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Abstract We derive a macroscopic model for single-
phase, incompressible, viscous fluid flow in a porous
medium with small cavities called vugs. We model the
vuggy medium on the microscopic scale using Stokes
equations within the vugular inclusions, Darcy’s law
within the porous rock, and a Beavers–Joseph–Saffman
boundary condition on the interface between the two
regions. We assume periodicity of the medium and
obtain uniform energy estimates independent of the
period. Through a two-scale homogenization limit as
the period tends to zero, we obtain a macroscopic
Darcy’s law governing the medium on larger scales.
We also develop some needed generalizations of the
two-scale convergence theory needed for our bimodal
medium, including a two-scale convergence result on
the Darcy–Stokes interface. The macroscopic Darcy
permeability is computable from the solution of a cell
problem. An analytic solution to this problem in a sim-
ple geometry suggests that: (1) flow along vug channels
is primarily Poiseuille with a small perturbation related
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to the Beavers–Joseph slip, and (2) flow that alternates
from vug to matrix behaves as if the vugs have infinite
permeability.

Keywords Beavers–Joseph boundary condition ·

Darcy–Stokes system · Homogenization · two-scale
convergence · vuggy porous media

1. Introduction

A vug is a cavity in a porous medium that is relatively
larger than the intergranular pore space. Vugular inclu-
sions are especially common in carbonate rocks and are
endemic to many of the world’s groundwater aquifers
and petroleum reservoirs. Although small, vugs can
significantly increase both the effective porosity and
permeability of the medium. We consider in this pa-
per a porous medium with many small vugs scattered
throughout its extent.

It is well established, both empirically and theoret-
ically, that Darcy’s law governs fluid flow in a porous
medium on scales above the pore diameter [6, 23, 27,
29]. Since the flow is expected to have a relatively low
Reynolds number, the Stokes equations should ade-
quately model fluid flow in the vugs.

In 1967, Beavers and Joseph [7] determined exper-
imentally that a free fluid in contact with a porous
medium flows faster than a fluid in contact with a com-
pletely solid surface. Although thin boundary layers
arise in both cases, the latter case is generally modeled
by assuming that all components of the velocity vanish
at the solid contact surface. In the former case, the
experiments of Beavers and Joseph demonstrate that
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the tangential velocity of the fluid cannot vanish. They
proposed to account for this slippage by imposing a
boundary condition of the form

∂Us

∂y
=

α
√

K
(Us − Ud) ,

where ∂/∂y is the normal derivative, Us is the tangential
component of the Stokes velocity, Ud is the tangential
component of the Darcy velocity, K is the permeabil-
ity of the porous medium, and α is the dimensionless
Beavers–Joseph slippage coefficient. Saffman [24] jus-
tified this law theoretically and showed that the term
involving Ud could be dropped (see also [15, 16]). Jones
[18] reinterpreted this law so that it applies to curved
boundaries and nontangential flows by formulating the
boundary condition in terms of the tangential compo-
nent of the fluid stress tensor [see equation (1.6) below].

We model the vuggy medium on the fine scale using
Stokes equations in the vugs, Darcy’s law in the porous
rock, and the Beavers–Joseph–Saffman boundary con-
dition on the interface between the two. We assume pe-
riodicity of the medium and obtain as our homogenized
limit a macroscopic Darcy’s law governing the system
over large scales. To illustrate the ideas, we first derive
this macroscopic model formally in section 2, and then
we derive it rigorously by the two-scale convergence
method [1, 4, 14, 22] in section 5. In section 3, we
obtain the existence, uniqueness, and energy estimate
results needed in the analysis. In section 4, we develop
the needed generalizations of the two-scale conver-
gence theory needed for our bimodal medium. The
convergence of the homogenization is demonstrated in
section 5. The final section presents a simple analytical
solution to illustrate the results.

Although our results would extend easily to R3, for
ease of presentation, we assume that the domain � is
Lipschitz and bounded in R2. We assume that the geo-
metric vug and pore structure of � is periodic of period
εY, where Y is a reference cell for the periodic tiling of
unit volume |Y|. The portion of the domain consisting
of the vugs is denoted �εs , and that consisting of the
porous rock is �εd. Let 0ε be the interface between the
two regions. Let ηs be the outer unit normal to ∂�s , and
let τ be a unit tangent to 0ε .

Let D be the symmetric gradient, i.e., D(ψ) is the ma-

trix
1

2

(
∂ψi

∂x j
+
∂ψ j

∂xi

)
. Denote by µ > 0 the fluid viscos-

ity, Kε
= K(x/ε) the Y-periodic, bounded, symmetric,

and uniformly positive-definite permeability tensor of
the porous rock matrix, and α > 0 the Beavers–Joseph
slip coefficient. The fluid velocity and pressure in the
Stokes and Darcy regions are denoted uεs , pεs and uεd, pεd,
respectively. These satisfy the following set of equations

[wherein q ∈ L2(�) is an external source or sink satis-
fying the compatibility condition that its average over
� vanishes, and f ∈

(
L2(�)

)2 is a term related to body
forces such as gravitation]:

Vugular region (Stokes equations)

− 2µε2
∇ · Duεs + ∇ pεs = f in �εs , (1.1)

∇ · uεs = q in �εs , (1.2)

Rock matrix (Darcy equations)

µ(Kε)−1uεd + ∇ pεd = f in �εd, (1.3)

∇ · uεd = q in �εd, (1.4)

Interface

uεs · ηs = uεd · ηs on 0ε, (1.5)

2ηs · Duεs · τ = −
α

ε
√

Kε
uεs · τ on 0ε, (1.6)

2µε2ηs · Duεs · ηs = pεs − pεd on 0ε, (1.7)

Outer boundary

uεs = 0 on ∂� ∩ ∂�εs , (1.8)

uεd · η = 0 on ∂� ∩ ∂�εd. (1.9)

The interface conditions represent continuity of mass
flux (1.5), the Beavers–Joseph–Saffman condition on
the tangential stress (1.6), and the continuity of normal
stress (1.7). Examples of direct numerical simulation of
these equations in a nonvuggy context (i.e., in a medium
with at most a few very large vugs) can be found in,
for example, [13, 19, 25]. In a vuggy context, see, for
example, [3].

