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ABSTRACT

Inversions of an individual geophysical data set can be
highly nonunique, and it is generally difficult to determine
petrophysical parameters from geophysical data. We show
that both issues can be addressed by adopting a statistical
multiparameter approach that requires the acquisition, pro-
cessing, and separate inversion of two or more types of geo-
physical data. To combine information contained in the
physical-property models that result from inverting the indi-
vidual data sets and to estimate the spatial distribution of
petrophysical parameters in regions where they are known
at only a few locations, we demonstrate the potential of the
fuzzy c-means �FCM� clustering technique. After testing
this new approach on synthetic data, we apply it to limited
crosshole georadar, crosshole seismic, gamma-log, and
slug-test data acquired within a shallow alluvial aquifer.
The derived multiparameter model effectively outlines the
major sedimentary units observed in numerous boreholes
and provides plausible estimates for the spatial distributions
of gamma-ray emitters and hydraulic conductivity.

INTRODUCTION

Multiparameter approaches can significantly reduce uncertain-
ties in geophysical data analysis and interpretation �Dannowski
and Yaramanci, 1999; Tronicke et al., 1999; Hubbard et al., 2001;
Garambois et al., 2002; Yaramanci et al., 2002; Aaltonen, 2003;
Gaffney et al., 2004; Kostyuchenko et al., 2004; Tronicke et al.,
2004�. The most common approach of jointly interpreting indepen-
dent physical-property models derived from different types of

coincident geophysical data is largely qualitative in nature, such
that the outcome depends greatly on the experience and preconcep-
tions of the interpreter and there is no objective way of assessing
the internal consistency of the interpretation.

More quantitative approaches require linking different geo-
physical data sets during the model-generation process �Vozoff and
Jupp, 1975�. By jointly inverting multiple data sets, all available
information is used to constrain models that explain the individual
data sets, thus markedly decreasing the inherent ambiguities asso-
ciated with geophysical model derivation. A disadvantage of joint
inversions is the need to assume well-defined relationships be-
tween the various parameters �Gallardo and Meju, 2003; Musil et
al., 2003; Bosch, 2004�. The quality and consistency of multipa-
rameter models depend critically on the reliability of these assump-
tions and the way they are implemented in the inversion procedure.
Unfortunately, such parameter relationships tend to be nonunique
and site specific �Schön, 1998�. Nevertheless, ongoing algorithmic
and computational improvements are expected to enhance the ap-
peal and applicability of joint inversion schemes.

A fundamentally different approach to model integration in-
volves the application of multivariate statistics. Clustering meth-
ods �Kaufmann and Rousseeuw, 1990; Höppner et al., 1999� that
do not require prior knowledge about the specific interrelationships
of the various parameters have been used for this purpose. Hard
clustering methods �e.g., the k-means technique� attribute each
point in the multidimensional parameter space to a single cluster
�Dietrich et al., 1998; Tronicke et al., 2004�. By comparison, soft
clustering methods �e.g., the fuzzy c-means technique� distribute
the influence of each point among several clusters. Applications of
fuzzy c-means �FCM� clustering in the geosciences include soil
classification �De Bruin and Stein, 1998; Bragato, 2004�, analysis
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of geochemical and rock magnetic parameters in different materi-
als �Kruiver et al., 1999; Urbat et al., 2000; Knab et al., 2001�, and
the determination of hydrochemical facies distribution in ground-
water systems �Güler and Thyne, 2004�. Whereas the advantages
and disadvantages of hard clustering techniques for geophysical
model integration are extensively explored, the potential and limi-
tations of soft clustering methods are largely unknown.

In addition to determining physical-property models from the
different geophysical data sets, it is often necessary to use the same
data for estimating the distribution of various petrophysical param-
eters �e.g., lithologies, porosities, and hydraulic conductivities�.
This is usually achieved by linking the petrophysical parameters to
the geophysical data via explicit theoretical and/or empirical ex-
pressions �Greaves et al., 1996; Dannowski and Yaramanci, 1999;
Garambois et al., 2002�. Again, statistical techniques offer alterna-
tive approaches. Based on the geophysical data, the distribution of
petrophysical parameters can be extrapolated or interpolated over
large regions from locations where they are well known �e.g.,
along boreholes�. As examples, Chen et al. �2001� and Hubbard
et al. �2001� use a Bayesian approach to interpolate hydraulic con-
ductivities between boreholes using crosshole georadar and seis-
mic data, and Tronicke and Holliger �2005� estimate porosities us-
ing conditional simulations of hydrogeophysical data.

