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Estimating Background Activity Based on Interevent-Time Distribution

by Sebastian Hainzl, Frank Scherbaum, and Celine Beauval

Abstract The statistics of time delays between successive earthquakes has re-
cently been claimed to be universal and to show the existence of clustering beyond
the duration of aftershock bursts. We demonstrate that these claims are unjustified.
Stochastic simulations with Poissonian background activity and triggered Omori-
type aftershock sequences are shown to reproduce the interevent-time distributions
observed on different spatial and magnitude scales in California. Thus the empirical
distribution can be explained without any additional long-term clustering. Further-
more, we find that the shape of the interevent-time distribution, which can be ap-
proximated by the gamma distribution, is determined by the percentage of main-
shocks in the catalog. This percentage can be calculated by the mean and variance
of the interevent times and varies between 5% and 90% for different regions in
California. Our investigation of stochastic simulations indicates that the interevent-
time distribution provides a nonparametric reconstruction of the mainshock
magnitude-frequency distribution that is superior to standard declustering algorithm.

Introduction

In the past, earthquake statistics were successful in re-
vealing some stable characteristics of seismicity such as the
Gutenberg–Richter relation for the magnitude-frequency
distribution (Gutenberg and Richter, 1956) and the Omori
law for the decay of aftershock activity (Utsu et al., 1995).
Recently, the statistics of the waiting times between consec-
utive earthquakes (so-called interevent times) have also in-
creasingly become the focus of research (Bak et al., 2002;
Corral, 2004; Davidsen and Goltz, 2004). Analyzing a num-
ber of different seismic catalogs, Corral (2004) found that a
unique probability density function can describe the ob-
served interevent times, namely the gamma distribution

c�1 �s/bp(s) � C • s e (1)

with constants C � 0.5 � 0.1, c � 0.67 � 0.05, and b �
1.58 � 0.15. Here, s is the normalized interevent time that
is obtained by multiplying the interevent time Dt with the
earthquake rate k, that is, s � kDt. This distribution was
claimed to be universal for stationary seismicity; that is, it
should hold from worldwide to local scales and for all mag-
nitude ranges. However, the condition of stationarity implies
a selection of regions where aftershock activity is not dom-
inant.

Based on some general assumptions, Molchan (2005)
could theoretically show that, in agreement with equation
(1), the distribution decays exponentially for large interevent
times and that the value 1/b is the fraction of mainshocks
among all seismic events. His only assumption is that the
seismicity consists of a Poissonian background activity and
triggered aftershocks that are supposed to follow the Omori

law. Thus, equation (1) can only be universal if the fraction
of mainshocks within the activity is constant and close to
60% (for b � 1.58). However, the existing estimations of
the mainshock fraction vary between 10% and over 90% for
different regions and seem to be inconsistent with a single,
universal number (e.g., Reasenberg, 1985; Kagan, 1991). If
the fraction of mainshocks is not universal, then the constant
1/b in equation (1) should vary for different regions. In this
case, analyzing the interevent-time distribution could yield
a nonparametric estimate of the mainshock rate. In time-
independent seismic-hazard studies, the determination of
mainshock activity usually involves applying a declustering
procedure such as the Reasenberg algorithm (Reasenberg,
1985), which requires some more or less arbitrary definitions
of space and time windows. Thus, a nonparametric estimate
could be of great importance.

In this study, we systematically investigate the corre-
lation of the interevent-time distribution and the level of
background activity in the western United States and in sto-
chastic simulations where temporally uncorrelated back-
ground events trigger Omori-type aftershock sequences. We
show in the Analysis of Interevent-Time Distribution Sec-
tion that the simulations are in agreement with the empirical
seismicity from the viewpoint of interevent-time statistics
and that the shape of the interevent-time distribution is
strongly correlated with the fraction of background seismic-
ity in the catalog. In the Reconstruction of the Mainshock
Magnitude-Frequency Distribution Section, we demonstrate
that the interevent-time distribution can be used to recon-
struct the magnitude-frequency distribution of the main-
shock activity.
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Analyzed Data

