
Introduction

N, P, and K are main nutrient elements in plant growth.
Plants must absorb enough N, P, and K to maintain
their growth and development. Many researches re-
ported that photosynthetic capacity is highly correlated
with relative and absolute nitrogen (N) contents in C3

plants (Diaz et al. 1996; Evans 1989; Reich et al. 1995,
1998; Tognetti 2003; Zhao et al. 2003). Phosphorus (P)
also plays an important role in photosynthesis, and it
can enhance the drought resistance of plant tissues due
to its influence on osmotic adjustment and water reten-

tion (Beijing Agricultural University 1994). K+ also is a
major plant macronutrient that plays important roles
related to stomatal behavior, osmoregulation, and cell
expansion. Plants must absorb the bulk of K+ from the
soil to maintain normal growth and development
(Elumalai et al. 2002). Large K+ concentrations are also
closely related to drought resistance (Wang et al. 2004).
Except the plant species, environmental conditions such
as soil water, nutrient and planting regimes can affect
those element concentrations in plant tissue.

Leaf d13C is related to the ratio of photosynthetic
capacity (A) and stomatal conductance (gs), in such a
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Abstract Seasonal variations in fo-
liar stable carbon isotope discrimi-
nation (D) of Artemisia ordosica and
Caragana korshinskii and correla-
tions of foliar D with N, P, and K
concentrations were studied under
different planting regimes at the
southeastern margin of China’s
Tengger Desert. Foliar D, N, P, and
K concentrations and the correla-
tions of D with N, P, and K differed
between the species and planting
regimes. Foliar D, P and K concen-
trations in A. ordosica were mark-
edly higher than in C. korshinskii,
while foliar N concentrations in C.
korshinskii was significantly higher
than in A. ordosica. There were no
significant differences in N, P, and K
concentrations in C. korshinskii be-
tween planting regimes, but foliar D
was significantly increased after June
in mixed-species planting. In A.
ordosica foliar N concentrations in

mixed-species planting and foliar D
in single-species planting were sig-
nificantly higher than those of cor-
responding planting regimes.
According to water-use efficiency
(WUE) calculated based on foliar D,
and on N, P, and K concentrations,
C. korshinskii’s survival may profit
from its higher WUE, whereas A.
ordosica can avoid drought damage
by its higher P and K concentrations
in leaves in arid or semi-arid envi-
ronments. The complex correlations
of foliar D with foliar N, P and K
suggested that water in C. korshin-
skii and water and P nutrition in A.
ordosica were the key factors limit-
ing their growth.
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way that it can be used to indicate the long-term
water use efficiency (WUE) (Farquhar et al. 1989a).
Foliar D values calculated by d13C have been used as
an integrated measure of the response of photosyn-
thetic gas exchange to environmental variables such as
water availability (Monneveux et al. 2005; Shaheen
et al. 2005), water status (Korol et al. 1999) and
nutrient (Choi et al. 2005; Iqbal et al. 2005). The use
of stable isotopes provides fundamental insights into
the interactions between plant nutrition and eco-
physiological processes. Previous studies have found
positive correlations between D and indices of water
availability such as rainfall, soil water potential, and
soil water availability for woody species (McNulty and
Swank 1995; Damesin et al. 1997; Laundré 1999;
Miller et al. 2001). Increases in D of plants with a
favorable water status have been observed for different
plant species, such as conifers (Korol et al. 1999;
Warren et al. 2001; Choi et al. 2005), coffee (DaMatta
et al. 2002) and wheat (Monneveux et al. 2005;
Shaheen et al. 2005).

Among various environmental factors, nutrient
(particularly nitrogen) deficiencies can result in more
negative d13C (higher D) by reducing photosynthetic
assimilation of intercellular CO2 in leaf (Sparks and
Ehleringer 1997). The robust negative correlation be-
tween foliar D and N concentrations implied that high
leaf N concentrations corresponded to increased pho-
tosynthetic capacities and decreased internal leaf CO2

concentrations (Sparks and Ehleringer 1997). And no
significant relationship between foliar D and N concen-
trations can indicate that N deficiency was not a factor
limiting tree growth (Choi et al. 2005). However, few
have attempted to examine the correlations between
foliar D and K, P concentrations.