In this study, we present a unified approach to physical-property
model integration and estimation of the spatial distribution of
petrophysical parameters based on FCM cluster analyses. After ex-
plaining key aspects of the FCM clustering technique, we briefly
describe our geophysical forward-modeling and inversion
schemes. Our FCM technique is then tested on synthetic geophysi-
cal data generated for a heterogeneous alluvial aquifer model. Fi-
nally, the FCM technique is applied to a data set acquired at a hy-
drological test site in western Switzerland.

METHODOLOGY

In the following, after introducing the basic concepts of the
FCM clustering technique and its application to estimating petro-
physical parameters, we describe our synthetic porosity model, for-
ward modelling method, and first-break picking and inversion
schemes.

FCM cluster analysis

Each node in an integrated subsurface model is characterized by
a multiparameter data point defined by the various parameters con-
tained in the individual models. For example, in our synthetic and
field examples, each data point has a georadar velocity, a georadar
attenuation, and a seismic velocity. Cluster analysis algorithms in-
volve grouping data located in the multidimensional parameter
space into a specified number of characteristic subsets or clusters
based on their distances to the cluster centers, which are defined by
the data sets themselves. In the case of FCM cluster analysis, this is
achieved by iteratively minimizing the following objective func-
tion �Güler and Thyne, 2004�:

JFCM = �
i=1

c

�
j=1

n

mdij
f �xj − vi�2, �1�

where c is the number of clusters, n is the number of data points,
and mdij denotes the degree of membership of data point xj to clus-

ter i defined by its center vi. The weighting exponent f �the fuzzifi-
cation parameter of Güler and Thyne �2004� and Fridgen et al.
�2004�� represents the degree of overlap between the clusters.
Throughout this study, we use f = 2, which is widely accepted as a
suitable choice �Hathaway and Bezdek, 2001�.

After selecting the number of clusters and randomly defining
their initial locations in multiparameter space, iterative minimiza-
tion of the objective function �equation 1� yields the optimum loca-
tions of the cluster centers and the distance of each data point to
these centers. To test the validity and robustness of the entire pro-
cess, we repeat it four times using different initial locations of the
cluster centers. For each example presented in this paper, the re-
sults of the five independent runs are practically identical.

Data points are assigned partial membership to all clusters based
on their distances to the respective cluster centers. The member-
ship values of a data point, which quantify its degrees of member-
ship to the various clusters, vary between zero and one; the higher
the membership value, the closer the data point to the correspond-
ing cluster center. For any given data point, the sum of all member-
ship values is unity.

By assigning each data point to the cluster for which it has the
highest membership value �defuzzyfication of Melgani et al.,
2000�, the results of FCM cluster analysis can be converted to
equivalent hard cluster models consisting of homogeneous clus-
ters. In our case, the spatial distribution of cluster memberships is a
zoned model of the subsurface probed by the various geophysical
techniques. The procedure for integrating the various physical-
property models is illustrated in Figure 1.

Petrophysical parameter estimation

To use the results of the FCM cluster analyses for estimating the
spatial distribution of petrophysical parameters, we require some
direct measurements of the target parameters in parts of the inves-
tigated subsurface �e.g., as provided by borehole logs or core
samples�. Based on these measurements, a corresponding mean
value of the target petrophysical parameter is assigned to each
cluster. Using the previously evaluated membership values mdij

Figure 1. Flowchart illustrating the FCM clustering technique used
for physical-property model integration and petrophysical param-
eter estimation.
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�equation 1� as weighting factors, we can estimate the value of the
target parameter in the jth grid cell as a weighted sum over all clus-
ters:

pj = �
i=1

c

p̄i � mdij , �2�

where p̄i is the mean value of the target parameter p for the ith clus-
ter. The corresponding procedure is illustrated in Figure 1. It is
conceptually similar to that used for multicomponent petrophysical
mixing models �Schön, 1998�.

Although there must be a relationship between the physical-
property and petrophysical parameters, unlike conventional ap-
proaches �Greaves et al., 1996; Dannowski and Yaramanci, 1999;
Garambois et al., 2002� the nature of this relationship in FCM clus-
ter analysis can be rather vague and ill defined; it does not need to
be explicitly quantified by theoretical or empirical expressions.

Porosity model

We generate a realistic porosity model of a heterogeneous allu-
vial aquifer using an unconditional stochastic simulation technique
�Goff and Jordan, 1988; Tronicke and Holliger, 2005�. The poros-
ity distribution is characterized by an exponential autocovariance
function and a Gaussian probability density function with a mean
of 21% and a standard deviation of 1.1%. These values are typical
of alluvial deposits �Gelhar, 1993; Heinz et al., 2003�. The expo-
nential autocovariance function is a special case of the versatile
band-limited, scale-invariant von Kármán autocovariance model.
It is widely used for characterizing heterogeneous anisotropic
structures such as alluvial aquifers �Desbarats and Bachu, 1994;
Hardy and Beier, 1994�. Our model is 20 m long and 10 m deep; it
is discretized on a uniform grid with a sample spacing of 0.018 m.
To simulate a quasi-layered heterogeneous structure that is scale
invariant over the entire range of the model, we use vertical and
horizontal correlation lengths of 20 and 100 m, respectively.