Earthquakes in California/Nevada

We analyze the Advanced National Seismic System
(ANSS) catalog of earthquakes having occurred in the time
interval between 1 January 1980 and 1 January 2004 within
32.5� and 43� latitude and �113� and �123� longitude (Ad-
vanced National Seismic System, 2005). These particular
spatial and temporal intervals are chosen in order to guar-
antee a high-quality and homogeneous data set. The fre-
quency-magnitude distribution of this data set follows the
Gutenberg–Richter relation for magnitudes above 2, indi-
cating that the catalog is complete for M �2.

The whole region is divided into squares of size L �
L, where all earthquakes with magnitudes M �Mmin are
taken into account. The standard choice is L � 100 km and
Mmin � 3; however, we additionally analyze all combina-
tions of L � 50, 100, 200, and 500 km, and Mmin � 2.5, 3,
and 4.

Earthquake Simulations

Additionally, we analyze simulations of the epidemic-
type aftershock sequences (ETAS) model, which is a sto-
chastic point process, where each earthquake has some
magnitude-dependent ability to trigger its own Omori-law-
type aftershocks (Ogata, 1988; Helmstetter and Sornette,
2002). In particular, the rate of aftershocks induced by an
earthquake that occurred at time ti with magnitude Mi is
given by

K (M �M )� i mink (t) � • 10 (2)i p(c � t � t )i

for time t � ti. The parameters K, �, c, and p are constant
for all earthquakes of a given area. The total occurrence rate
is the sum of the rate of all preceding earthquakes and a
constant background rate, k(t) � k0 � . The� k (t){i:t �t} ii

background rate k0 is usually assumed to result from stress
accumulation at tectonic-plate boundaries due to tectonic-
plate motion.

We produce Monte Carlo simulations of the ETAS
model using the inverse transform method proposed by Fel-
zer et al. (2002). Earthquake magnitudes are drawn from a
Gutenberg–Richter magnitude-frequency distribution. The
background events that occur with a constant rate k0 are
uniformly located in a 100 � 100 km square. The timing of
the aftershocks is calculated from a nonstationary Poissonian
function based on the modified Omori law (equation 2). The
aftershock locations are chosen according to an isotropic
probability density distribution

r
p(r) � 2(q � 1) (3)q2r

1 � � �� �Rm

where q � 1.69 is chosen according to the inverted value

given by Zhuang et al. (2004) and Rm � 0.011 • 100.5�Mm

(km) is the assumed extension of a mainshock rupture with
magnitude Mm (Reasenberg, 1985).

We performed 1000 simulations of 50 years’ duration,
where the minimum magnitude is chosen to be Mmin � 3
and the maximum magnitude Mmax � 7. To account for
variable conditions, for each simulation, the parameters of
the magnitude-frequency distribution are randomly selected
from the uniform distributions a � [3.0, 5.0] and b � [0.8,
1.2]. The ETAS parameters are chosen from the intervals �
� [0.7, 1.0], c � [1min, 1h], p � [1.05, 1.2], and n � [0.4,
0.95], where n is the branching parameter of the ETAS
model, n � K • f(�, b, c, p, Mmin, Mmax) � Kbc1�p(1 �
10(��b)(Mmax�Mmin))/[(b � �)(p � 1)(1 � 10�b(Mmax�Mmin))]
(Helmstetter and Sornette, 2002). The branching parameter
is the average number of aftershocks per mainshock and de-
fines the fraction of aftershocks in infinite long simulations.
Setting these parameters, the parameter K is fixed as K �
n/f(�, b, c, p, Mmin, Mmax). We fix n instead of K to get
reasonable levels of aftershock activity and to avoid super-
critical branching parameters (n � 1).

