0 þ b1 � pk þ b2 � pk

wf þ b3 � pk
wf

� �2

; ðA12Þ

qk
g ¼ c0 þ c1 � pk þ c2 � pk

wf þ c3 � pk
wf

� �2

; ðA13Þ

and the values of a0, . . . , a3, b0, . . . , b3, c0, . . . , c3 are the parameters to be fitted

through regression. The equivalent matrix form is

qk
o qk

w qk
g

h i
¼ 1 pk pk

wf pk
wf

� �2
� � a0 b0 c0

a1 b1 c1

a2 b2 c2

a3 b3 c3

2
664

3
775; ðA14Þ

Since measurements are taken continuously over time, a least-squares estimator

can be used to approximate an optimum fitting parameter vector that best fits the

experimental data; or any other technique such as partial least squares, neural

networks, or subspace identification.
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Reservoir pressure modeling

Recall a general material balance equation for oil or gas reservoirs, in which the

time-dependent pressure function is related to mass-cumulative quantities

f p tð Þ½ � ¼ g Np;Gp;Wp;We

� �
; ðA16Þ

p ¼ a0 þ a1

Z
qo þ a2

Z
qw þ a3

Z
qg þ a4

Z
qwi; ðA17Þ

dp

dt
¼ b1qo þ b2qw þ b3qg þ b4qwi; ðA18Þ

and the values of b0, . . . , b5 are the parameters to be fitted through regression. The

equivalent matrix form of the time-dependent pressure function is

pð Þk
h i

¼ b0 b1 b2 b3 b4 b5½ � 1 pk�1 qk�1
o qk�1

w qk�1
g qk�1

wi

h iT

;

ðA19Þ

Combining the above with fluid rates models it is possible also to obtain:

1

�t
pk � pk�1
� �

� c0 þ c1 � pk þ c2 � pk
wf 1 þ c3 � pk

wf 1

� �2

þ c4 � pk
wf 2 þ c5 � pk

wf 2

� �2

;

ðA20Þ

Therefore, for Dt = 1, average reservoir pressure can be predicted as

pð Þk ¼ e0 þ e1 � pð Þk�1 þ e2 � pk
wf 1 þ e3 � pk

wf 1

� �2

þ e4 � pk
wf 2 þ e5 � pk

wf 2

� �2

; ðA21Þ

and the values of c0, . . . , c3 are the parameters to be fitted through regression. The

equivalent matrix forms of the time-dependent pressure function is

pð Þk
h i

¼ e0 e1 e2 e3 e4 e5½ � 1 pk pk
wf 2

�
pk

wf 1

�2
pk

wf 2

�
pk

wf 2

�2
h iT

; ðA22Þ
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Appendix B: Multivariate model predictive control formulation

for reservoir management

Suppose that an oilfield process is described by some finite impulse response

model as

Yk¼ HUk:k�N ; ðB1Þ
where

Yk ¼ yk
1 yk

2 � � � yk
q � � � yk

nY

h i
; q ¼ 1; 2; . . . ; nY ; ðB2Þ

Uk ¼ uk
1 uk

2 � � � uk
i � � � uk

nU

� �
; i ¼ 1; 2; . . . ; nU ; ðB3Þ

uk
i ¼ uk

i uk�1
i � � � u

k�j
i � � � uk�N

i

h i
; j ¼ 1; 2; . . . ;N ; ðB4Þ

yk
q ¼

XnU

i¼1

X1
j¼1

h
q
ij

� �
u

k�j
i

� �
ffi
XnU

i¼1

XN

j¼1

h
q
ij

� �
u

k�j
i

� �
; ðB5Þ

At time k, the following objective function must be minimized

min
�ukþt�1

i

Xp

t¼1

bYYkþtjk � YSP
� �2

þ R
XnU

i¼1

Xm

t¼1

�u
kþt�1jk
i

� �2

( )
; ðB6Þ

Subject to the following constraints:

Ymin � bYYkþjjk � Ymax; t ¼ 1; . . . ; p; ðB7Þ

umin � ukþt�1jk � umax; t ¼ 1; . . . ;m; ðB8Þ

ukþvjk ¼ ukþm�1jk ; v ¼ m; . . . ; p� 1: ðB9Þ

At time k, future process values can be estimated from finite impulse response

model as

byy kþtjk
q ¼

XnU

i¼1

Xp

j¼1

h
q
ij

� �
u

k�jþt
i

� �
þ bddkjk

q ; ðB10Þ

where

bddkjk
q ¼ yk

q �
XN

j¼1

h
q
ij

� �
u

k�jþt
i

� �
; t ¼ 1; . . . ;m; . . . ; p: ðB11Þ
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If we expand the future values of process output as

Yk
F¼ HUk:kþp; ðB12Þ

this could be rearranged as vector/matrix form,

bYYF¼ HFUFþHPUPþYk; ðB13Þ

The quadratic problem is set as to find the minimum of,

byyF � ySP
� �T byyF � ySP

� �
þ�uT

FR�uF ¼

HFuF þHPuP þ yk � ySP
� �T

HFuF þHPuP þ yk � ySP
� �

þ DuF þ FuPð ÞT R DuF þ FuPð Þ ¼

uT
F HT

FHF þ DT RD
� �

uF þ 2uT
F HT

F HPuP þ yk � ySP
� �

þ DT RFuP

� �
þ � � � ðB14Þ

and linear constraints

ymin � HFuF þHPuP þ Yk � ymax; ðB15Þ

umin � uF � umax ðB16Þ

UuF ¼ 0; ðB17Þ

where

U ¼
ðp�mÞ	ðm�1Þ

�1 1

. .
. . .