We assume complete water saturation and use the following ex-
pressions to estimate relative permittivities � �Wharton et al.,
1980�, electrical resistivities � �Archie, 1942�, densities d �Schön,
1998�, and P-wave velocities vP �Raymer et al., 1980� from porosi-
ties �:

�� = � � ���w − ��m� + ��m, �3�

� =
a

�b�w, �4�

d = �1 − �� � dm + � � dw, �5�

vP = �1 − ��2 � vm + � � vw, �6�

where a and b are empirical parameters and where subscripts w
and m refer to water and the dry matrix material, respectively. The
values used for the various geophysical parameters �Table 1� are
representative of unconsolidated gravely and sandy sediments

�Schön, 1998�. We use the relative permittivity and resistivity
models �equations 3 and 4� as input to generate synthetic crosshole
georadar data and the density and P-wave velocity models �equa-
tions 5 and 6� as input to generate synthetic crosshole seismic data.

Note that equation 6 was developed initially for sandstones, but
for the chosen parameters the resulting velocity range can also be
regarded as realistic for unconsolidated clastic sediments �Schön,
1998�.

Forward modeling
Full-waveform crosshole georadar data were generated using a

staggered-grid, finite-difference time-domain �FDTD� solution of
Maxwell’s equation in cylindrical coordinates that was second-
order accurate in both time and space �Holliger and Bergmann,
2002; Ernst et al., 2006�. Transmitters and receivers were modeled
as infinitesimal vertical electrical dipoles, a realistic approximation
for the radiative behavior of many resistively loaded georadar an-
tennas �Lampe and Holliger, 2005�. The source signal was a Ricker
wavelet with a dominant frequency of 80 MHz and a bandwidth of
2–3 octaves. It yielded a dominant wavelength of about 1 m and at
least 17 gridpoints per minimum wavelength for the 0.018-m grid
spacing. At this level of discretization, numerical errors from grid
dispersion and grid anisotropy were negligible �Bergmann et al.,
1996�. The two boreholes extended along the lengths of the model
edges. They contained 41 equally spaced transmitter and receiver
locations.

The same acquisition geometry was used for the simulation of
full-waveform crosshole seismic data after resampling the model
to a grid spacing of 0.065 m. We used the ReflexW commercially
available software program �Sandmeier Scientific Software, Ger-
many� based on a staggered-grid FDTD solution of the acoustic-
wave equation that was second-order accurate in time and fourth-
order accurate in space. The source pulse was a Küpper wavelet
�Küpper, 1958; Fuchs and Müller, 1971� with a dominant fre-
quency of 600 Hz and a bandwidth of 2–3 octaves. This yielded a
dominant wavelength of about 3 m and at least 15 gridpoints per
minimum wavelength, which was again adequate for avoiding nu-
merical dispersion and grid anisotropy.

First-break picking and inversion
First arrivals of the synthetic crosshole georadar and seismic

data were picked using a semiautomatic picking routine imple-

Table 1. Parameters used in equations 3–6. All values are
typical of unconsolidated gravely and sandy sediments
(Schön, 1998).

Symbol Value Description

�w 80 Relative permittivity of pore water

�m 4.6 Relative permittivity of dry matrix material

�w 20 �.m Electrical resistivity of pore water

a 0.88 Empirical parameter in Archie’s equation

b 1.37 Empirical parameter in Archie’s equation

dm 2.5 g/cm3 Density of dry matrix material

dw 1.0 g/cm3 Density of pore water

vm 3000 m/s P-wave velocity of dry matrix material

vw 1500 m/s P-wave velocity of pore water

Integration of physical-property models H35



mented in ReflexW. To simulate realistic
recording and measuring conditions,
Gaussian-distributed random time anom-
alies with standard deviations of 2 ns and
0.04 ms were added to the picked geora-
dar and seismic traveltimes, respectively
�these standard deviations correspond to
the estimated picking accuracies of the
observed data, discussed later�. Maxi-
mum first-cycle amplitudes of the direct
georadar waves were also measured. The
traveltimes were inverted tomographi-
cally using an inversion scheme based on
a finite-difference solution of the eikonal
equation �Lanz et al., 1998� that fully ac-
counted for the curvature of raypaths in
heterogeneous media. Our ray-based in-
version of georadar amplitude data fol-
lowed the procedures described by Hol-
liger et al. �2001�. The grid spacing used
for all tomographic inversions was
0.25 m.