The homogenization problem is to determine the
behavior of the system as ε → 0. Note that in the
equations, we have scaled both the viscosity µ and
the permeability Kε by ε2. This is the usual scaling
for deriving Darcy’s law from Stokes flow (see [27]),
since as ε → 0, flow paths (in our case vugs) become
constricted, so a corresponding decrease in viscosity is
required to maintain flow rates. Moreover, when ho-
mogenizing heterogeneity (see, e.g., [8, 26]), the ratio of
permeability to viscosity should be fixed, forcing a sim-
ilar scaling of the permeability. These considerations
then imply the stated scaling of the Beavers–Joseph
boundary condition.

Below we will need to distinguish the geometry of
the reference cell Y, so let Ys denote the Stokes region,
Yd the Darcy region, and 0 the interface between the
two. We assume that both Ys and Yd have positive
measure, and thus also the one-dimensional measure of
0 is positive. As usual, x will represent a point in � and
y a point in Y. In the sequel, let ‖ · ‖ω and (·, ·)ω denote
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the L2(ω) norm and inner product, respectively, where
we omit the domain ω if it is �.

2. Formal homogenization

We proceed to formally homogenize our system of
equations in the usual manner [8, 14, 17, 26]. We make
the ansatz that we can expand uε` and pε` (for ` = s,d)
as

uε` =

∞∑
j=0

ε j u`, j

(
x,

x
ε

)
and pε` =

∞∑
j=0

ε j p`, j

(
x,

x
ε

)
,

where u`, j (x, y) and p`, j (x, y) are Y-periodic functions
in y.

Substituting the above expressions into our system
of equations (1)–(1.7), and recognizing that ∇ = ∇x +

ε−1
∇y, we obtain the following equations. From the ε−1

terms of (1.1) and (1.3), and the ε0 terms of (1.7), we see
that

∇y p0
s = 0 in �× Ys, (2.1)

∇y p0
d = 0 in �× Yd, (2.2)

p0
s − p0

d = 0 on �× 0. (2.3)

It follows immediately that p0
s and p0

d are independent
of y and equal, so let

p0(x) = p0
s (x) = p0

d(x) on � .

Now the ε0 terms of (1.1), (1.3), and (1.5), the ε−1

terms of (1.2), (1.4), and (1.6), and the ε1 terms of (1.7)
imply

−2µ∇y · Dyu0
s + ∇x p0(x)+ ∇y p1

s (x, y) = f in �× Ys,

∇y · u0
s = 0 in �× Ys,

µK(y)−1u0
d + ∇x p0(x)+ ∇y p1

d(x, y) = f in �× Yd,

∇y · u0
d = 0 in �× Yd,

u0
s · ηs = u0

d · ηs on �× 0,

2ηs · Dyu0
s · τ = −

α
√

K(y)
u0

s · τ on �× 0,

2µηs · Dyu0
s · ηs = p1

s − p1
d on �× 0.

With e j being the standard Cartesian basis vector in the
jth direction, let (ω j ,8 j ) be the periodic solution of the
following auxiliary or cell problem

− 2∇ · Dωs
j + ∇8s

j = e j in Ys, (2.4)

∇ · ωs
j = 0 in Ys, (2.5)

K−1ωd
j + ∇8d

j = e j in Yd, (2.6)

∇ · ωd
j = 0 in Yd, (2.7)

ωs
j · ηs = ωd

j · ηs on 0, (2.8)

2ηs · Dωs
j · τ = −

α
√

K
ωs

j · τ on 0, (2.9)

2ηs · Dωs
j · ηs = 8s

j −8d
j on 0. (2.10)

Then by linear algebra, we can express u0
s and u0

d as

u0
`(x, y)=

1

µ

∑
j

(
f j (x)−

∂p0

∂x j
(x)

)
ω`j (y), `= s,d. (2.11)

Define the averaging operator v̄` by averaging v` in
the following sense

v̄` =
1

|Y|

∫
Ỳ
v`(y)dy , (2.12)

so that

ū0(x) = ū0
s (x)+ ū0

d(x)

=
1

µ

∑
j

(
f j (x)− ∂ j p0(x)

) (
ω̄s

j + ω̄d
j

)
.

Now let the matrix K̃ be defined by

K̃i, j = ω̄s
j,i + ω̄d

j,i

=
1

|Y|

( ∫
Yd

(
ωd

j

)
i

dy +

∫
Ys

(
ωs

j

)
i

dy
)
. (2.13)

Then we see that

µK̃−1ū0 + ∇ p0
= f in � . (2.14)

Finally, using the ε0 terms of (1.2) and (1.4), we
obtain

∇x · u0
` + ∇y · u1

` = q in �× Ys , ` = s,d ,

so that if we again average over Y and sum, we obtain

∇ · ū0 +
1

|Y|

∫
Ys

∇y · u1
s dy +

1

|Y|

∫
Yd

∇y · u1
d dy

= ∇ · ū0 +
1

|Y|

∫
∂Ys

u1
s · ηs dS +

1

|Y|

∫
∂Yd

u1
d · ηd dS

= q .
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By the periodicity of u1
` in y, and the fact that u1

s · ηs =

−u1
d · ηd on 0, we see that

∇ · ū0 = q on � (2.15)

Thus, we conclude from the formal analysis that ū0

should satisfy a Darcy’s law on all of� (2.14) and (2.15),
with effective permeability matrix K̃, independent of
the fluid viscosity and given by (2.13).

Lemma 2.1. The tensor K̃, as defined by (2.13) and
(2.4)–(2.10), is symmetric and positive definite.

