
S
t

J

b
I
l
k
m
e
s
t

g

p

d
©

GEOPHYSICS, VOL. 71, NO. 5 �SEPTEMBER-OCTOBER 2006�; P. C69–C79, 13 FIGS., 1 TABLE.
10.1190/1.2329865

D
ow

nl
oa

de
d 

06
/2

4/
16

 to
 1

78
.2

50
.2

50
.2

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

mall-angle AVO response of PS-waves in
ilted transversely isotropic media
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ABSTRACT

Field records for small source-receiver offsets often contain
intensive converted PS-waves that may be caused by the influ-
ence of anisotropy on either side of the reflector. Here, we study
the small-angle reflection coefficients of the split converted PS1-
and PS2-waves �RPS1

and RPS2
� for a horizontal interface separat-

ing two transversely isotropic �TI� media with arbitrary orienta-
tions of the symmetry axis.

The normal-incidence reflection coefficients RPS1
�0� and

RPS2
�0� vanish when both half-spaces have a horizontal symme-

try plane, which happens if the symmetry axis is vertical or hori-
zontal �i.e., if the medium is VTI or HTI�. For a tilted symmetry
axis in either medium, however, the magnitude of the reflection
coefficients can reach substantial values that exceed 0.1, even if
the anisotropy strength is moderate. To study the influence exert-
ed by the orientation of the symmetry axis and the anisotropy pa-
rameters, we develop concise weak-contrast, weak-anisotropy-

approximations for the PS-wave reflection coefficients and com-
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are them with exact numerical results. In particular, the analytic
olutions show that the contributions made by the Thomsen pa-
ameters � and � and the symmetry-axis tilt � to the coefficients

PS1
�0� and RPS2

�0� can be expressed through the first derivative
f the P-wave phase velocity at normal incidence. If the symme-
ry-axis orientation and anisotropy parameters do not change
cross the interface, the normal-incidence reflection coefficients
re insignificant, regardless of the strength of the velocity and
ensity contrast. The AVO �amplitude variation with offset� gra-
ients of the PS-waves are influenced primarily by the anisotropy
f the incidence medium that causes shear-wave splitting and de-
ermines the partitioning of energy between the PS1 and PS2

odes.
Because of their substantial amplitude, small-angle PS reflec-

ions in TI media contain valuable information for anisotropic
VO inversion of multicomponent data. Our analytic solutions
rovide a foundation for linear AVO-inversion algorithms and
an be used to guide nonlinear inversion that is based on the exact
eflection coefficients.
INTRODUCTION

In many case studies, significant converted PS-wave energy has
een observed at zero and near-zero offsets �e.g., Thomsen, 2002�.
n principle, this phenomenon can be explained by such factors as
ateral heterogeneity and nongeometric wave propagation �Tsvan-
in, 1995�. However, neither of those factors can account for nor-
al-incidence far-field PS reflections in layer-cake subsurface mod-

ls. Another possible reason for prominent P-to-S conversion at
mall offsets is the presence of velocity anisotropy above or below
he reflector.

In this paper, we study the influence of anisotropy on the small-an-
le reflected PS-wave that generally splits into two modes traveling

Manuscript received by the Editor September 20, 2005; revised manuscrip
ublished online September 20, 2006.

1Colorado School of Mines, Center for Wave Phenomena, Department
ix.mines.edu; ilya@dix.mines.edu.
2006 Society of Exploration Geophysicists.All rights reserved.
ith different velocities — PS1 and PS2. The main focus of the paper
s on the normal-incidence PS-wave reflection coefficients that van-
sh only when the reflector coincides with a symmetry plane in both
alf-spaces. We restrict ourselves to the most commonly used type
f anisotropy — transverse isotropy �TI� with an arbitrary orienta-
ion of the symmetry axis. If the reflector is horizontal, generation of
onverted energy at vertical incidence requires the symmetry axis in
t least one of the TI half-spaces to deviate from both the vertical and
orizontal directions �i.e., the medium cannot have up-down sym-
etry�.
Approximate weak-contrast reflection and transmission coeffi-