We now combine the various physical-
property models and then demonstrate the results of estimating the
petrophysical parameters.

SYNTHETIC STUDY

Integration of physical-property models

Figure 2 shows the input porosity model and the georadar veloc-
ity and attenuation and P-wave velocity tomograms derived from
inverting the corresponding synthetic data. A comparison of Figure
2b and d with Figure 2a demonstrates that the derived georadar and
seismic velocities correlate approximately inversely with the po-
rosity variations at scales larger than 1–2 m. This is particularly
clear for zones A, B, D, E, and F in Figure 2a. For our synthetic
model, the histographic crossplot of Figure 3a suggests an approxi-
mately linear relationship between the georadar and seismic ve-
locities.

The relationships between the derived georadar attenuations and
the porosities �Figure 2c and a� and between the derived georadar
attenuations and both velocity fields �Figure 3b and c� are not so
obvious. This complexity is likely the result of scattering effects
within the highly heterogeneous media that are not accounted for
in ray-based crosshole georadar attenuation tomography �Holliger
and Maurer, 2004� and the strongly nonlinear relationship between
electrical resistivity and porosity �equation 4�; it is worth mention-
ing that the correlation between georadar attenuation �Figure 2c�
and the electrical resistivity distribution �not shown� derived di-
rectly from Figure 2a using equation 4 is quite good. Despite its in-
herent limitations, recent studies indicate that crosshole georadar
attenuation tomography can be a useful complementary tool for
characterizing the shallow subsurface �Chen et al., 2001; Hubbard
et al., 2001; Tronicke et al., 2004; Musil et al., 2006�.

We subject the tomograms presented in Figure 2 to FCM cluster
analyses assuming the presence of two, three, or four clusters. To
avoid scaling effects, all tomographic results are normalized to
have a mean value of zero and a standard deviation of one prior to
the cluster analyses. Figure 4 shows the membership functions re-
sulting from the three-cluster solution. Red indicates high member-

Figure 2. �a� Porosity model of a heterogeneous sedimentary aquifer. �b�–�d� Corresponding
georadar velocity, georadar attenuation, and seismic P-wave velocity tomograms, respec-
tively. Small circles and crosses along the left and right model edges delineate source and re-
ceiver locations within the boreholes, respectively. Zones A–F are explained in the text.

Figure 3. Colored histographic plots illustrating the relationships
between �a� georadar velocity and seismic P-wave velocity, �b�
georadar velocity and attenuation, and �c� georadar attenuation and
seismic P-wave velocity. Relative frequency equals frequency of
values divided by total number of values. See corresponding tomo-
grams in Figure 2.
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ship values �i.e., values that are close to the corresponding cluster
centers�, whereas blue and green indicate low to very low member-
ship values. Figure 5 shows the hard cluster versions of the models
for two-, three-, and four-cluster solutions, such that each point in
the subsurface is represented by the cluster for which it has the
highest membership value. In these models, each cluster represents
a specific zone characterized by a distinct range of physical proper-
ties. The color saturations are proportional to the membership val-
ues. Dark colors indicate membership values close to unity,
whereas pale colors represent membership values close to the low-
est possible �i.e., the reciprocals of the number of clusters�.

In effect, color saturation is a measure of the uniformity or het-
erogeneity of the zonations. By comparing the three-cluster model
in Figure 5b to the initial porosity model in Figure 2a, we can
readily identify clusters 1, 2, and 3 as areas of low, high, and inter-
mediate porosity, respectively.

One fundamental drawback of all clustering techniques is that
the choice of the optimum number of clusters is inherently sub-
jective �Bezdek, 1981�. Typically, this choice is guided by �1� sta-
tistical measures such as normalized classification entropy �NCE�,
which describes the degree of disorder present in a system
�Bezdek, 1981�, �2� careful analyses of the resolution of the input
data, and/or �3� comparisons of the solutions for varying numbers
of clusters with prior information. Our choice of the number of
clusters is largely guided by these criteria. In doing so, we use the
definition of Roubens �1982� for NCE:

NCE =

−
1

n
� �

i=1

c

�
j=1

n

mdij � log�mdij�

log�c�
�7�

where mdij � log�mdij� is defined to equal zero when mdij = 0
and, again, c is the number of clusters and n is the number of data
points. Values of NCE vary from zero for clusters that are com-
pletely separated to one for clusters that completely overlap �i.e.,
cannot be separated�. Tests based on synthetic clusters with vary-
ing degrees of overlap suggest that reasonably good cluster separa-
tion can be achieved when NCE values are less than 0.8 �Roubens,
1982�. The NCE values obtained for the two-, three-, and four-
cluster solutions shown in Figure 5 are 0.61, 0.62, and 0.61, re-
spectively, suggesting that all solutions are adequate for our syn-
thetic data set.