In addition to the ETAS model simulations, we analyzed
model simulations in which only background events can
trigger aftershocks according to equation (2) and where the
aftershock magnitudes cannot exceed the mainshock mag-
nitude. We will call this model the simple-type aftershock
sequence (STAS) model. We also performed 1000 STAS
model simulations with the same parameters as for the ETAS
model.

Analysis of Interevent-Time Distribution

The interevent times Dti � ti � ti�1 are calculated from
the occurrence times ti of the earthquakes and normalized by
multiplying with the total earthquake rate k � N/T (T �
catalog time span), that is, si � kDti. We determine the
interevent-time distribution in all cases where the number N
of earthquakes with M � Mmin is larger than 50. Figure 1a
shows the stacked probability distributions of normalized
intervent times for the cells in California with L � 100 km
and Mmin � 3. The analogous plot for the ETAS simulations
is shown in Figure 1b. The result for both observed and
simulated data is almost identical. The distributions clearly
deviate from an exponential distribution that would be ex-
pected in the case of a Poissonian process, that is, in the case
of temporarily uncorrelated activity. For small interevent
times, the distribution decays according to s�1. This can be
explained by Omori-like aftershock activity with a p-value
close to 1. For a single aftershock sequence according to the
Omori law t�p the interevent times are known to be distrib-
uted according to a power law s�p̃, where the relation be-
tween p and p̃ is given by p̃ � 2 � p�1 (Utsu et al., 1995).

Now we fit the data by the normalized gamma distri-
bution. In this case, the constant C in equation (1) is given
by C � (bcC(c))�1, where C(x) is the gamma function. The
parameter b is determined simply by calculating the mean
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Figure 2. Two examples of interevent-time probability distributions for California
for L � 100 km, Mmin � 3 and central points: crosses � (36.7�, �121.3�); circles �
(33.9�, �118.3�) with different fraction of mainshocks (Reasenberg declustering: 74%
and 30%). In (a) the distributions are compared with the fit of the gamma distribution
that yields a mainshock fraction of 47% and 11%, respectively. In (b) the distributions
are compared with the distribution of long ETAS simulations with a mainshock fraction
of 47% and 11%.

Figure 1. Stacked probability distributions of normalized interevent times for earth-
quakes having occurred in (a) California (L � 100 km and Mmin � 3) and (b) ETAS
simulations.

and the variance of the interevent times, namely, b �2s̄ rs

and c � /b (e.g., Denker and Woyczynski, 1998). Due2r /s̄ s̄s

to the normalization of the interevent times, the mean is in
our case simply � 1 and we have and c � 1/b.2s̄ b � rs

The interevent-time distributions can be fitted quite well by
the gamma distribution. The result is shown for two exam-
ples from California in Figure 2a, where 1/b is determined
to be 0.11 and 0.47. Following Molchan (2005), this corre-
sponds to relative background activity of 11% and 47%. In
Figure 2b, the same data sets are compared with the resulting
interevent-time distributions for long simulations of the
ETAS model (200,000 events) with background activity of
11% and 47%. The agreement between the simulated and
observed data is almost perfect and shows once more that
the ETAS model captures the mechanisms responsible for
the shape of the interevent-time distribution. Furthermore, it

is a first indication that 1/b really defines the mainshock
fraction.

To investigate the correlation between the shape of the
interevent-time distribution and the background level l in a
systematic way, we calculate linter � 1/b � for all cells2s̄/rs

in California and compare these values with the estimations
resulting from a standard declustering procedure. For this
purpose, we apply the declustering algorithm of Reasenberg
(1985) to the ANSS earthquake catalog, with the declustering
parameters set to standard values for California (Q � 10,
P � 0.99, s0 � 1 day, smax � 10 days). The algorithm
identifies 55% of the earthquakes as aftershocks in the cat-
alog with M �2.5; respectively 50% for M �3 and 41% for
M �4. Analyzing the declustered catalog, for each cell we
get an independent estimate of the background level by di-
viding the number of mainshocks Nmain by the total number