In arid and semi-arid regions of China, water
availability is a key limiting factor and determines
plant performance, abundance, and distribution, espe-
cially in regions such as China’s Tengger Desert. The
Tengger Desert is the fourth-largest desert in the cen-
tral part of western China, and is characterized by
shifting sand dunes. The Baotou-Lanzhou railway
crosses this desert, and to ensure safe operation of the
railway, the Chinese Academy of Sciences and related
institutions began establishing protective systems to
provide sand fixation (Zhao 1998). Stabilized in the
past by means of straw barriers in a checkerboard
pattern and by artificial shrub forests, the mobile dunes
have been changed into stabilized sands in the transi-
tion zone between desert and arid grassland (Xiao et al.
2003). Among the desert plants used to fix the sand,
xerophytes (C. korshinskii) and succulent xerophytes
(A. ordosica) played important roles in stabilizing
shifting sands due to their great ability to adapt to
desert climates. C. korshinskii is Leguminosae Papi-
lionaceae, and A. ordosica is Compositae, Trip Ant-

hemideae (Lin and Lin 1991). They belong to desert
and semi-desert biome (Walter and Breckle 1985) and
have strong capability to fight a drought (Wang et al.
2002). However, the health of these species has varied
as a function of planting regime and microhabitat
(Tang et al. 2001). Here, this study was conducted to
compare foliar stable carbon isotope discrimination (D)
and the foliar N, P, and K concentrations, as well as
the relationship between D and these parameters, in A.
ordosica and C. korshinskii in single-species and mixed-
species plantings near the Tengger Desert. The goal of
this paper was to investigate the effects of planting
regime on foliar D and foliar N, P, and K concentra-
tions in a desert environment, and to discuss the po-
tential mechanisms used by A. ordosica and C.
korshinskii to adapt to desert conditions and the main
limited factors that affected the A. ordosica and C.
korshinskii growth.

Materials and methods

The study area

The study was conducted in the water balance study
plot at the Shapotou Desert Experimental Research
Station (37�27.55¢N, 105�00.64¢E), which borders on
the Tengger Desert (Fig. 1). The area is located
1,300 m above sea level, and has abundant sunshine
and low relative humidity (Wang et al. 2002). Average
annual precipitation is 180.2 mm per year, with 80% of
the rainfall occurring between May and September.
Annual mean temperature is 10.0�C, with a mean
January temperature of )6.9�C and a mean July tem-
perature of 24.3�C (Li et al. 2004). However, the
maximum temperature at the surface of the sand may
reach 74�C (Chen et al. 1991). The depth to the water
table is more than 80 m, thus rainfall is usually the
only source of water for plant growth. The frost-free
period spans 150–180 days per year. The soil is an
aeolian sandy soil (Xun and Li 1987).

Planting regime and conditions at the sample site

At the study site, 4-year-old seedlings of A. ordosica
and C. korshinskii were planted under eight planting
regimes on April 1990 in a rain-fed area, with no
irrigation provided after planting (Wang et al. 2002).
In the present study, only three of these planting re-
gimes were studied (Table 1). By 2004, the soil prop-
erties in the study field had improved to the values
shown in Table 2 as a result of the planting of sand-
fixing plants such as A. ordosica and C. korshinskii
(Table 2).
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Plant sampling

Sampled leaves of A. ordosica and C. korshinskii were
collected on 13 and 28 May, 30 June, 28 July, 28 August,
and 23 September 2004 in sites 1, 2, and 3. Meteoro-
logical data for the corresponding growing season are
presented in Table 3. At each sampling time, the leaves
were took between 8 and 10 a.m., and about 20 leaves
from each of 5 trees were took as a sample from each
species growing in each of the three planting regimes.
Every sample was repeated two times. The samples were
dried at 70�C for 24 h before analysis of N, P, and K
concentrations and carbon isotope ratio (d13C).