Proof. The existence and uniqueness of a weak so-
lution to (2.4)–(2.10) follow from an analysis simi-
lar to that given below for Theorem 3.1. Note that
(2.4)–(2.10) are equivalent to the variational equation

2 (Dωs
i , Dψ)Ys +

(
α

√
K
ωs

i · τ, ψ · τ

)
0

+

(
K−1ωd

i , ψ
)

Yd
= (ei , ψ)Y , (2.16)

for ψ an infinitely differentiable and periodic vector
function in Y such that ∇ · ψ = 0. With ψ = ωs

j on Ys

and ψ = ωd
j on Yd (actually a sequence approaching the

same), we obtain that

|Y| K̃i, j =

(
ei , ω

s
j

)
Ys

+

(
ei , ω

d
j

)
Yd

= 2
(

Dωs
i , Dωs

j

)
Ys

+

(
α

√
K
ωs

i · τ, ωs
j · τ

)
0

+

(
K−1ωd

i , ω
d
j

)
Yd
,

and symmetry follows immediately.
To show that K̃ is positive definite, take any λ ∈ R2

and define

ξ `(y) =

∑
i

λiω
`
i for y ∈ Ỳ .

Then, from (2.16), we conclude that

|Y| λT K̃λ = 2(Dξ s, Dξ s)Ys +

(
α

√
K
ξ s

· τ, ξ s
· τ

)
0

+
(
K−1ξd, ξd

)
Yd
,

and that K̃ is positive semi-definite. To see definiteness,
suppose that λT K̃λ = 0 and conclude that each inte-
grand above vanishes. But now (2.16) implies that

0 = 2(Dξ s, Dψ)Ys +

(
α

√
K
ξ s

· τ, ψ · τ

)
0

+
(
K−1ξd, ψ

)
Yd

= (λ, ψ)Y .

Since λ is constant, we can take ψ = λ and conclude
that λ = 0 and, further, that K̃ is positive definite. �

3. Existence and a priori energy estimates

In this section, we prove a theorem that gives existence
of solutions uε and pε to (1.1)–(1.9) for each ε and
energy estimates for uε and pε independent of ε. Let

Vε
= Vε(�) =

{
v ∈ H(div, �) | vs = v|�εs ∈ H1(�εs )

}
,

Vε
0 = Vε

0 (�) =
{
v ∈ Vε(�) | v · η = 0 on

∂� ∩ ∂�εd and v = 0 on ∂� ∩ ∂�εs
}
,

where η is the outward unit normal to �, and let W =

L2(�)/R .
We first recast the original problems (1.1)–(1.9) into

a variational problem. Combine equations (1.2) and
(1.4), multiply by a test function w ∈ W, and integrate
over�. Then combine and multiply equations (1.1) and
(1.3) by a test function v ∈ Vε , integrate, integrate by
parts, and manipulate the boundary terms to obtain the
variational form of the system for uε ∈ Vε

0 and pε ∈ W
satisfying

2µε2 (
Duεs , Dv

)
�εs

+

(
εµα
√

Kε
uεs · τ, vs · τ

)
0ε

−
(

pε,∇ · v
)
�

+ µ
(
(Kε)−1uεd, v

)
�εd

= ( f, v)� , v ∈ Vε
0 , (3.1)(

∇ · uε, w
)
�

= (q, w)� , w ∈ W, (3.2)

where uεd = u|�εd
and uεs · ηs = uεd · ηs on 0ε is implicit

from uε ∈ Vε
0 .

Theorem 3.1. For each ε, there exists (uε, pε) ∈ Vε
0 × W

satisfying (1.1)–(1.9) weakly, i.e., (3.1) and (3.2), such
that

ε‖∇uεs‖�εs +
√
ε‖uεs · τ‖0ε + ‖uε‖

+ ‖∇ · uε‖ + ‖pε‖ ≤ C (‖ f ‖ + ‖q‖) (3.3)

with C independent of ε.

In order to prove this result, we first prove a lemma
related to Korn’s inequality.

Lemma 3.2. There exists C independent of ε such that
for all v ∈ Vε

0 (�),

‖vs‖�εs + ε‖∇vs‖�εs ≤ C
(
ε‖Dvs‖�εs

+
√
ε‖vs · τ‖0ε + ‖vd‖�εd

+ ε‖∇ · v‖
)
.
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If �d is not empty, the above inequality holds for v ∈

Vε(�).

Proof. First we show that a similar result holds for v̂ ∈

V(Y ) = {v ∈ H(div,Y ) | vs = v|Ys ∈ H1(Ys)}, and then
we use a translation and scaling argument to pass to all
of �. Suppose it is not true that there exists Ĉ such that

‖v̂s‖Ys + ‖∇v̂s‖Ys ≤ Ĉ
(
‖Dv̂s‖Ys

+ ‖v̂s · τ‖0 + ‖v̂d‖Yd + ‖∇ · v̂‖Y
)
. (3.4)

Then there exists a sequence {v̂n}
∞

n=1 ∈ V(Y ) such that

‖v̂n,s‖Ys + ‖∇v̂n,s‖Ys = 1 (3.5)

and

‖Dv̂n,s‖Ys + ‖v̂n,s · τ‖0

+ ‖v̂n,d‖Yd + ‖∇ · v̂n‖Y ≤
1

n
. (3.6)

The last two terms on the left-hand side above tell
us that v̂n,d → 0 in H(div,Yd), and (3.5) implies that
v̂n,s ⇀ v̂s weakly in H1(Ys) for some v̂s . Let v̂ be the
extension by zero of v̂s to Y. Since v̂n is bounded in
H(div,Y ), it converges weakly, and we conclude that
in fact

v̂n ⇀ v̂ in H(div,Y ).

Since

‖v̂n,d · η‖
(H1/2

00 (0))
∗

≤ C‖v̂n,d‖H(div,Yd) → 0 ,

where the norm on the left-hand side is the norm of the
dual space of H1/2

00 (0) (see [20]), we conclude that v̂d ·

η = v̂s · η = 0 on 0. On the other hand, ‖v̂n,s · τ‖0 →

0, so that v̂s · τ = 0 and further that v̂s = 0 on 0. Now
Korn’s inequality can be applied on Ys to show that

‖v̂n,s‖Ys + ‖∇v̂n,s‖Ys ≤ C‖Dv̂n,s‖Ys .

But the left-hand side is 1 by (3.5), and the right-hand
side tends to 0 by (3.6), contradicting the assumption
that the inequality (3.4) fails to hold. Now we have
inequality (3.4) for any v̂ ∈ V(Y ), wherein Ĉ does not
depend on ε.