316 Short Notes

Figure 3. Scatter plot of the mainshock fraction estimated by the Reasenberg al-
gorithm and from the interevent-time distribution for (a) California and (b) 1000 ETAS
and 1000 STAS model sequences. The line indicates the regression line for the data
points in (a).

of events in the cell, ldecl � Nmain/N. The dependence be-
tween the estimation based on the interevent-time distribu-
tion and that resulting from the declustering procedure is
shown in Figure 3a for all cells and all combinations of L
and Mmin. A clear correlation between both estimations is
observed, where the linear regression gives a dependence of
linter � �(0.06 � 0.01) � (0.64 � 0.01) • ldecl.

Figure 3b shows the same analysis for 1000 simulations
of the ETAS model and 1000 simulations of the STAS model
with parameters given in the Earthquake Simulations sec-
tion. The correlation is found to be independent of the model
type and very similar to that for the earthquakes in Califor-
nia. The scattering is in both cases similar, and the regression
line calculated for the California earthquakes fits those of
the stochastic simulations. Only for high mainshock levels
do the simulations show a deviation from the linear trend
that is less pronounced in the observed data.

The results in Figure 3 indicate that the analysis of the
interevent-time distribution systematically leads to lower
values of the mainshock rate than those expected from the
declustering procedure. For the stochastic simulations, we
are able to judge the quality of both estimations, because for
each earthquake it is known whether it belongs to the Pois-
sonian background rate or is triggered by a mainshock. Thus
the real fraction of background events is known for each
simulation and can be compared with the estimation based
on the interevent times and that of the declustering process.
This comparison is shown in Figure 4. It is found that the
estimates based on the the interevent-time distribution scat-
ter around the true value whereas the values based on the
Reasenberg decluster algorithm are systematically overesti-
mating the real level. Thus the chosen time and space win-

dows of the declustering algorithm for California (Q � 10,
P � 0.99, s0 � 1 day, smax � 10 days) seem to be insuf-
ficient for declustering all aftershocks in the synthetic cata-
log.

Robustness of the Estimations

The synthetic catalogs analyzed so far have been
adapted in their length to those from California in order to
enable a comparison. The number of events in each catalog
varies between 50 and over 5000. To study the quality of
the estimates in dependence on the number of earthquakes
in the catalog, we separately analyze catalogs with 100,
1000, and 10,000 earthquakes. The results are shown in Fig-
ure 5. The scatter is rather large for 100 events, but is already
small for 1000 events. However, we find that the scatter does
not totally vanish for very large catalogs and the estimation
is slightly biased toward underestimating the true value. This
indicates that the gamma distribution is only an approxi-
mation of the true, more complicated interevent-time distri-
bution. However, the systematic shift D can be corrected
because of its approximate parabolic shape. Least-square fit-
ting yields the term

2D � 0.044 [1 � 4(1/b � 0.5) ] , (4)

which has to be added to 1/b in order to get an unbiased
estimate (see bold line in Fig. 5). In this way, the fraction
of mainshocks within the seismicity can be estimated by
means of the gamma distribution with an accuracy better
than 0.1 for catalogs with about 1000 events.

It is important to note that only the rate of mainshocks
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Figure 5. The real percentage of mainshocks l as a function of the estimation based
on the interevent-time distribution linter � 1/b for catalogs consisting of 100, 1000,
and 10,000 earthquakes, respectively. The small deviation from the identity can be
described by the correction curve l � 1/b � D (solid line), with D � 0.044 � 0.176
(1/b � 0.5)2.