Petrophysical parameter estimation

We now attempt to reconstruct the initial 2D porosity model
based on the petrophysical parameter estimation scheme outlined
on the right side of Figure 1. For this purpose, we use the porosity
values within the boreholes along the edges of the model shown in

Figure 4. Membership functions for �a� cluster 1, �b� cluster 2, and
�c� cluster 3 resulting from the FCM cluster analysis using a three-
cluster solution for the synthetic data set of Figures 2 and 3. Sum-
mation of �a�, �b�, and �c� yields a value of one at each data point.

Figure 5. Zonations obtained from the synthetic data of Figures 2
and 3 for �a� two-, �b� three-, and �c� four-cluster solutions. Num-
bers identify the individual clusters. The primary colors represent
cluster memberships after conversion to equivalent hard cluster
models, whereas the color saturations indicate membership values
�e.g., high color saturation indicates a high value of the corre-
sponding membership function�.
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Figure 2a. Figure 6 shows crossplots of these porosity data with the
corresponding membership values for the two-, three-, and four-
cluster solutions. We assign to each cluster the corresponding me-
dian porosity determined from Figure 6; for these estimates, we
consider only data points with membership values greater than

80% of the maximum value of the respective clusters �e.g., if the
maximum membership value in any cluster is 0.9, then the 80%
line is drawn at 0.72�. Based on these estimates, the 2D porosity
distribution is then reconstructed using equation 2.

Figure 7 shows values of the input porosity model plotted on the
same 0.25-m grid used for the tomographic inversions together

with the porosity distributions recon-
structed from the two-, three-, and four-
cluster solutions. Overall, the recon-
structed porosity models are very similar
to the input model, regardless of the num-
ber of clusters considered. Other compu-
tations demonstrate that the results are
not greatly dependent on the choice of the
threshold used to determine the median
porosities of each cluster �i.e., values
varying from 60%–90% yielded similarly
good results�.

For the different FCM analyses, the
correlation coefficients and percent mean
differences between the original and re-
constructed porosity models range from
0.70–0.72 and from 3.08%–3.24% �Table
2�, respectively. Moreover, the average
porosities and standard deviations of all
reconstructed models are very close to
those of the input model �Table 3�.

FIELD STUDY

In the following section, we apply the
physical-property model integration and
petrophysical parameter estimation ap-
proaches to investigate a well-studied al-
luvial aquifer at the Kappelen test site in
western Switzerland �Figure 8a and b;
Kennedy et al., 2001; Flynn et al., 2004�.
This site is located in a forested area of
the former Alte Aare River floodplain.

We collected crosshole georadar and
seismic data below the groundwater table
in two nearly perpendicular tomographic
planes �Figure 8c�. The four 15-m-deep
boreholes were separated by about 20 m.
Drilling reports indicated that a 1-m-thick
humus layer was underlain by approxi-
mately 14 m of fluvial gravels and sands
followed by silty and clayey fine sands
that acted as an aquitard �Figure 8d�. At
the time of our surveys, the groundwater
table was at roughly 4 m depth.

The crosshole georadar data were ac-
quired with a 100-MHz antenna system.
For the crosshole seismic data we used a
sparker source and hydrophone receivers.
The source and receiver spacings were
uniformly 0.5 m for the georadar data and
0.2 and 0.25 m, respectively, for the seis-
mic data. This resulted in approximately

Figure 6. Relationships between porosities �Figure 2a� and FCM membership functions �e.g.,
Figure 4� along the two boreholes. �a�–�b� Two-cluster solution. �c�–�e� Three-cluster solu-
tion. �f�–�i� Four-cluster solution. Values above the dashed lines have membership values that
are greater than 80% of the maximum membership values for the respective clusters, and the
numerical values are the respective median porosities �.

Figure 7. �a� Input porosity model �Figure 2a� resampled to allow meaningful comparisons
with the other diagrams in the figure and reconstructed porosity distributions derived from �b�
two-cluster, �c� three-cluster, and �d� four-cluster solutions �see Figures 4 and 5 and Tables 2
and 3�. Synthetic logs extracted from the original porosity field �Figure 2a�, which are used for
the reconstructions, are also displayed.

H38 Paasche et al.