We remark that we also have the inequality for
functions defined only on an open subset Yp ⊂ Y, as
long as Yp ∩ Yd is not empty. When Yp ⊂ Ys , we can
obtain the same inequality provided that we have the
boundary condition v̂ = 0 on some positive measure
subset of ∂Yp.

By the structure of �, we can write it as � =

⋃
i∈I
εY i ,

where εY i
=

(
ε(Y + Eni )

)
∩�, Eni is some vector whose

components are integers, and I is some appropriate
index set. Let v ∈ Vε

0 (�) and define for y ∈ Y, v̂i (y) =

v(ε(y + Eni )) ∈ V(Y ). By our remark above, if ∂� inter-
sects the interior of a cell (i.e., � is not tiled exactly by
scaled translates of Y ), the inequality (3.4) still holds on
that truncated cell since v ∈ Vε

0 . Thus, inequality (3.4)
holds on each Y i , so

‖v̂i
s‖Y i

s
+ ‖∇v̂i

s‖Y i
s

≤ Ĉ
(
‖Dv̂i

s‖Y i
s

+ ‖v̂i
s · τ‖0i + ‖v̂i

d‖Y i
d

+ ‖∇ · v̂i
‖Y i

)
,

and if we sum over all i and make the change of var-
iables x = ε(y + Eni ) on each Y i , we obtain

ε−1
‖vs‖�εs + ‖∇vs‖�εs ≤ C

(
‖Dvs‖�εs

+ ε−1/2
‖vs · τ‖0ε + ε−1

‖vd‖�εd
+ ‖∇ · v‖

)
which gives the desired result v ∈ Vε

0 .
For v ∈ Vε , as long as�d is not empty, we can adjoin

any truncated cell to an entire cell lying beside it (at
least for ε small). Since there will be a portion of 0
within this new composite cell, we have the inequal-
ity (3.4) on the composite cell regardless of the outer
boundary conditions. Hence, if �d is not empty, the
theorem holds also for all v ∈ Vε . �

Proof. Proof of Theorem 3.1. The theorem follows
from the inf–sup theory of saddle point problems [5,
10–12]. For u, v ∈ Vε

0 (�) and w ∈ W, we have the bi-
linear forms

aε(u, v) = 2µε2(Dus, Dv)�εs +

(
εµα
√

Kε
us · τ, vs · τ

)
0ε

+(µ(Kε)−1ud, v)�εd ,

b(v,w) = (w,∇ · v)� .

Then (3.1) and (3.2) can be rewritten as follows: find
(uε, pε) ∈ Vε

0 × W such that

aε(uε, v)− b(v, pε) = ( f, v), v ∈ Vε
0 , (3.7)

b(uε, w) = (q, w), w ∈ W. (3.8)

We endow Vε
0 (�) with the norm

|||u|||ε = (‖u‖
2
+ ‖∇ · u‖

2
+ ε2

‖∇us‖
2
�εs
)1/2 ,

for which it is complete. We claim that(
εµα
√

Kε
us · τ, vs · τ

)
0ε

≤ Cε‖us · τ‖0ε‖vs · τ‖0ε

≤ C|||u|||ε |||v|||ε , (3.9)
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so that both aε and b are bounded (i.e., continuous) with
constants independent of ε. To see the claim, compute

ε‖us · τ‖2
0ε = ε

∑
i∈I

‖us · τ‖2
ε0i

= ε
∑
i∈I

ε‖ûs · τ̂‖2
0i

≤ ε2
∑
i∈I

Ĉ‖û‖Y i
s
‖û‖H1(Y i

s )

≤ Ĉε
∑
i∈I

‖u‖εY i
s
‖u‖H1(εY i

s )

≤
Ĉ
2

∑
i∈I

[
‖u‖

2
εY i

s
+ ε2

‖u‖
2
H1(εY i

s )

]
=

Ĉ
2

[
‖u‖

2
�εs

+ ε2
‖u‖

2
H1(�εs )

]
≤ C|||u|||

2
ε . (3.10)

Moreover, aε is coercive on Vε
0 ∩ {v ∈ Vε

0 : ∇ · v = 0} by
Lemma 3.2, with bound independent of ε.

It remains to show the inf–sup condition, but this
follows from the corresponding condition known for the
Stokes system on �; that is,

inf
w∈W

sup
v∈Vε

0

(∇ · v,w)

|||v|||ε‖w‖
≥ inf
w∈W

sup
v∈(H1

0)
2

(∇ · v,w)

|||v|||ε‖w‖

≥ inf
w∈W

sup
v∈(H1

0)
2

(∇ · v,w)

2‖v‖(H1(�))2‖w‖

≥ γ > 0 ,

for some γ independent of ε, since (H1
0)

2
⊂ Vε

0 and
2‖v‖(H1(�))2 ≥ |||v|||ε .

Now the inf–sup theory provides the existence and
uniqueness of a solution to our systems (3.7) and (3.8)
[12]. Moreover,

|||uε |||ε + ‖pε‖ ≤ C(‖ f ‖ + ‖q‖), (3.11)

where C depends on γ , the coercivity bound for aε ,
and the continuity bounds for aε and b, each of which
is independent of ε. Finally, (3.10) and (3.11) imply
(3.3). �

4. Two-scale convergence results for bimodal media

In this section, we make note of some slight extensions
of the two-scale convergence results of Allaire [1, 14].
Lemmas 4.1 and 4.4 can be deduced easily from the
proof of Theorem 2.7 in [1]. We include the following
statements and proofs for clarity and completeness. We
first recall that D(�; C∞

# (Y )) is the set of infinitely

differentiable functions in �× Y that have compact
support in � and are periodic in Y, and we recall the
following definition.

Definition 4.1. If {uε}ε ⊂ L2(�) and u0(x, y) ∈ L2(�×

Y ) are such that

lim
ε→0

∫
�

uε(x) φ(x, x/ε)dx

=
1

|Y|

∫
�

∫
Y

u0(x, y) φ(x, y)dy dx

for any function φ ∈ D(�; C∞
# (Y )), then {uε}ε is said to

two-scale converge in �× Y to u0(x, y), and we write
this as

uε ⇀⇀ u0 in �× Y as ε → 0 .