is really constant in the ETAS model. The mainshock fraction
is only constant if it is measured on long time intervals.
Sornette and Werner (2005) showed that this long-term av-
erage value should be less than 45% due to physical con-
straints. However, the mainshock fraction varies largely on
time intervals that are small compared to the recurrence time
of the largest earthquake. In time periods consisting of a
large event, the aftershock fraction is usually very large, but
small on periods with only small-magnitude background
events. We now analyze different subintervals of the Cali-
fornia catalog in order to demonstrate this effect as well as
to quantify the stability of our estimations. In particular, we
use five different data sets consisting of the earthquakes that

occurred within (1) 1980–2004 (full catalog), (2) 1980–
2000, (3) 1980–1990, (4) 1990–2000, and (5) 1990–2004,
respectively. We put a grid on the complete region of the
catalog with a spacing of 50 km and chose those grid points
where each of the five subcatalogs consists of at least 50
events with magnitude M �3 in the square region of size
100 � 100 km. Figure 6a shows that, in some regions, the
average earthquake rate varies largely in the different time
periods. At the same time, we find also that the estimated
fraction of mainshocks is highly variable in many regions
(Fig. 6b) but that the estimated rate of mainshocks is rather
stable (Fig. 6c). This is in good agreement with the ETAS
model. Furthermore, the estimated mainshock fraction is in
most places less than 45%, as theoretically predicted by Sor-
nette and Werner (2005). It is no contradiction that a number
of places show larger fractions because all values are esti-
mated on relatively short time intervals of maximum 24
years.

In order to demonstrate that the estimates are not only
stable for different time periods but also coherent in space,
we also analyze the complete catalog on a fine grid of 5 km
spacing. For visual reasons, we use a circular region of
50 km radius around each grid point instead of a square
region. Figure 6d shows the resulting map of the estimated
mainshock rate where the largest values are found for the
volcanic region of Long Valley caldera. The map shows a
rather smooth behavior demonstrating that our estimations
are robust.

Reconstruction of the Mainshock Magnitude-
Frequency Distribution

The interevent-time distribution cannot only be used to
estimate the mainshock rate for a given magnitude cutoff,
but also to reconstruct the full magnitude-frequency distri-
bution of mainshocks.

Figure 4. The estimated percentage of main-
shocks based on the Reasenberg declustering algo-
rithm (dark crosses) and the interevent-time distri-
bution (light squares) as a function of the real value
in the ETAS simulations.
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Figure 6. The left column shows (a) the number of M 3� earthquakes per year,
(b) the estimated background fraction, and (c) the resulting background rate in different
regions of size 100 � 100 km in California. In each plot, the points indicate the values
for the complete data set, whereas the bars show the span of values resulting from four
different subsets. The time intervals of the subsets are 1980–2000, 1980–1990, 1990–
2000, and 1990–2004, respectively. For the complete data set, (d) shows a map of the
estimated mainshock rate. In this case, we used circular regions with radius 50 km
instead of square regions. White spots above 32.5� latitude are regions where less than
50 events with M �3 occurred since 1980 in a distance less than 50 km.

The procedure is simple. Let us assume that we want to
analyze an earthquake catalog of time length T and with
minimum magnitude of completeness Mmin. The first step is
to choose the magnitude level M � Mmin and to consider
only those N(M) earthquakes with magnitude larger than M.
In the second step, the mean and the variance of interevent
times between the earthquakes with magnitude larger than
M are determined. Together with the small correction term
D (see equation 4), this gives an estimation of the mainshock
fraction (linter � � D) and thus of the number of main-2s̄/rs

shocks with magnitude larger than M per year: Ṅmain(M) �
linter • N(M)/T. Now, increase the magnitude level by a cer-
tain increment and go back to the first step and repeat the
steps iteratively. In this way, we get an estimation of the
magnitude-frequency distribution of mainshocks Ṅmain(M).