ients for isotropic media can be found, for example, in Aki and Ri-
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hards �2002� and Shuey �1985�. Banik �1987�, Thomsen �1993�,
nd Rüger �1996, 1998, 2001� developed approximate P-wave re-
ection coefficients for VTI and HTI media. Rüger’s results also can
e applied in the symmetry planes of orthorhombic media. Pšenčík
nd Vavryčuk �1998� and Vavryčuk and Pšenčík �1998� presented
eak-contrast, weak-anisotropy P-wave reflection and transmission

oefficients for arbitrary anisotropic symmetries.
Closed-form solutions for the reflection coefficients of PS-waves

n isotropic media were given by Donati �1998�, Larsen et al. �1999�,
lvarez et al. �1999�, and Nefedkina and Buzlukov �1999�. Rüger

1996, 2001� derived approximate PS-wave reflection coefficients
or VTI media and for the symmetry planes of HTI media. However,
s mentioned above, the normal-incidence reflection coefficients of
ode conversions vanish for vertical and horizontal transverse isot-

opy because both models are characterized by up-down symmetry.
Weak-contrast, weak-anisotropy approximations for PS-wave re-

ection and transmission coefficients were extended to arbitrary an-
sotropy by Vavryčuk �1999�, Jílek �2002a�, and Artola et al. �2005�.
ílek �2002b� also developed algorithms for joint inversion of PP-
nd PS-wave reflection coefficients in azimuthally anisotropic me-
ia. Vavryčuk �1999� and Jílek �2002b� pointed out that normal-inci-
ence PS-wave reflection coefficients do not vanish if there is a jump
n the stiffnesses c34 and/or c35 across the reflector. Artola et al.
2005� discussed the presence of normal-incidence PS-wave energy
n synthetic seismograms computed for azimuthally anisotropic

odels.
Here, we show that the tilt of the symmetry axis in TI media can

reate fairly strong normal-incidence PS reflections from horizontal
nterfaces. �This tilt also makes the time delays of split PS-waves az-
muthally dependent, and this was exploited by Angerer et al. �2002�
n their characterization of dipping fractures.� Such tilted transverse-
y isotropic �TTI� models describe dipping shale layers in fold-and-
hrust belts �e.g., the Canadian Foothills� and near salt domes, dip-
ing fracture sets, and progradational sequences. Application of the
eak-contrast, weak-anisotropy approximation helps us to identify

he parameter combinations responsible for the normal-incidence
eflection coefficients and AVO gradients of PS-waves. We also
ompute the exact reflection coefficients to assess the accuracy of
he linearized solutions and confirm the substantial magnitude of the
mall-angle PS-wave reflectivity for a range of TTI models.

ANALYTIC BACKGROUND

We start by setting up the system of linear equations that can be
sed to compute the exact reflection/transmission coefficients from
he boundary conditions. The approximate �linearized� reflection/
ransmission coefficients are then obtained by applying the first-or-
er perturbation theory.

xact solution of the reflection/transmission problem

The reflection/transmission problem for an incident plane wave is
olved by satisfying the boundary conditions at the reflector. For a
elded contact of the two half-spaces, these boundary conditions are

he continuity of traction and displacement, which can be written in
he following compact form �e.g., Vavryčuk and Pšenčík, 1998�:

C · U = B , �1�

here C corresponds to the displacement-stress matrix for the re-
ected and transmitted waves, B is the displacement-stress vector of
he incident wave, and U is the vector of the reflection R and trans-
ission T coefficients of the waves P, S1, and S2:

C = �
g1

�1� g1
�2� g1

�3� − g1
�4� − g1

�5� − g1
�6�

g2
�1� g2

�2� g2
�3� − g2

�4� − g2
�5� − g2

�6�

g3
�1� g3

�2� g3
�3� − g3

�4� − g3
�5� − g3

�6�

X1
�1� X1

�2� X1
�3� − X1

�4� − X1
�5� − X1

�6�

X2
�1� X2

�2� X2
�3� − X2

�4� − X2
�5� − X2

�6�

X3
�1� X3

�2� X3
�3� − X3

�4� − X3
�5� − X3

�6�

� , �2�

B = − �g1
�0�, g2

�0�, g3
�0�, X1

�0�, X2
�0�, X3

�0��T, �3�

U = �RS1, RS2, RP, TS1, TS2, TP�T. �4�

ere, g and X are the polarization and amplitude-normalized trac-
ion vectors, respectively, obtained by solving the Christoffel equa-
ion. The superscript denotes the reflected/transmitted modes, ac-
ording to the following convention: 0 = incident wave; 1 =
eflected S1-wave; 2 = reflected S2-wave; 3 = reflected P-wave;
= transmitted S1-wave; 5 = transmitted S2-wave; and 6 = trans-
itted P-wave. To compute the reflection/transmission coefficients,

quation 1 can be solved numerically for U.

eak-contrast, weak-anisotropy approximation

The main goal of using linearized approximations here is to gain
hysical insight into the dependence of the reflection coefficients on
he medium’s parameters and incidence angle. Following the ap-
roach of Vavryčuk and Pšenčík �1998� and Jílek �2002a, 2002b�,
e linearize the boundary conditions by assuming a weak contrast in

he elastic parameters across the interface and weak anisotropy in
oth half-spaces �see Appendix A�. A homogeneous isotropic full
pace divided by a fictitious planar interface is taken as the back-
round medium. The elastic parameters aijkl

�I� = cijkl
�I� /��I� �density-nor-

alized stiffness coefficients of the incidence �I = 1� and reflecting
I = 2� half-spaces� are expressed as small perturbations �aijkl

�I� from
he background values. The exact boundary conditions �equation 1�
re then linearized in the small perturbations to find approximate PS-
ave reflection coefficients.
Consider an incident P-wave traveling in the negative z-direction

n the �x,z�-plane; the reflector coincides with the plane z = 0. The
lowness vectors of the incident, reflected, and transmitted waves in
he background medium can be written as �Figure 1�:

p0�0� = p0�6� = �p1
0, 0, − p3

0P� ,

p0�1� = p0�2� = �p1
0, 0, p3

0S� ,

p0�3� = �p1
0, 0, p3

0P� ,

p0�4� = p0�5� = �p1
0, 0, − p3

0S� . �5�

The P-wave unit polarization vectors in the isotropic background
re given by
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g0�0� = g0�6� = �p0�0�,

g0�3� = �p0�3�, �6�

here � is the P-wave background velocity.

olarization angle

The SV and SH polarization components can be obtained by pro-
ecting the S-wave polarization vector in the background onto the in-
idence �x,z� plane and the direction orthogonal to it, respectively.
or the perturbation approach to work in the presence of anisotropy,

he chosen polarization vectors of the reflected shear waves in the
ackground isotropic medium �g0�1� and g0�2�� should be close to the
ctual polarizations �g�1� and g�2�� �Jech and Pšenčík, 1989�. Thus, the
V- and SH-wave polarization vectors �gSV and gSH� in the isotropic
ackground must be rotated by an angle �, called the polarization
ngle, which is defined uniquely away from singular directions
Jech and Pšenčík, 1989�. Because the polarization angle is not a lin-
ar function of the perturbations �aijkl nor is it necessarily small, the
ontribution of � complicates the derivation of the analytic expres-
ions for the PS-wave reflection coefficients.