Lemma 4.1. Let ` = s or d and χ ε` be the character-
istic function on �ε`. If uε is such that ‖uε‖ ≤ C for
some constant C independent of ε, then a subsequence
of χ ε` uε two-scale converges to some ψ`0 ∈ L2(�× Y)
such that supp(ψ`0 ) ⊂ �× Ȳ̀ . Moreover, if uε two-scale
converges to u0 ∈ L2(�× Y ), then χ ε` uε ⇀⇀ u0|�×Ỳ in
�× Ỳ .

Proof. Because ‖χ ε` uε‖ ≤ ‖uε‖ ≤ C, a subsequence of
χ ε` uε two-scale converges to some ψ`0 ∈ L2(�× Y ) [1].
Take a test function φ ∈ D(�; C∞

# (Y )) supported in
�× Yk where k 6= `. Then φε(x) = φ(x, x/ε) is sup-
ported in �εk and

0 = lim
ε→0

∫
�

χ ε` uεφε dx

=
1

|Y|

∫
�

∫
Y
ψ`0φ dy dx

=
1

|Y|

∫
�

∫
Yk

ψ`0φ dy dx.

This holds for all such φ, so ψ`0 = 0 on �× Yk.
Now, take a test function φ ∈ D(�; C∞

# (Y )) with
support in �× Ỳ . Then∫
�

χ ε` uεφε dx =

∫
�

uεφε dx ,

so, taking the limit as ε → 0,

1

|Y|

∫
�

∫
Ỳ
ψ`0φ dy dx =

1

|Y|

∫
�

∫
Y

u0φ dy dx .

An application of Lusin’s theorem completes the
lemma. �

Lemma 4.1 allows us to make the following definition
and gives the following corollary. Note that a function
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in D(�; C∞
# (Ỳ )) is considered to be only Y-periodic in

y, with no condition imposed on 0.

Definition 4.2. If ` = s or d and {uε`}ε ⊂ L2(�ε`) is such
that, for any function φ(x, y) in D(�; C∞

# (Ỳ )),

lim
ε→0

∫
�ε`

uε`(x) φ(x, x/ε)dx

=
1

|Y|

∫
�

∫
Ỳ

u0(x, y) φ(x, y)dy dx

for some u0(x, y) in L2(�× Ỳ ), then {uε`}ε is said to
two-scale converge in �× Ỳ to u0(x, y) as ε → 0.

Corollary 4.2. If uε` ∈ L2(�ε`) and there exists C > 0
such that ‖uε`‖�ε` ≤ C for all ε > 0, then there exists
a subsequence that two-scale converges in �× Ỳ to
u0 ∈ L2(�× Ỳ ).

The following lemma is immediate and illuminates
the connection between weak and two-scale conver-
gence.

Lemma 4.3. If {uε`}ε two-scale converges to u0(x, y) in
�× Ỳ , and ûε` denotes the extension of uε` by zero to

�, then ûε` converges weakly to
1

|Y|

∫
Ỳ

u0(x, y)dy in

L2(�).

The next results will be needed to prove our homoge-
nization result. As usual, H1

#(Y ) denotes the Y-periodic
functions in H1(Y ).

Lemma 4.4. Fix ` = s or d.

(a) If ‖uε`‖�ε` ≤ C and ‖ε∇uε`‖�ε` ≤ C for some con-

stant C, then there exists u0,` ∈
(
L2(�; H1

# (Ỳ ))
)2

such that some subsequence of {uε`}ε two-scale
converges in �× Ỳ to u0,` and {ε∇uε`}ε two-scale
converges in �× Ỳ to ∇yu0,`.

(b) If ‖uε`‖�ε` ≤ C and ‖∇ · uε`‖�ε` ≤ C for some con-
stant C, then there exists u0,` ∈

(
L2(�; H (div,

Ỳ )))2 such that some subsequence of {uε`}ε two-
scale converges in �× Ỳ to u0,` and {∇ · uε`}ε ,
extended to� by zero, converges weakly in L2(�)

to
1

|Y|

∫
Ỳ

∇x · u0,` dy. Moreover, ∇y · u0,` = 0.

Proof. For result (a), by Corollary 4.2, we have for
some subsequence both

uε` ⇀⇀ u0,` in �× Ỳ ,

ε∇uε` ⇀⇀ ψ0,` in �× Ỳ .

Let φ ∈
(
D(�; C∞

# (Ỳ ))
)2 be such that φ|�×0 = 0, and

let φε(x) = φ(x, x/ε). Compute

(ε∇uε`, φ
ε)�ε`

= −(uε`, ε∇x · φε + ∇y · φε)�ε`
,

so that as ε → 0,

(ψ0,`, φ)�×Ỳ = −(u0,`,∇y · φ)�×Ỳ

= (∇yu0,`, φ)�×Ỳ − (u0,` · η, φ)�×(∂Ỳ \0).

With φ|�×∂Ỳ = 0, we conclude that ψ0,` = ∇yu0,`.
Then we further conclude that u0,` is periodic in y ∈ Ỳ ,
i.e., that u0,` ∈

(
L2(�; H1

# (Ỳ ))
)2.

For (b), Corollary 4.2 gives us two-scale convergence
of uε` to u0,`, and then weak convergence of ∇ · uε` to

1

|Y|

∫
Ỳ

∇x · u0,` dy follows easily. To obtain ∇y · u0,` =

0, note that for φ ∈ D(�; C∞

0 (Y )),∫
�ε`

∇ · uε` φ
ε dx = −

∫
�ε`

uε` ·

(
∇xφ

ε
+ ε−1

∇yφ
ε
)

dx ,

By Corollary 4.2, the left-hand side and the first term
on the right-hand side both converge as ε → 0. Thus,
we obtain

lim
ε→0

∫
�ε`

uε` · ∇yφ dx = 0 ,

which implies that ∇y · u0,` = 0. �

Lemma 4.5. If uεs is such that ‖uεs‖�εs and ‖ε∇uεs‖�εs
are bounded independent of ε and 0ε is a smooth
submanifold of �ε , then for φ ∈ (D(�; C∞

# (Ys)))
2,

lim
ε→0

ε(uεs · τ, φ · τ)0ε = |Y|
−1(u0,s · τ, φ · τ)�×0,

where u0,s is the two-scale limit of uεs in �× Ys .
Moreover,

lim
ε→0

ε(uεs · ηs, φ · ηs)0ε = |Y|
−1(u0,s · ηs, φ · ηs)�×0 .