Determination of leaf N, P, K concentrations

The dried samples were grinded in a stainless steel mill,
and wet-digested in concentrated H2SO4 for determina-

tion of total N and in a di-acid mixture (HNO3 and
HClO4 mixed in a 4:1 ratio) for determination of total P.
The N content was determined by means of semi-micro
Kjeldahl analysis (Bremner and Mulvaney 1982); P
according to the method of Dickman and Bray and
Woods and Mellon (described by Jackson 1982); and the
potassium (K) content of leaves was determined by
means of flame spectrophotometry (Allen et al. 1989).
Pooled samples were analyzed (the combination of the
two replicates collected for each sample) and were
measured twice.

Analysis of d13C

The carbon isotope ratio (13C/12C) was determined by
mass spectrometry (MAT 252 spectrometer, Thermo
Electron Corporation, Waltham, MA, USA) (Liu et al.
2003). The precision of the analysis was better than

Fig. 1 The study region and
sampling site of Shapotou Des-
ert Research and Experimental
Station of Chinese Academy
Sciences

Table 1 Sample sites and planting regimes for Artemisia ordosica and Caragana korshinskii

Plant species Microhabitat Spacing (m) Planting regime

Water balance study field
A. ordosica Site 1: AOM 1·1 Mixed-species planting: two lines of A. ordosica (1·1 m) followed

by two lines C. korshinskii (1·1 m), then followed by a 2-m gap
Site 2: AOS 1·1 A. ordosica single-species planting

C. korshinskii Site 1: CKM 1·1 Mixed-species planting: two lines of A. ordosica (1·1 m) followed
by two lines C. korshinskii (1·1 m), then followed by a 2-m gap

Site 3: CKS 2·2 C. korshinskii single-species planting

AOM and AOS indicate A. ordosica mixed and single plantings, respectively; CKM and CKS indicate C. korshinskii mixed and single
plantings, respectively
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0.10&. The d13C (dp, relative to Pee Dee Belemnite, the
international standard) was expressed as:

d13 Cð&Þ ¼ R sample

R standard
� 1

� �
� 1,000 ð1Þ

where R is the 13C/12C ratio. The analysis of leaf d13C
used pooled samples and every measurement was repli-
cated two times.

Definitions and basic equations

The D13C was calculated by Eq. 2:

D13C ¼ d13Cair � d13Cplant

1� d13Cplant

1;000

ð2Þ

where D13C is the carbon isotope discrimination by the
plant:

D13C ¼ aþ ðb� aÞ � Ci

Ca
ð3Þ

where a is the fractionation that occurs due to the dif-
fusion of air through stomata (4.4%) and b is the net
fractionation caused by carboxylation (mainly by RuBP
carboxylase, approximately 27%). Ci represents the
internal CO2 concentration, and Ca represents the
atmospheric CO2 concentration (in this paper, Ca was
375.5 lmol mol)1 CO2, which represents the monthly
average from January to December 2003 in Waliguan
Atmospheric Background Station of China Meteoro-
logical Administration).

Ci

Ca
¼ d13Cplant � d13Cair þ a

a� b
ð4Þ

WUE = Ca �
1� ðCi=CaÞ

1:6
ð5Þ

where WUE represents the water-use efficiency. Statis-
tical analysis was carried out using ANOVA and SPSS
software (10.0).

Results

Seasonal variations in foliar D and water use efficiency

There were significant differences in carbon isotope
discriminations (D) in the leaves of C. korshinskii only
from July to September (lower in the single-species
planting than in the mixed-species planting) (Fig. 2d).
However, the leaf D values for A. ordosica in the single-
species planting were significantly higher than those in
the mixed-species planting (P<0.001) throughout the
growing season (Fig. 2h). The seasonal patterns for C.
korshinskii in the single-species planting and for A.
ordosica in the two planting regimes were similar
(Fig. 2d, h). Foliar D of A. ordosica in single-species
planting and in mixed-species planting were significantly
higher than those of C. korshinskii in mixed-species
planting (P=0.002) and single-species planting
(P=0.038), respectively.