.

�1 1 ðp�mÞ	ðp�mþ1Þ

2
64

3
75: ðB18Þ

The above minimization is solved at each time k by finding the derivative of the

quadratic problem as

d

du
uT Auþ Buþ C
� �

¼ 2Auþ B ¼ 0) u ¼ 1
2
A�1B; ðB19Þ

Table 1C

Rock properties

Layer � kx Depth (ft) Tx Ty Tz cr (psij1)

1 0.15 500 14,500 1 1 0 3 	 10j6

2 0.15 200 14,600 1 1 0 3 	 10j6

3 0.15 200 14,610 1 1 0 3 	 10j6

4 0.15 200 14,630 1 1 0 3 	 10j6

5 0.15 50 14,650 1 1 0 3 	 10j6
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where

A ¼ HT
FHF þ DT RD

� �
ðB20Þ

B ¼ 2 HT
F HPuP þ yk � ySP
� �

þ DT RFuP

� �
: ðB21Þ

Table 2C

Oil and gas densities under standard conditions

Fluid rosc (lbm/ft3) Fluid rosc (lbm/ft3)

Oil 54.637 Gas 0.068432

Table 3C

Oil properties

Pressure (psia) Rs (MSCF/STB) Bo (bbl/STB) mo (cp) co (psij1)

500 0.054 1.045 7,666 1.53 	 10j5

714.286 0.055833 1.0474 7,366.34 1.53 	 10j5

1,428.57 0.125625 1.08002 1,251.99 1.53 	 10j5

2,142.86 0.215357 1.124 212.79 1.53 	 10j5

2,857.14 0.335 1.18504 36.166 1.53 	 10j5

3,571.43 0.5025 1.27335 6.1468 1.53 	 10j5

4,285.71 0.75375 1.4094 1.04472 1.53 	 10j5

4,642.86 0.933214 1.50811 0.430698 1.53 	 10j5

5,000 1.1725 1.64093 0.177561 1.53 	 10j5

Table 4C

Average physical and economic figures for El Furrial Field

Reservoir temperature 276 -F
Reservoir depth 14,000 ft

Average permeability 250 mD

Average porosity 13 %

Average crude gravity 27 API

Gas/Oil ratio 1,120 SCF/STB

Datum reservoir pressure 11,250 psia

Bubble point pressure 4,620 psia

Original oil in place 7,400 MMSTB

Target recovery factor 46 %

Activation index for adding new production 5,714 $/STB/day
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The optimal value of uk is sent to the process, the process is left to run until time

k + 1, at which point the optimization problem is set up and solved again. The

procedure is repeated indefinitely.

Appendix C: Data used for examples

A data sample from a particular reservoir (within El Furrial Field) is used in this

paper. Tables 1CY4C average reservoir data have been previously correlated with

history-matched production; these data values have been selected or adjusted to ease

research’s goals, without misrepresenting field reality.

Rock and fluid data for examples in this paper resemble reservoir characteristics

from El Furrial Field, north of Monagas Basin, Venezuela. El Furrial is a giant

reservoir with originally 6 billion STB of 21oAPI oil in place, currently producing

about 500,000 STB/day from several independently hydraulic units.

Appendix D: Objective function

The objective function, e.g., for a waterflooding project, may be expressed as the

finite sum of discounted cash flows during the project horizon

NPV ¼
XN

k¼1

qk
oPo þ qk

gPg � qk
wpCwp � qk

wiCwi

� �
�Tk � Ik

T � Ck
F

h i
1� rk
� �

1þ ið Þ
k�Tk
365

ðD1Þ

Figure 17. Well constraints vs. vertical lift performance.
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where all the variables are defined in the nomenclature. Depending on the models used

in equation (D1), the objective function may be a linear or nonlinear function of the

constraints. Several methods may be used for different situations.

In practice, the way we achieve the optimal solution to equation (1) is that we

assume a time model for qo
k, qg

k, qwi
k , and qwp

k , which allows us to find the cash flows in

time, for certain assumptions in Cwp, Cwi, IT
k, CF

k, and i, and ultimately find a

maximum (or minimum) value of equation (1) while honoring system constraints.

In the case of reservoir exploitation, these constraints are imposed by the

reservoir, wells, surface equipment, cost, and schedule. For example, in finding the

solution for optimizing the production rate of a well, the physical constraints are given

by the reservoir productivity (IPR curves) and the tubing performance, as shown in

figure 17. This figure shows the operating region of an oil well defined by two IPR

curves and two tubing performance curves. The IPR curves (IPR1, IPR2) represent

reservoir conditions at different static pressure (PRES1, PRES2) and well productivity

indexes. Tubing performance is defined for two distinctive operating conditions of gas/

oil ratio (GOR1, GOR2), water fraction ( fw1, fw2) and tubing head pressure (pTHP1,

pTHP2). Points 1Y4 in figure 17 define the region of operability for this particular

example.

pwf ;max U pwf U pwf ;min

ql;max U ql U ql;min



ðD2Þ

The shaded area in figure 17 denotes the region of feasible solutions.
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