Proof. Let 8∈(D(�; C∞
# (Ys)))

2×2 and 8ε(x)=8(x,
x/ε). Then

(ε∇uεs ,8
ε)�εs = −ε(uεs ,∇x ·8ε)�εs

−(uεs ,∇y ·8ε)�εs + ε(uεs ,8
ε
· ηs)0ε .

Taking the limit of both sides as ε → 0, we obtain from
Lemma 4.4

|Y|
−1(∇yu0,s,8)�×Ys = −|Y|

−1(u0,s,∇y ·8)�×Ys

+ lim
ε→0

ε(uεs ,8
ε
· ηs)0ε .

This implies that

|Y|
−1(u0,s,8 · ηs)�×0 = lim

ε→0
ε(uεs ,8

ε
· ηs)0ε . (4.1)
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Since 0 is smooth, the tubular neighborhood the-
orem from topology allows us to extend the normal
vector field ηs on 0 to a smooth vector field N̂(y) on
Y. If we do this locally, and patch the results together
using a partition of unity argument, we can obtain
smooth vector fields after periodic extension. We can
then define Nε and Tε on all of � by setting Nε(x) =

N(x/ε) = N̂(y) and Tε(x) = T(x/ε) = T̂(y).
Now take 8 = Tε(φ · Tε)(Nε)T in (4.1), where φ ∈

(D(�; C∞
# (Ys)))

2. This yields the first result. Replacing
Tε with Nε gives the second result. �

In fact, the following more general definition makes
sense and was previously stated in [2, 9, 21].

Definition 4.3. If ` = s or d and {uε`}ε ⊂ L2(0ε) is such
that, for any function φ(x, y) in D(�; C∞

# (0)) which is
Y-periodic in y,

lim
ε→0

∫
0ε

uε`(x) φ(x, x/ε)dx

=
1

|Y|

∫
�

∫
0

u0(x, y) φ(x, y)dS dx

for some u0(x, y) in L2(�× 0), then {uε`}ε is said to two-
scale converge on �× 0 to u0(x, y) as ε → 0.

5. Proof of the homogenization result

We now prove rigorously the homogenization results
obtained formally in section 2. In the first theorem,
we obtain only weak convergence in H(div, �)× W
to the solution of the homogenized problem. In the
second theorem, we show that, in fact, we have strong
convergence of (uε, pε) in L2(�)× W.

Theorem 5.1. There exists (u, p) ∈ H(div, �)× W such
that the velocity uε converges weakly to u in H(div, �),
pε converges weakly to p in W, and (u, p) is the unique
solution to the homogenized Darcy problem

µK̃−1u + ∇ p = f in �, (5.1)

∇ · u = q in �, (5.2)

u · η = 0 on ∂�, (5.3)

where the tensor K̃ is defined by (2.4)–(2.10) and (2.13).

Proof. By our energy estimates in Theorem 3.1 and the
two-scale convergence results of [1, 14], Corollary 4.2,
and Lemma 4.4, for ` = s,d, there exists p0(x, y) ∈

L2(�× Y) and u0(x, y) ∈ L2(�× Y) such that the fol-
lowing two-scale convergences hold:

pε ⇀⇀ p0 in �× Y, (5.4)

uε ⇀⇀ u0 in �× Y, (5.5)

uε` ⇀⇀ u0,` in �× Ỳ , (5.6)

ε∇uεs ⇀⇀ ∇yu0,s in �× Ys . (5.7)

Moreover, u0,s ∈
(
L2(�; H1

# (Ys))
)2,

∇ · uε = q , (5.8)

and

∇y · u0(x, y) = 0 . (5.9)

Let9(x, y) ∈ C∞

0 (�× Y) be Y-periodic. Take v(x) =

ε9(x, x/ε) in the variational problem (3.1), so that(
pε,∇y ·9

)
+ O(ε) = 0 .

As ε → 0, we obtain(
p0,∇y ·9

)
�×Y = 0 .

This implies that ∇y p0 = 0, so that p0(x, y) = p0(x)
only.

Next, take9 ∈ (D(�; C∞
# (Y )))

2 with ∇y ·9 = 0, and
let v(x) = 9(x, x/ε) in the variational equation (3.1), so
that

2µε2 (
Duεs , D9ε

)
�εs

+

(
εµα
√

Kε
uεs · τ,9ε · τ

)
0ε

+

(
µ(Kε)−1uεd, 9

ε
)
�εd

−
(

pε,∇x ·9ε
)

= ( f, 9ε).

Using Lemma 4.5, passing to the two-scale limit gives

2µ (Dyu0,s, Dy9)�×Ys +

(
µα
√

K
u0,s · τ,9 · τ

)
�×0

+(µK−1u0,d, 9)�×Yd

−(p0,∇x ·9)�×Y = ( f, 9)�×Y.

Integrating by parts and collecting terms, we obtain

(−2µ∇y · Dyu0,s + ∇x p0 − f, 9)�×Ys

+(µK−1u0,d + ∇x p0 − f, 9)�×Yd

+

(
µα
√

K
u0,s · τ + 2µτ · Dyu0,s · ηs, 9 · τ

)
�×0

+(2µηs · Dyu0,s · ηs, 9 · ηs)�×0 = 0 . (5.10)

It is a well-known result that if (8,9)�×Y = 0, with
∇y ·9 = 0 and 9 ∈ D(�; C∞

0 (Y ))
2, then 8 = ∇yψ for

some ψ ∈ L2(�; H1(Y )) [28]. Restrict to 9 ∈ (D(�;

C∞

0 (Ys)))
2 to obtain

(−2µ∇y · Dyu0,s + ∇x p0 − f, 9)�×Ys = 0 .
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Thus, there exists p1,s(x, y) ∈ L2(�; H1(Ys)) such that
in �× Ys ,

− 2µ∇y · Dyu0,s + ∇x p0 − f = −∇y p1,s .