1500 georadar and 7000 seismic traces. The dominant frequencies
of the recorded georadar and seismic data were around 60 MHz
and 700 Hz, respectively, which corresponded at this site to domi-
nant wavelengths of 1.5 and 3 m.

Figure 9 shows typical examples of crosshole georadar and seis-
mic data gathers, together with the semiautomatic picks of the
direct-wave arrivals. Minor processing �dc-shift removal and
gentle 0-15-150-200-MHz zero-phase band-pass filtering� was ap-
plied to the georadar data to enhance the reliability of the semiau-
tomatic picking process. No processing was required for the seis-
mic data. Based on statistical repeatabilities, the picking accuracies
of the direct-wave arrivals were estimated to be around 2 ns and
0.04 ms for the georadar and seismic data, respectively. Reliable
amplitude estimates were not possible in some parts of the geora-
dar data where the direct waves interfered with critically refracted
arrivals generated at the groundwater table. This limitation reduced
the number of usable amplitude measurements by �7%. Ampli-
tudes of the direct seismic waves were not measured because more
than 50% of the first arrivals were clipped.

To avoid problems associated with any minor deviations of the
boreholes, we used a tomographic scheme that simultaneously in-
verted for velocities and borehole coordinates �Maurer, 1996;
Maurer and Green, 1997�. The rms differences between the pre-
dicted traveltimes based on the final tomograms and the observed
georadar and seismic traveltimes were less than 2 ns and 0.05 ms,
respectively, which were close to the corresponding estimated
picking uncertainties.

Figure 10 shows the resulting georadar velocity and attenuation
and seismic P-wave velocity tomograms for both planes. The geo-

Table 2. Correlation coefficients and mean differences of
reconstructed porosity distributions with respect to the
original porosity model (Figure 7).

Reconstruction
Correlation
coefficients

Mean
differences �%�

Two cluster 0.70 3.17

Three cluster 0.72 3.24

Four cluster 0.72 3.08

Table 3. Mean values and standard deviations of original
(Figure 2a), resampled (Figure 7a), and reconstructed
porosity models (Figures 7b–7d).

Model

Mean
porosities

�%�

Standard
deviations

�%�

Original �Figure 2a� 21.0 1.1

Resampled �Figure 7a� 21.0 1.1

Two-cluster reconstruction �Figure 7b� 21.2 1.0

Three-cluster reconstruction �Figure 7c� 21.3 1.0

Four-cluster reconstruction �Figure 7d� 21.2 1.0

Figure 8. The Kappelen hydrological test site is located in �a� west-
ern Switzerland in �b� a forested area close to the Alte Aare River.
The red box marks the area enlarged in �c�. �c� Crosshole geophysi-
cal data were collected between boreholes �BH� 5, 6, and 7 and be-
tween boreholes 6 and 9. Slug tests were performed at the locations
marked by crosses. �d� Typical example of a borehole litholog,
showing that the probed aquifer consists predominantly of fluvial
deposits.

Figure 9. Typical crosshole data gathers observed in the tomo-
graphic plane between boreholes 6 and 9. �a� Georadar source
gather after minor processing �transmitter at 6.98-m depth in bore-
hole 6� and �b� raw seismic receiver gather �receiver at 6.9-m depth
in borehole 6�. Crosses show the picked first arrivals. The coherent
energy arriving prior to the direct wave on the shallow traces in �a�
was refracted at the groundwater table.
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radar and seismic velocity tomograms �Figure 10a, b, e, and f� are
similar to each other. They indicate the subsurface is quasi-layered
with a subhorizontal zone characterized by low georadar and low
seismic velocities at 7–12 m depth. The thickness of this low-
velocity zone increases toward borehole 9. As for our synthetic
study, the georadar attenuation pattern differs somewhat from the
georadar and seismic velocity patterns.

Integration of physical-property models

Histographic crossplots in Figure 11 illustrate the interrelation-
ships of the tomographically determined parameters. We use FCM
to integrate the tomographic images represented in Figures 10 and
11 assuming two, three, and four clusters. As an example, Figure

12 shows the membership functions for the three-cluster solution.
The corresponding hard cluster versions of the two-, three-, and
four-cluster models are shown in Figure 13. The mean values and
standard deviations of the various clusters are given in Table 4. Al-
though all models in Figure 13 are approximately horizontally lay-
ered, there are significant lateral variations.