In C. korshinskii, WUE through d13C analysis was
higher in the single-species planting than in the mixed-

Table 3 Meteorological data from the Shapotou station during the 2004 growing season

1 April–12
May

13–27
May

28 May–29
June

30 June–27
July

28 July–27
August

28 August–22
September

MT (�C) 16.0 19.3 22.0 24.7 22.0 19.0
MMT (�C) 23.2 26.7 28.9 31.1 27.7 25.6
MLT (�C) 8.7 11.9 15.0 18.3 16.3 12.3
MST (�C) 19.7 24.7 26.8 28.7 26.1 23.0
P (mm) 1.5 2.9 25.5 26.4 48.7 2.1
RH (%) 24.2 28.9 41.0 44.3 64.0 46.7
WV (m s)1) 4.1 4.2 3.8 3.4 2.9 2.5

MT, MMT, MLT, and MST represent the mean temperature, mean maximum temperature, mean lowest temperature, and mean surface
temperature for each period, respectively. P, RH, andWV indicate precipitation, mean relative humidity, and mean wind velocity for each
period, respectively. From 1 April to 22 September the precipitation is 107.1 mm

Table 2 Physical and chemical
properties of the soil in the
study area

Soil depth
(cm)

Organic matter
(g kg)1)

Total nutrient
content (g kg)1)

Available nutrient
content (g kg)1)

pH

N P K N P K

0–5 1.16 0.09 0.32 20.0 12.8 3.7 140 8.22
>5 0.74 0.05 0.29 20.0 2.5 2.8 100 8.49
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species planting, whereas in A. ordosica, the WUE was
lower in the single-species planting than in the mixed-
species planting. Differences in WUE between A. ordo-
sica (99.10±10.20 lmol CO2 mol)1 H2O) and C. kor-
shinskii (111.37±7.68 lmol CO2 mol)1 H2O) were very
significant (P<0.001) (Table 4).

Seasonal variations in foliar nutrient concentrations

Foliar N concentrations in C. korshinskii did not differ
between planting regimes and the mean foliar N con-
centrations for the whole season were similar (Fig. 2a).
In contrast, foliar N concentrations in A. ordosica were
significantly higher in the mixed-species planting
(P<0.001). The difference between the two species was
strongly significant (P=0.007), with mean foliar N
concentrations 17.84% higher in C. korshinskii than in
A. ordosica for both planting regimes combined. There
was a significant effect of date for both species, with N
concentrations trending upward over the course of the
season in both planting regimes (Fig. 2a, e).

There were no significant differences in mean P con-
centrations over the course of the season between
planting regimes for either species (Fig. 2b, f). However,
the P concentration in A. ordosica in the mixed-species
planting was significantly greater from 28 May to the
end of the season (P=0.037; Fig. 2f). Seasonal varia-
tions in mean P concentration were only significant in
C. korshinskii. The mean foliar P concentration
in A. ordosica was significantly greater than that in
C. korshinskii (2.25 times).

The mean foliar K concentrations also differed sig-
nificantly between the species (P<0.001; Fig. 2c, g).
Mean foliar K concentrations in A. ordosica were 1.40
times the values in C. korshinskii. However, mean K
concentrations were not significantly different between
planting regimes for either species, though individual K
concentrations were significantly higher in both species
in the single-species planting at several points in the
season (Fig. 2c, g). Mean foliar K concentrations
showed no significant seasonal variation in either species
or planting regime, though individual concentrations in
A. ordosica tended to be significantly higher in the single-
species planting (Fig. 2g). Except for N concentration in
A. ordosica (P<0.001), there were no significant
month · planting regime interactions for any other
parameters.

Correlations between foliar D and N, P,
and K concentrations

In C. korshinskii, with data pooled across planting re-
gimes, D was significantly and positively correlated with
foliar N and P concentrations (P<0.001) but was not

significantly correlated with foliar K concentration
(Fig. 3). Furthermore, these relationships differed
among planting regimes. For example, the relationships
between foliar D and N concentrations were positive
with single-species planting (P=0.004) and mixed-spe-
cies planting (P<0.001), and the a regression coeffi-
cients, which represent the rate of increase per unit
increase (1&) in foliar D, clearly differed (values of 2.77
in the pooled data, 5.448 in the single-species data, and
2.926 in the mixed-species data; Fig. 3a). The relation-
ship between foliar D and P was significantly positive in
the mixed-species planting (P<0.001), but not in the
single-species planting (P=0.130; Fig. 3b).