Likewise, we obtain p1,d(x, y) ∈ L2(�; H1(Yd)) such
that in �× Yd,

K−1u0,d + ∇x p0 − f = −∇y p1,d .

Thus, for all 9 ∈ D(�; C∞
# (Y ))

2 satisfying the diver-
gence constraint,

(−∇y p1,s, 9)�×Ys + (−∇y p1,d, 9)�×Yd

+

(
µα
√

K
u0,s · τ + 2µτ · Dyu0,s · ηs, 9 · τ

)
�×0

+(2µηs · Dyu0,s · ηs, 9 · ηs)�×0 = 0 ,

so integrating by parts yields

(
µα
√

K
u0,s · τ + 2µτ · Dyu0,s · ηs, 9 · τ

)
�×0

+
(
2µηs · Dyu0,s · ηs − p1,s

+p1,d, 9 · ηs
)
�×0

= 0 . (5.11)

By noting, for example, that there exists a weak so-
lution (see [28] or the proof of Theorem 3.1) 9 ∈

L2(�; (H1
#(Y ))

2), w ∈ L2(�; L2(Y )/R) to

−1y9 + ∇yw = 0 on �× Ys,

∇y ·9 = 0 on �× Ys,

9 · ηs = 0 on �× 0,

9 · τ =
µα
√

K
u0,s · τ + 2µτ · Dyu0,s · ηs on �× 0,

9 = 0 on �× (∂Ys \ 0),

and by the fact that D(�; C∞
# (Y)) is dense in

L2(�; H1
#(Y)), we obtain that each individual term in

equation (5.11) vanishes. We then finally obtain that

the two-scale variational equations (5.9) and (5.10) are
equivalent to

− 2µ∇y · Dyu0,s + ∇x p0(x)+ ∇y p1,s(x, y) = f in �× Ys, (5.12)

∇y · u0,s = 0 in �× Ys, (5.13)

µK−1u0,d + ∇x p0(x)+ ∇y p1,d(x, y) = f in �× Yd, (5.14)

∇y · u0,d = 0 in �× Yd, (5.15)

2µηs · Dyu0,s · ηs = p1,s − p1,d on �× 0, (5.16)

2τ · Dyu0,s · ηs = −
α

√
K

u0,s · τ on �× 0. (5.17)

Let (ωs
j ,8

s
j ) and (ωd

j ,8
d
j ) be Y-periodic solutions to

the auxiliary problem on Ys and Yd given in (2.4)–(2.10).
Then, because the above problem has a unique solution,
it is clear that we can express u0,s and u0,d as in (2.11):

u0,`(x, y) =
1

µ

N∑
j=1

(
f j (x)−

∂p0

∂x j
(x)

)
ω`j (y) ,

where ` = s or d. Averaging over Ys and Yd as in (2.12),
we get

ū0 = ū0,s + ū0,d,

=
1

µ|Y|

N∑
j=1

(
f j (x)− ∂x j p0(x)

)
( ∫

Ys

ωs
j (y)+

∫
Yd

ωd
j (y)

)

=
K̃
µ
( f − ∇ p0) , (5.18)

where K̃ is as in equation (2.13).
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By Lemma 4.3 and equation (5.8), we obtain the
weak convergence results in L2(�)

pε ⇀
1

|Y|

∫
Y

p0(x, y)dy = p0(x) , (5.19)

uε ⇀
1

|Y|

∫
Y

u0(x, y)dy = ū0 , (5.20)

q = ∇ · uε ⇀ ∇ · ū0 = q . (5.21)

Setting p = p0 and u = ū0, equations (5.18)–(5.21) give
the theorem, since convergence on the boundary of the
domain is trivial. �

Theorem 5.2. Let (u0, p0) ∈ L2(�× Y)× W be the two-
scale limit of (uε, pε) as before. Then uε − uε0 converges
to 0 strongly in L2(�), where uε0 = u(x, x/ε), and pε

converges strongly to p0(x) in W.

Proof. Since (ū0, p0) satisfies (5.1) and (5.2) and µ

and K̃ are smooth, if f ∈ H1(�) and q ∈ L2, then p0 ∈

H2(�). It follows that ū0 ∈ H1(�) and ∇xu0(x, y) ∈

L2(�). We also know that ∇yu0(x, y) = 0 ∈ L2(�× Ys),
so u0(x, x/ε) ∈ Vε . Since D(�) is dense in Vε , we
can use uε0 as a two-scale test function. By two-scale
convergence

lim
ε→0

aε(uε,uε0) = ā(u0,u0) ,

where

ā(v, z) = 2µ
(
Dyv, Dyz

)
�×Ys

+

(
µα
√

K
vs · τ, zs · τ

)
�×0

+

(
µK−1v, z

)
�×Yd

.

Similarly,

lim
ε→0

aε(uε0,uε0) = ā(u0,u0)

by two-scale convergence. Subtracting, we obtain lim
ε→0

aε

(uε − uε0,uε0) = 0.
We can also show that lim

ε→0
aε(uε,uε) = ā(u0,u0).

Since

aε(uε,uε)− b(uε, pε) = ( f,uε), (5.22)

b(uε, pε) = (q, pε), (5.23)

we know that aε(uε,uε) = ( f,uε)�ε + (q, pε)�ε . Taking
the limit of both sides as ε → 0, by our weak con-
vergence results in Theorem 5.1, the right-hand side
converges to ( f, ū0)� + (q, p0)�. By (5.2), q = ∇ · ū0, so
integrating by parts gives that

lim
ε→0

aε(uε,uε) = ā(u0,u0) ,

since ū0 satisfies the system of equations (5.12)–(5.17).
Finally, by the symmetry of aε(·, ·), we have

lim
ε→0

aε(uε − uε0,uε − uε0) = 0 ,

and by Lemma 3.2, we see that lim
ε→0

{
‖uε − uε0‖L2(�ε) +

ε‖∇(uεs − uε0,s)‖L2(�s )

}
= 0.