We perform this procedure for simulations, where the
branching parameter n is fixed to 0.6 and the a-value to 4.3,
whereas �-, c- and p-values randomly vary from simulation
to simulation in the intervals defined in The Earthquake Sim-
ulations section. The catalog length is chosen so that the total
number of earthquakes is equal to 1000 or 10,000. In these
simulations, we choose the b-value of the mainshocks (bmain)

independently of the b-values of aftershocks (bafter). For each
simulation, we reconstruct the magnitude-frequency distri-
bution of mainshocks in the described way. The resulting
semilogarithmic distributions log(Ṅ(M)) are fitted by the
Gutenberg–Richter relation log(Ṅ(M)) � a � bM. For that
we perform a weighted least-square fit, where the inverse of
the error was used as a weighting factor. The error interval
of the activity rate is determined by the 10% and 90% quan-
tiles of calculated for samples of N values randomly2Ns̄/rs

taken from a gamma distribution with parameter b. Addi-
tionally, we analyzed the mainshock distribution resulting
from declustering and the real distribution of background
events. In this case, the weights for the least-square fit are
determined from the 90% confidence interval of observing
an activity rate Ṅ under the assumption of a Poissonian dis-
tribution. As an alternative, we have used the maximum like-
lihood method to calculate the a- and b-values (Aki, 1965).
The results are almost identical.

In Figure 7, the estimated parameters of the mainshock
magnitude-frequency distribution inverted from the inter-
event times are shown for two cases: (1) bmain � 0.8, bafter

� 1.2, and (2) bmain � bafter � 1. These estimations are
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Figure 7. Parameters of the magnitude-frequency distribution of the background
events estimated by the interevent-time distribution (crosses) and declustering proce-
dure (black squares). For comparison, the results of the least-square fits are shown for
the real background events (light dots) and the full catalog (light crosses).

compared with those for the whole activity, the declustered
catalog, and the real background events. In all cases, the
interevent-time-based estimations are close to the real pa-
rameters. In particular, the estimated rates are unbiased and,
in the first case, the small b-value of the background events
is correctly identified. Only in the second case are the esti-
mated b-values slightly too low. However, the same shift is
observed for the estimations based on the declustered catalog
and points to a more general problem of the b-value esti-
mation.

The a-value can be directly determined from the recon-
structed rate of mainshocks Ṅ(Mmin) and the b-value accord-
ing to a � log(Ṅ(Mmin) � bMmin. Thus, the described pro-
cedure yields an estimation of both parameters of the
Gutenberg–Richter relation.

Conclusions

The interevent-time distribution of earthquakes has been
recently claimed to be universal and to indicate the existence
of clustering beyond aftershock occurrence. By analyzing
observed and synthetic earthquake catalogs, we find that
both statements are invalid. Firstly, simulations of the ETAS
model are shown to reproduce the observed interevent-time
distributions in California without any fine-tuning of the
model parameters. Thus the combination of a Poissonian
background activity and triggered aftershocks according to
the Omori law explain the observed shape of the interevent-
time distribution. There is no need for assuming any addi-
tional mechanisms of long-term clustering such as, for
example, accelerated or deaccelerated seismic activity pre-
ceding mainshocks (Wyss, 1997; Jaumé and Sykes, 1999).
Secondly, we find that the shape of the interevent-time dis-
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tribution is correlated with the number of earthquakes that
remain after applying Reasenberg’s declustering algorithm.
Thus the interevent-time distribution is not universal; in par-
ticular, it is correlated with the percentage of mainshocks in
the catalog. However, exactly this nonuniversality of the in-
terevent-time distribution offers the opportunity to extract
local characteristics. Particularly, the analysis of the inter-
event times yields a new, independent, and nonparametric
estimate of the mainshock rate and the whole mainshock
magnitude-frequency distribution. The investigations pre-
sented here show that for the synthetic catalogs where the
parameters are known, this estimation is better than the ap-
plication of a standard declustering procedure. For the Cali-
fornia catalog this would suggest that the Reasenberg algo-
rithm seems to overestimate the background level, at least if
standard parameters are used. Although the declustering pro-
cedure can probably be improved by fine-tuning the in-
volved space and time parameters and adapting them to the
specific seismic region, the interevent-time-based method
seems to be superior because no parameters have to be ad-
justed. At least, it yields an important boundary condition
for any applied declustering procedure.
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