In A. ordosica pooled across both planting regimes, a
strong and significant positive correlation existed be-
tween D and K (P<0.001; Fig. 4c). In contrast, strong
and weak negative relationships existed between D and
foliar P and N concentrations (P=0.032 and 0.056,
respectively; Fig. 4a, b). In addition, the relationships
between D and foliar K concentration were significantly
positive in both planting regimes (Fig. 4c). For the other
regressions, there was only a significant (positive) rela-
tionship between D and N concentration in the single-
species planting (P=0.001).

Discussion

Variations of foliar D and WUE

In arid and semi-arid regions, the growth of plants de-
pends strongly on soil and atmospheric water. Previous
studies have found positive correlations between D and
indices of water availability (Laundré 1999; Miller et al.
2001; Wang et al. 2001). The carbon isotope discrimi-
nation model suggested that decreased D by drought was
due to increased WUE through decreased stomatal and/
or mesophyll conductance. In the study, the foliar D of
both species differed between the two planting regimes,
and the foliar D of A. ordosica was higher in the single-
species planting, suggesting more severe water stress in
the mixed-species planting. This hypothesis is supported
by field investigation: in the single-species planting, few
young seedlings appeared, whereas in the mixed-species
planting plot, a few grown trees died during a drought in
May and June, suggesting that the single-species plant-
ing was more favorable for growth and regeneration of
A. ordosica. However, markedly higher D was found in
the leaves of C. korshinskii in the mixed-species planting
after June. These results showed that single-species
planting is favorable for the growth of A. ordosica, but
mixed-species planting is more favorable for C. kor-
shinskii. These results support those of Tang et al.
(2001), who found that the niche fitness of A. ordosica
was higher in single-species plantings whereas that of
C. korshinskii was lower in single-species plantings.
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Fig. 2 Foliar nitrogen (N), phosphorus (P), potassium (K) con-
centrations (g kg)1), carbon isotope discrimination (D, &) in
Artemisia ordosica and Caragana korshinskii leaves collected
monthly from May to September 2004. Figure 2a, b, c, and d for

C. korshinskii; Fig. 2e, f, g and h are for A. ordosica. Points within a
graph for a given data that are followed by different letters differed
significantly between two planting regimes during the same month
(P<0.05)
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Plant productivity is constrained by the availability of
soil water, and higher WUE is a key feature of plants
that are able to survive in arid and semi-arid regions
(Thumma et al. 1998). Farquhar et al. (1989b) suggested
that foliar D can be used to indicate the long-term WUE
of a species (Farquhar and Richards 1984). Much of this
work focuses on the relationship between D and WUE,
and results have typically shown that this relationship is
negative (Yan et al. 1998). In this study, long term
monitoring of tree WUE through d13C analysis (as de-
scribed by Cowan and Farquhar 1977) revealed signifi-
cantly (P<0.001) higher WUE in C. korshinskii than in
A. ordosica (Table 4). The investigations of Smith and
Nowak (1990) suggest that high WUE is associated with
increased drought tolerance and is thus found in trees
that grow in dry areas; this suggests that C. korshinskii
has greater drought tolerance than A. ordosica. This
result also accordance with the previous report that the
resistance to drought, high temperatures, and dehydra-
tion of C. korshinskii was greater than that of A. ordo-
sica (Shapotou Desert Research and Experiment Station
1991). Furthermore, the WUE values of C. korshinskii
and A. ordosica differed significantly as a function of
planting regime, suggesting that plant WUE was influ-
enced by planting regime. In mixed planting conditions,
the WUE of A. ordosica was higher than in single-
planting condition, one of main reason may be that
A. ordosica and C. korshinskii have different root system,
and C. korshinskii has strong competitive capacity for
limited water resources (Li et al. 2001). The WUE of
C. korshinskii in single-planting conditions was higher
than in mixed-planting conditions. This may be corre-
lated with that there was less soil evaporation due to
good canopy closure of A. ordosica (Wang et al. 2002).