If the polarization angle is known, the polarization vectors of the
ackground shear waves S1

0 and S2
0 �g0�1� and g0�2�� can be determined

y rotating the SV- and SH-wave polarizations counterclockwise by
he angle � in the plane perpendicular to the background slowness
ector p0�1� �Figure 1�. Thus, g0�1� and g0�2� are given by

g0�1� = ��p3
0S cos �, sin �, − �p1

0 cos �� ,

g0�2� = �− �p3
0S sin �, cos �, �p1

0 sin �� , �7�

here � is the S-wave background velocity. Equation 7 shows that
hen the medium is isotropic or VTI and � = 0 �Jech and Pšenčík,
989�, S1

0 reduces to SV and S2
0 reduces to SH. Similarly, the polar-

zation vectors of the transmitted S-waves can be written as

g0�4� = �− �p3
0S cos �, sin �, − �p1

0 cos �� ,

g0�5� = ��p3
0S sin �, cos �, �p1

0 sin �� , �8�

here � is the corresponding polarization angle. Because we are
oncerned with the reflected S-waves only, computation of � is un-
ecessary because g0�4� and g0�5� are not involved in the linearized re-
ection coefficients �equation A-11�.
If the medium is TTI, the polarization vector of the PS1-wave lies

n the plane formed by the symmetry axis and the PS1 slowness vec-
or �i.e., it is the PSV-wave in the coordinate system in which the
ymmetry axis is taken as vertical�, whereas the PS2-wave would be
olarized orthogonal to that plane. �Note that PS1 is not necessarily
he fast PS mode.� Thus, in this case � is the angle between the back-
round SV-wave polarization vector and the plane formed by p0(1)

nd the symmetry axis of the incident TTI half-space. Using simple
ector algebra and dropping the cubic and higher-order terms in
in 	, we find
cos � �
1

2g2A
�2g2 cos 
1 sin �1 + 2g cos �1 sin 	

+ cos s
1 sin �1 sin2 	� , �9�

here

A � 	sin2 �1 +
cos 
1 sin 2�1 sin 	

g

+
�cos2 �1 − sin2 �1 cos2 
1�sin2 	

g2 
1/2

.

ere, �1 and 
1 are the tilt �i.e., the angle with the vertical� and the
zimuth, respectively, of the symmetry axis of the incidence TI half-
pace, and g � �/�. Although � can be computed from equation 9,
ts presence causes difficulties in deriving the approximate PS-wave
eflection coefficients because � depends on the incidence angle 	 in
rather complicated way. For an incident TI half-space, � = 0 only
hen the symmetry axis is vertical ��1 = 0°� or when the incidence
lane coincides with the vertical-symmetry-axis plane �i.e., with the
ertical plane that contains the symmetry axis�. Note that the orien-

igure 1. �a� Conventions used in solving the reflection-over-trans-
ission problem. The incidence �x,z�-plane contains the interface

ormal n and the background slowness vector p0�0� of the incident P-
ave. The background S-wave slowness vectors are denoted by
0�1� = p0�2� �reflected� and p0�4� = p0�5� �transmitted�; 	 and 	s are the
hase angles of the incident P-wave and reflected S-wave. The vec-
or g denotes the background polarizations. �b� Also here, g0�1� and
0�2� are the chosen polarization vectors of the reflected S1- and
2-waves, respectively, in the background medium. These vectors
re obtained by rotating the background SV- and SH-wave polariza-
ions �gSV and gSH� by the polarization angle � in the plane orthogo-
al to the slowness vector p0�1�. If the incidence half-space is isotro-
ic or VTI, � = 0 �after Jílek, 2002b�.
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ation of the symmetry axis of the reflecting TI half-space does not
nfluence the angle �.

To express the PS-wave reflection coefficient as a simple trigono-
etric function of 	, cos � must be obtained as a polynomial of

in 	. This cannot be done, however, without assuming that sin2 �1 is
ufficiently large, except for the special cases of normal incidence
	 = 0� when � �equation 9� reduces to 
1 and of the incidence HTI
alf-space ��1 = 90°� when

cos �HTI �
cos 
1

2g2 �2g2 − sin2 
1 sin2 	� . �10�

Because of this problem, the linearized PS-wave reflection coeffi-
ients for oblique incidence angles are given here only if the inci-
ence half-space is isotropic, VTI, HTI, or TTI with the symmetry
xis confined to the incidence plane. For all other cases of oblique in-
idence of P-waves, we analyze only the exact reflection coeffi-
ients.