The NCE values for the two-, three-, and four-cluster solutions
are 0.74, 0.75, and 0.75, respectively. Based on these results and
accounting for the resolution of the geophysical data, the two- and
three-cluster solutions appear to be adequate. Cluster 1 in the two-
and three-cluster solutions outlines the same general subsurface re-
gions distinguished by low georadar and low seismic velocities
�Figures 10, 12, and 13�. In contrast, cluster 2 in the two-cluster so-
lution is represented in the three-cluster solution by clusters 2 and

3, which differ primarily in their georadar
attenuation values �Table 4�.

Petrophysical parameter
estimation

Natural gamma logs and the results of
direct-push slug tests �Butler et al., 2000�
provided our most reliable petrophysical
data at the Kappelen test site. Variations
in natural gamma-ray activity in counts
per second �cps�, widely regarded as a
proxy for lithological variations �Cripps
and McCann, 2000�, were measured at
0.05-m intervals along the boreholes
�Figure 8c� using a standard commercial
logging tool. Hydraulic conductivities
were estimated on the basis of nine slug
tests performed with a direct-push device.
Eight slug tests with a vertical spacing of
1 m were completed about 5 m to the east
of borehole 5, covering a depth range
from approximately 5.8–12.8 m �Figure
8c�. An additional single slug test was
carried out in the plane between bore-
holes 6 and 9, approximately 5 m to the
north of borehole 6 at a depth of about
12.3 m �Figure 8c�.

Figure 10. Results of tomographic inversions of the Kappelen crosshole data. Georadar veloc-
ity tomograms for borehole planes �a� 5-6-7 and �b� 6-9. Georadar attenuation tomograms for
borehole planes �c� 5-6-7 and �d� 6-9. Seismic P-wave velocity tomograms for borehole
planes �a� 5-6-7 and �b� 6-9. Circles and crosses along the boreholes delineate source and re-
ceiver locations, respectively.

Figure 11. For the tomograms displayed in Figure 10, the colored histographic plots illustrate the relationships between the tomographically
derived �a� georadar velocity and seismic P-wave velocity, �b� georadar velocity and georadar attenuation, and �c� georadar attenuation and
seismic P-wave velocity. Relative frequency equals frequency of values divided by total number of values.
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Figure 14 shows gamma-ray logs and
hydraulic conductivities together with the
extrapolated distributions of gamma-ray
activity and hydraulic conductivity based
on the three-cluster solution of Figure 13c
and d. To determine the distribution of
gamma-ray activity, we only use gamma-
log data from boreholes 5, 6, and 7, thus
allowing the data from borehole 9 to be
used as a test of the petrophysical param-
eter estimation procedure �see below�. It
is noteworthy that the 7.0–8.5 cps and
10−2.9 to 10−3.7 m/s ranges of extrapolated
gamma-ray and hydraulic conductivity
values are significantly lower than the
corresponding 5–10 cps and 10−2.9 to
10−5.0 m/s ranges of the observed values.

This phenomenon is attributable to a
combination of effects, including the lim-
ited resolution of the crosshole seismic
and georadar data sets, the inherent
smoothing and damping of the ray-based
tomographic inversion procedure, and the
averaging involved in the reconstruction
process �equation 2; Day-Lewis and
Lane, 2004; Moysey et al., 2005�.

Figure 15a compares the extrapolated
gamma-ray activity at borehole 9 �blue
line� to that recorded in the borehole
�black line�. To compensate for its lower
dynamic range, we also show the extrapo-
lated gamma-ray activity adjusted to have
the same standard deviation as the mea-
sured curve �red line�. Clearly, our FCM
cluster technique cannot predict the short-
wavelength undulations of the recorded
data, but the long-wavelength trend of re-
corded values is reasonably well repre-
sented by the extrapolated gamma-ray ac-
tivity.

We do not have sufficient data to test
thoroughly the extrapolations of the hy-
draulic conductivity estimates. Neverthe-
less, with the exception of the estimate at
about 7 m depth, the results shown in
Figure 15b demonstrate that the general
trend of the extrapolated hydraulic con-
ductivities is compatible with the ob-
served values on which they are partially
based.

Despite the rather limited database, the
nearly coincident zones of relatively high
gamma-ray activity and high hydraulic
conductivity suggest that the fluvial grav-
els and sands between 1- and 14-m depth
are to a first order horizontally continu-
ous, but that significant vertical and hori-
zontal heterogeneity exists. This assertion
is consistent with information extracted

Figure 12. Membership functions resulting from the FCM cluster analysis using a three-
cluster solution for the tomograms shown in Figure 10.

Figure 13. Zoned models of the probed subsurface region for �a�–�b� two-, �c�–�d� three-, and
�e�–�f� four-cluster solutions. Numbers identify the individual clusters. The primary colors de-
note memberships to the various clusters after conversion to hard cluster models, whereas the
color saturations indicate the membership values �e.g., high color saturation indicates a high
value of the corresponding membership function�.
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from a large number of boreholes at the Kappelen test site �R.
Flynn, personal communication, 2005�.