Now we show the strong convergence of the pressure
pε to p0 in W. By the inf–sup condition for Stokes,

sup
v∈H1

0

(w,∇ · v)

‖v‖1
> γ ‖w‖0 ,

there exists a sequence vε such that ‖vε‖1 = 1 and

(
pε − p0,∇ · vε

)
�ε
>
γ

2
‖pε − p0‖0 . (5.24)

By Theorem 3.5 in Appendix A of [14], there ex-
ists v0(x) ∈ H1(�) and v1(x, y) ∈ L2(�; H1

#(Y)/R) such
that (possibly after passing to a subsequence)

vε ⇀⇀ v0 and ∇vε ⇀⇀ ∇xv0(x)+ ∇yv1(x, y) .

Note that we can assume v1 is such that its average over
Y is zero. It follows that

lim
ε→0

(
p0,∇ · vε

)
�ε

=

(
p0,∇ · v0 +

∫
Y

∇v1 dy
)
�

= (p0,∇ · v0)� ,

by the periodicity of v1. Now,

lim
ε→0

(pε,∇ · vε)�ε = lim
ε→0

(pε,∇ · (vε − v0))�ε

+ (p0,∇ · v0)�

= lim
ε→0

aε(uε, vε − v0)

+ (p0,∇ · v0)� .
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Finally, we can show

lim
ε→0

aε(uε, vε − v0)

= lim
ε→0

{
2µ

(
εDuε, εD(vε − v0)

)
�εs

+

(
µα

√
ε
K uεs · τ,

√
ε(vε − v0)s · τ

)
0ε

+
(
µK−1uε, vε − v0

)
�εd

}
= lim
ε→0

{
2µ

(
εD(uε − uε0), εD(vε − v0)

)
�εs

+

(
µα

√
ε
K (u

ε
− uε0)s · τ,

√
ε(vε − v0)s · τ

)
0ε

+
(
µK−1(uε − u0), v

ε
− v0

)
�εd

+2µ
(
εDuε0, εD(vε − v0)

)
�εs

+

(
µα

√
ε
K uε0,s · τ,

√
ε(vε − v0)s · τ

)
0ε

+(µK−1uε0, v
ε
− v0)�εd

}
= 0 ,

where the first three terms above converge to zero be-
cause lim

ε→0
‖uε − u0‖0 = 0, lim

ε→0
ε‖∇(uε − uε0)‖0 = 0, and

because vε − v0 is bounded in H1. The final three terms
above converge to zero by the two-scale convergence
results for vε (and because one term has an extra factor
of ε). Putting everything together, we have that

lim
ε→0

(
pε − p0,∇ · vε

)
= 0

as ε → 0. By (5.24), pε → p0 as ε → 0 strongly in W.
�

6. A simple analytical solution of the auxiliary problem

It is not so easy to construct analytical solutions to
the auxiliary problems (2.4)–(2.10), except at least
in the following case. Let Y = (0, `)× (0, `) be a
square of side length ` > 0. With Ys = (0, `)× (0, h)
and Yd = (0, `)× (h, `) repeated periodically, we have
a horizontally layered medium. Note that 0 con-
sists of two segments, y2 = h and, by periodicity,
y2 = 0 ⇐⇒ y2 = `.

When j = 1, it is easy to verify that the solution is

ωs
1(y) =

1

2

(
− y2

2 + hy2 +

√
K
α

h
)

e1, (6.1)

ωd
1 (y) = Ke1, (6.2)

81(y) = 0, (6.3)

which has flow in the y1-direction only. It follows from
(2.13) that K̃21 = 0 (so K̃ is diagonal), and

K̃11 =
1

`

(
1

12
h3

+

√
K

2α
h2

+ K(`− h)
)
. (6.4)

This should be contrasted to the situation in which
the porous matrix is replaced by an impermeable
medium. Then ωs

j = 0 on 0, and we have the well-
known problem of Poiseuille flow in a pipe. The solu-
tion is

ω̌s
1(y) = −

1

2
y2(h − y2)e1, (6.5)

8̌1(y) = 0. (6.6)

In this case, we would compute the effective permeabil-
ity for a unit pressure drop in the y1-direction (which
corresponds to the forcing function e1) as

K̃11,Poiseuille =
h3

12`
, (6.7)

which is the first term on the right side of (6.4).
If instead we assume the vugular region is imperme-

able, the bulk flow would be reduced from the porous
medium case by the geometric factor (`− h)/`:

K̃11,Darcy =
`− h
`

K . (6.8)

This is the last term on the right side of (6.4). Thus,
when considering flow in the direction of the vugular
channel, we have the representation

K̃11 = K̃11,Poiseuille + K̃11,Beavers-Joseph + K̃11,Darcy ,(6.9)

where

K̃11,Beavers-Joseph =

√
K

2α`
h2 (6.10)

represents the Beavers–Joseph interface effect of fluid
slippage. This term increases the Darcy–Stokes flow
from the arithmetic average of the pure Stokes “pipe
flow” and the pure Darcy flow. Note that we generally
have K � h2 and α = O(1). Thus, K̃11,Poiseuille is the
leading term, and K̃11,Beavers-Joseph is the next order
term in the expansion.

When j = 2 in the auxiliary problems (2.4)–(2.10), it
is easy to verify that the solution is

ω2(y) =
`

`− h
Ke2, (6.11)

8s
2(y) = y2, (6.12)

8d
2(y) =

h
`− h

(`− y2). (6.13)



302 Comput Geosci (2006) 10: 291–302

Again, K̃12 = K̃21 = 0 and

K̃22 =
`

`− h
K . (6.14)

In this case, the flow is entirely in the y2-direction.
It is well known and easily verified that one-

dimensional flow across a porous medium of permeabil-
ity k1 for distance h and k2 for distance `− h results
in a flow rate that is the same as that in a uniform

medium of permeability k =
`k1k2

hk2 + (`− h)k1
, which is

the harmonic average permeability. If we apply this
result to our case, assuming that the vugular channel has
infinite permeability, we obtain exactly (6.14).

In conclusion, this example suggests that the effective
permeability represents an average of two extremes.
When the vugs are interconnected in some direction,
we have primarily Poiseuille flow behavior, with a low
order correction term for the effective permeability
related to the Beavers–Joseph slip (and an even lower
order correction related to flow entirely in the porous
matrix). When the flow is along paths that alternate
from vug to matrix, the fluid behaves as if it were flow-
ing in a porous medium with the vugs having infinite
permeability.
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