igure 2. For an isotropic incidence half-space overlying a TTI re-
ecting half-space, the PS-wave at normal incidence is polarized
vector gPS�0�� in the symmetry-axis plane of the reflecting half-
pace. For oblique incidence, we analyze the two components of the
S-wave �PSV and PSH� separately.

igure 3. Accuracy of the approximate solutions for the normal-inci-
ence PS-wave reflection coefficient at an isotropic-over-TTI inter-
ace. The solid black line is the exact coefficient, the dash-dotted
ray line is computed from equation 13 with the exact first derivative
f the P-wave phase velocity, and the dashed black line is the fully
inearized approximation 12. The tilt �2 of the symmetry axis varies
rom 0° �VTI� to 90° �HTI�. The other model parameters are listed in
able 1 �the value of 
 does not influence R �0��.
2 PS
NORMAL-INCIDENCE
REFLECTION COEFFICIENT

The normal-incidence reflection coefficient is also called the in-
ercept in AVO analysis. The general linearized equation for small-
ngle PS-wave reflection coefficients can be written as �Jílek,
002b; Thomsen, 2002�

RPS = RPS�0� + G sin 	 , �11�

here RPS�0� is the normal-incidence reflection coefficient and G is
he AVO gradient. In this section, we discuss the dependence of

PS�0� on the parameters of TTI media.

sotropic-over-TTI interface

First, consider an incidence isotropic half-space overlying a re-
ecting TTI half-space. The normal-incidence PS-wave in this case

s polarized in the symmetry-axis plane of the reflecting half-space
Figure 2�. In general, the reflected PS-wave can be represented as
he vector sum of the PSV- and PSH-waves. For normal incidence,
owever, the incidence plane is undefined, and the PS-wave can be
tudied as a whole. We describe transverse isotropy by the tilt � and
zimuth 
 of the symmetry axis, the symmetry-direction velocities
f the P- and S-waves �VP0 and VS0�, and the Thomsen anisotropy pa-
ameters �, �, and � defined with respect to the symmetry axis �Ts-
ankin, 2005�.

The linearized PS-wave normal-incidence reflection coefficient is
iven by

RPS�0� =
g2 sin 2�2�cos 2�2��2 − �2� + �2�

4�1 + g�
�12�

=
g2

4�1 + g�
1

VP0,2
�dVP,2���

d�
�

�=�2

, �13�

here the subscript 2 corresponds to the reflecting half-space and
P,2��� is the P-wave phase velocity in the reflecting half-space as a

unction of the phase angle � with the symmetry axis. It is interesting
hat the normal-incidence PS-wave reflection coefficient is propor-
ional to the first derivative of the P-wave phase velocity computed
t normal incidence �� = �2�.Although this derivative is supposed to
e linearized to make equation 13 equivalent to equation 12, the ac-
uracy of the weak-contrast, weak-anisotropy approximation can be
ncreased by using the exact value of this derivative in equation 13
Figure 3�. The model parameters used in Figure 3 and the following
gures are given in Table 1.
As expected, equation 12 deteriorates with increasing absolute

alues of the anisotropy parameters �Figure 4a�. The linearized
PS�0� is close to the exact value for models approaching VTI and
TI that have weak PS reflectivity, but the accuracy of the approxi-
ations decreases for models with intermediate tilts � �Figures 3 and

a�. Numerical testing also shows that equations 12 and 13 deviate
rom the exact solution with the increasing P-to-S velocity ratio in
he background g � �/� and may become inadequate for soft rocks,
uch as underwater sediments. On the whole, however, the linear-
zed expressions correctly reproduce the behavior of the normal-in-
idence reflection coefficient for typical moderately anisotropic TTI
odels.
The very existence of the normal-incidence PS reflection is

aused by the tilt of the symmetry axis away from the vertical and
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orizontal directions. Therefore, RPS�0� goes to zero for both a VTI
�2 = 0°� medium and an HTI ��2 = 90°� medium; the dependence
n �2 may have minima and maxima at intermediate tilts �Figure 4�.
or the model in Figure 4a, RPS�0� attains values as high as 0.1 for

2 = 0.3; in general, the magnitude of RPS�0� increases with �2.
The dependence of the reflection coefficient on the parameter �2 is
ore complicated �Figure 4b�. Apart from the anisotropy parame-

ers, the normal-incidence reflection coefficient also increases with
he velocity ratio g.