Variations of foliar N, P and K concentrations

Significantly higher foliar N concentrations in C. kor-
shinskii showed that C. korshinskii is a leguminous shrub
and can fix nitrogen (Cadisch et al. 1994; Ledgard and
Steele 1992). Differences in foliar N concentration be-
tween mixed-species and single-species plantings were
not significant in C. korshinskii, suggesting that planting

regime had no effect on the foliar N concentration of the
species. However, in A. ordosica, the mean foliar N
concentration was 60.89% higher in the mixed-species
planting. One of main reason was that growing together
with C. korshinskii, A. ordosica can absorb more N
nutrient which is fixed by C. korshinskii (Shearer and
Kohl 1986; Niu and Jiang 2004). In a previous study,
foliar P and K significantly increased the osmotic
adjustment capacity and cell membrane stability of plant
(Turner 1986; Gnansiri and Hirohumi 1990), and under
drought conditions, P and K played a primary control
role in the accumulation of osmotic components (Xu
et al. 2002; Yang et al. 2003; Wang et al. 2004). In this
study, the mean foliar P and K concentrations
in A. ordosica were 2.25 and 1.40 times those of
C. korshinskii, respectively (Fig. 1b, f). In addition,
soluble sugar contents in A. ordosica were significantly
higher (2.21 times) than those of C. korshinskii under
different water conditions (Table 5) (Shapotou Desert
Research and Experiment Station 1991). Those results
suggested that A. ordosica had stronger osmotic adjust-
ment capacity than that of C. korshinskii. Furthermore,
there were no significant differences in foliar P
and K concentrations between single- and mixed-
species plantings in C. korshinskii. In contrast, the foliar
P concentration in the mixed-species planting of
A. ordosica was higher than in the single-species planting
except on 13 May and 28 July. This showed that under
drought conditions, A. ordosica is likely to absorb more
P and thereby improve its drought resistance, while the
foliar K concentrations in A. ordosica were significantly
higher in the single-species planting than in the mixed-
species planting, suggesting that the effect of planting
regime on K and P concentration was significant.

Correlations between D with foliar N, P
and K concentrations

Among various environmental factors, nutrient (partic-
ularly nitrogen) deficiencies (Sparks and Ehleringer
1997) can result in more negative d13C (higher D) by
reducing photosynthetic assimilation of intercellular
CO2 in leaves. Thus the negative relationship between

Table 4 The water-use efficiency (WUE) of C. korshinskii and A. ordosica calculated based on their foliar D

C. korshinskii WUE (lmol
CO2 mol)1 H2O)

A. ordosica WUE (lmol
CO2 mol)1 H2O)

Mean SD Mean SD

Pooled across both
planting regimes

111.37A 7.68 Pooled across both
planting regimes

99.10B 10.20

Single-species planting 114.57a 4.28 Single-species planting 90.11b 4.26
Mixed-species planting 108.17b 9.09 Mixed-species planting 108.09a 4.81
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foliar nutrient concentration and D can be found.
However, in the study, there were positive relationships
between foliar D and foliar N, P and K concentrations in
C. korshinskii in single- and mixed-species plantings, and
when both datasets were pooled. This result suggests
that absorption capacity of this species for nutrient
elements increased as water became more available due
to the positive relationship between water availability
(McNulty and Swank 1995; Damesin et al. 1997;
Laundré 1999; Miller et al. 2001), and indicated that
water conditions was one of a main factors that limited
the nutrient absorption capacity and the growth of

C. korshinskii, while nutrient deficiencies was not a main
factor (Choi et al. 2005). However, in A. ordosica, those
correlations were complex due to planting regimes. The
correlations between foliar K concentration and D in
A. ordosica were all positive and significant in the single-
and mixed-species plantings, as well as in the pooled
data for both planting regimes (Fig. 4c), suggesting that
the capacity to absorb K increases with improved water
conditions. However, there were no consistent correla-
tions between foliar D and N concentrations. But there
was significant negative relationship between foliar D
and P concentration when both datasets were pooled,