CONCLUSIONS

We explore the utility of the FCM clustering technique for com-
bining information contained in different physical-property models
to form a single zoned multiparameter model and for estimating
the spatial distribution of petrophysical parameters from limited
geophysical and petrophysical databases. FCM cluster analysis en-
ables us to identify and map zones characterized by similar or con-
sistent relationships between the estimated physical properties.
Membership functions, which provide quantitative information on
the similarity of data that define the clusters, allow us to assess the
uniformity or heterogeneity of the clusters. One drawback of most
clustering techniques is the absence of robust criteria for determin-
ing the optimum number of clusters for a given investigation. This
problem can be alleviated by �1� using statistical cluster validation
criteria, �2� considering the resolution of the various data sets, and/
or �3� comparing the various solutions obtained using different
numbers of clusters with complementary geological, hydrological,
and geophysical information.

An important outcome of this study is the development of a
method for estimating the spatial distribution of petrophysical pa-
rameters �e.g., lithologies, porosities, and hydraulic conductivities�
that cannot be determined uniquely from the physical-property
models or geophysical data. The petrophysical parameters of inter-
est must only be known at a limited number of locations within the
probed subsurface volume — for example, along boreholes. To en-
sure meaningful estimates of the spatial distribution of petrophysi-

Table 4. Mean values and standard deviations for the
various clusters shown in Figure 13.

Model
Cluster
number

Georadar
velocities
�m/�s�

Georadar
attenuations

�1/m�

P-Wave
velocities

�m/s�

Two-cluster
solution �Figure
14a and b�

1 73.8 ± 1.3 0.364 ± 0.020 2264 ± 37
2 76.5 ± 1.5 0.373 ± 0.017 2345 ± 38

Three-cluster
solution �Figure
14c and d�

1 73.4 ± 1.2 0.364 ± 0.018 2252 ± 31
2 76.4 ± 1.6 0.387 ± 0.012 2329 ± 45
3 75.9 ± 1.6 0.357 ± 0.012 2341 ± 38

Four-cluster
solution �Figure
14e and f�

1 73.3 ± 1.2 0.352 ± 0.014 2255 ± 32
2 77.2 ± 1.4 0.383 ± 0.012 2352 ± 36
3 75.8 ± 1.4 0.357 ± 0.010 2344 ± 35
4 74.4 ± 1.3 0.385 ± 0.013 2269 ± 36

Figure 14. For the Kappelen test site, estimates of the spatial distri-
butions of �a�–�b� gamma-ray activity and �c�–�d� hydraulic con-
ductivity based on the three-cluster solution �Figures 13c and 13d�
and corresponding natural gamma-log and direct-push �DP� slug-
test data. Only the gamma-ray logs from boreholes 5, 6, and 7 were
used to constrain the spatial distributions of gamma-ray activity.
The gamma-ray log from borehole 9 was used to test the results
�see Figure 15a�. In �c� and �d�, diamonds, triangles, and dots rep-
resent hydraulic conductivities greater than 10−3.4, from 10−3.4 to
10−4.0, and less than 10−4.0 m/s, respectively.

Figure 15. �a� Comparison of extrapolated gamma-ray activity
�blue and red lines� with values measured in borehole 9 �black
line�. The extrapolated gamma-ray activity represented by the red
line has been scaled to have the same standard deviation as the
measured data represented by the black line �see text for the rea-
sons for this processing step�. �b� Comparison of extrapolated hy-
draulic conductivities �blue and red crosses� with direct-push slug-
test measurements �black crosses�. The extrapolated hydraulic
conductivities represented by the red crosses are scaled to have the
same standard deviation as the measured data represented by the
black crosses �see text for the reasons for this processing step�.
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cal parameters, they must be correlated, albeit imperfectly, to the
physical properties used to determine the zonations. It is important
to emphasize that the nature of these interrelations does not need to
be known or specified explicitly. Our tests on synthetic and field
data suggest that within the resolution of the recorded geophysical
data, the estimated petrophysical parameter distributions are realis-
tic; most importantly, their overall quality is not strongly depen-
dent on the number of predefined clusters. A major advantage of
this petrophysical parameter estimation approach lies in the quan-
titative integration of multiple physical-property models, whereas
more traditional approaches based on empirical or semiempirical
expressions usually only relate individual petrophysical param-
eters to individual physical properties �e.g., equations 3–6�. The
model integration and parameter estimation approach described in
this paper may be applicable to a wide range of 2D and 3D geo-
physical data and techniques.
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