The coefficient RPS�0� is independent of the parameter �2 because
he P-wave at normal incidence does not excite SH-waves �governed
y �2� in the reflecting medium. The variation of RPS�0� with the pa-
ameters �2, �2, and �2 in Figure 4 can be explained using approxima-
ion 12. The influence of �2 and �2 on RPS�0� depends strongly on the
ilt �2 of the symmetry axis �Figure 5�. If the function of �2 multiplied
ith �2 and �2 becomes zero, the corresponding anisotropy parame-

er makes no contribution to RPS�0�. For example, according to ap-
roximation 12, �2 should have no influence on RPS�0� at �2 = 45°.
his result is generally supported by the computations of the exact

eflection coefficient in Figure 4b, although the curves correspond-
ng to different �2 values do not intersect at exactly the same point.

For small tilts �2, �2 has a greater influence on RPS�0� than does �2,
hereas for larger �2 values, the opposite is true. This dependence of

PS�0� on the anisotropy parameters is explained by the behavior of
he P-wave phase-velocity function in TI media. At small angles
ith the symmetry axis, the P-wave velocity in equation 13 is con-

rolled by �2, whereas the contribution of �2 increases toward the
sotropy plane �Thomsen, 1986; Tsvankin, 2005�.

TI-over-TTI interface

Next, we consider the normal-incidence PS reflection for a model
n which the incidence half-space also is tilted TI. When the inci-
ence medium is anisotropic, the PS reflection splits into the PS1 and
S2 modes, which have different normal-incidence reflection coeffi-
ients �RPS1

�0� and RPS2
�0�� and AVO gradients. According to our

onvention, the polarization vector of the PS1-wave lies in the plane

able 1. Medium parameters used in the numerical tests. For
ncidence half-space are VP0,1 = 2.9 km/s, VS0,1 = 1.5 km/s, and

1.8 km/s, and �2 = 2.2 g/cm3. For isotropic half-spaces, the
he parameters not listed in the table are specified on the plo

igure
umber Interface type Incidence ha

�1 �1 �1

ISO/TTI 0 0 0

TTI/VTI 0.3 0.1 0.1

TTI/TTI 0.2 –0.1 0.1

ISO/TTI 0 0 0

0a TTI/TTI

0b TTI/TTI 0.2 0.1 0.1

1a and b TTI/TTI

2 TTI/TTI 0.2 0.1 0.1

3 TTI/TTI
ormed by the slowness vector and the symmetry axis �i.e., it would
e the SV mode if the symmetry axis were vertical�. The polarization
ector of the PS2-wave is perpendicular to that plane �i.e., it is the SH
ode� �Figure 6�. Note that generally the PS1-wave is not polarized

n the horizontal plane, so it is not a “pure” shear mode in terms of its
olarization. To explain the influence of the parameters of both half-
paces on the reflection coefficients, we study the linearized approx-
mations for RPS1

�0� and RPS2
�0�.

Another complication caused by tilted transverse isotropy in the
ncidence medium is that the waves PS1 and PS2 with vertical slow-
ess vectors �the normal-incidence reflections� are no longer record-
d at zero offset. As follows from the results of Tsvankin and Grech-
a �2002� and Tsvankin �2005�, the normal-incidence PS-wave re-
ection coefficient corresponds to the offset of the PS traveltime
inimum in common-midpoint �CMP� geometry. Consequently, the

lowness vectors of the zero-offset PS reflections are not vertical.Al-
hough the analysis below focuses primarily on the normal-inci-
ence reflections corresponding to the vertical slowness vector, we
lso give a comparison of the two reflection coefficients for a typical
TI medium.