Fig. 3 Correlations between D and foliar N, P, and K concentra-
tions in C. korshinskii, and the corresponding linear regression
equations. CK-T, CK-S, and CK-M indicate the total (pooled) data
for both planting regimes, and the data for the single-species and
mixed-species plantings, respectively. The a regression coefficient
represents the slope of the linear regression, and thus represents the
change in N, P, and K concentrations per unit (1&) increase in
foliar D; r represents the correlation coefficient. The solid, long-
dash, and dash-dot lines correspond to the regressions for CK-T,
CK-S, and CK-M, respectively

Fig. 4 Correlations between D and foliar N, P, and K concentra-
tions in A. ordosica, and the corresponding linear regression
equations. AO-T, AO-S, and AO-M indicate the total (pooled) data
for both planting regimes, and the data for the single-species and
mixed-species plantings, respectively. The regression coefficient
represents the slope of the linear regression, and thus represents
the change in N, P, and K concentrations per unit (1&) increase in
foliar D; r represents the correlation coefficient. The solid, long-
dash, and dash-dot lines correspond to the regressions for AO-T,
AO-S, and AO-M, respectively
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suggesting that except the water conditions, the P
nutrition was another limited factor that affected the
growth of A. ordosica (Choi et al. 2005). In addition,
foliar N and K concentrations can be foliar D indicators
of C. korshinskii and A. ordosica, respectively.

In summary, the WUE (calculated from foliar D) of
C. korshinskii was significantly higher than that of

A ordosica. In A. ordosica, the P, K and soluble sugar
concentrations were significantly higher than that of C.
korshinskii, this results implied that A. ordosica with a
higher capacity for osmotic adjustment than that of C.
korshinskii. Therefore, those results suggested that A.
ordosica and C. korshinskii were desirable species for
stabilizing sand dunes and for the afforestation of de-
graded arid lands due to their different mechanism to
adapt dried conditions. The relationships between foliar
D and N, P and K concentrations implied that water was
a key factor limiting the growth of A. ordosica and C.
korshinskii. In addition, except water conditions, P
nutrition was also a limited factor that affected the
growth of A. ordosica.
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Table 5 Soluble sugar content (percentage of dry matter) of C.
korshinskii and A. ordosica under different water conditions

Percent of field water content (%)

20–40 40–60 60–80 80–100 Average

C. korshinskii 3.2 3.0 2.6 2.5 2.8±0.33a
A. ordosica 7.8 6.8 6.7 3.5 6.2±1.87b

Cited from Shapotou Desert Research and Experiment Station of
Lanzhou (1991). The different letter indicates significant difference
between two species plants (*P<0.05)
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Laundré JW (1999) Relationships between
water availability, carbon isotope dis-
crimination and plant productivity in
two semi-arid grass and shrub species.
J Arid Environ 41(1):49–60

Ledgard SF, Steele KW (1992) Biological
nitrogen fixation in mixed legume/grass
pastures. Plant Soil 141:137–153

293



Li ZZ, Shi WL, Tang HP, Wang XP (2001)
Studies on numerical simulation of
moisture niche-fitness procedure of arid
plants (in Chinese with English ab-
stract). J Desert Res 21(3):281–285

Li XR, Zhang ZS, Zhang JG, Wang XP, Jia
XH (2004) Association between vege-
tation patterns and soil properties in the
Southeastern Tengger Desert, China.
Arid Land Res Manage 18:1–15

Lin R, Lin YR (1991) Flora Reipublicae
Popularis Sinicae [M]. Science Press,
Beijing 76(2):195

Liu XH, Qin DH, Shao XM, Chen T, Ren
JW (2003) Climatic significance of sta-
ble carbon isotope in tree rings of Abies
spectabibis in southeastern Tibet. Chin
Sci Bull 48(18):2000–2004

McNulty SG, Swank WT (1995) Wood
d13C as a measure of annual basal area
growth and soil water stress in a Pinus
strobes forest. Ecology 76:1581–1586

Miller JM, Williams RJ Farquhar GD
(2001) Carbon isotope discrimination
by a sequence of Eucalyptus species
along a subcontinental rainfall gradient
in Australia. Funct Ecol 15:222–232

Monneveux P, Reynolds MP, Trethowan
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