odel with aligned symmetry planes

If the azimuth of the symmetry axis is the same above and below
he reflector �i.e., if 
1 = 
2�, the vertical plane that contains both
ymmetry axes represents a plane of symmetry for the whole model.
n this case, the P-wave at normal incidence �i.e., with a vertical
lowness vector� excites only one �PS1� wave polarized in the sym-
etry-axis plane:

RPS1
�0� =

g2

4�1 + g�
�− sin 2�1�cos 2�1��1 − �1� + �1�

+ sin 2�2�cos 2�2��2 − �2� + �2� �14�

odels, the symmetry-direction velocities and densities in the
2.0 g/cm3; in the reflecting half-space, VP0,2 = 3.3 km/s, VS0,2
S-wave velocities are defined by VP0 and VS0, respectively.

e Reflecting half-space


1 �2 �2 �2 �2 
2

– 0.4 0.2 0.11

0.3 0.15 0.11 0° –

0.2 –
0.1

0.1 60°

– 0.3 0.15 0.11 60°

60° 0.3 0.15 0.11 30° 30°

60° 30° 30°

Same as in Figure 10a and b

0.3 0.15 0.11 30° 30°

Except for 
2, same as in Figure 12
all m
�1 =

P- and
ts.

lf-spac

�1

–

60°

–

60°

60°

60°
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=
g2

4�1 + g�	−
1

VP0,1
�dVP,1���

d�
�

�=�1

+
1

VP0,2
�dVP,2���

d�
�

�=�2


 , �15�

nd

RPS2
�0� = 0. �16�

igure 4. Dependence of the normal-incidence PS-wave reflection
oefficient for an isotropic-over-TTI interface on the parameters �a�
2 and �b� �2. The solid lines mark the exact RPS�0�, and the dashed
ines on plot �a� represent the linearized approximation 12. The den-
ities and symmetry-direction velocities are listed in the title for Ta-
le 1.

igure 5. Functions of �2 multiplied with �2 �black line� and �2 �gray
ine� in equation 12. These curves help to explain the influence of �2

nd �2 on RPS�0� for different tilts �2 in Figures 4a and b.

igure 6. For an incidence TI half-space, the polarization vector g0�1�

f the PS1-wave lies in the plane formed by the slowness vector and
he symmetry axis �i.e., it would correspond to the SV-wave, if the
ymmetry axis were vertical�. The vector g0�2� of the PS2-wave is per-
endicular to that plane �SH-wave�.
In keeping with the symmetry of the problem, the coefficient
PS1

�0� vanishes when both half-spaces are either VTI or HTI, and
in 2�1 = sin 2�2 = 0. RPS1

�0� is a function of both tilts ��1 and �2�
nd all anisotropy parameters except for �1 and �2 — the parameters
esponsible for SH-wave propagation in TI media.

The term involving �1, �1, and �1 in equation 14 has the same form
but the opposite sign� as that involving �2, �2, and �2. Thus the con-
lusions drawn above for the influence of �2, �2, and �2 �Figure 5� ap-
ly to �1, �1, and �1 as well. If both TI half-spaces have the same ori-
ntation of symmetry axes and the same parameters � and �, RPS1

�0�
anishes, even though there may be a jump in the other parameters
cross the interface. Although this result is strictly valid only in the
eak-contrast, weak-anisotropy limit, the exact coefficient RPS1

�0�
or models with �1 = �2, 
1 = 
2, �1 = �2, and �1 = �2 is quite small
see below�.

As mentioned above, if the incidence half-space is anisotropic,
he normal-incidence PS-wave reflection coefficient discussed here

ay be different from the reflection coefficient at zero offset �Figure
�. However, when the incidence medium is VTI or HTI, these two
oefficients are identical. For a tilt of �1 = 50° in Figure 7, the zero-
ffset reflection coefficient of the PS1-wave is almost 40% larger by
bsolute value than the normal-incidence coefficient that determines
he reflection amplitude at the traveltime minimum in a CMP gather.

eneral TTI-over-TTI model

If the symmetry axis has different azimuths above and below the
eflector, then a P-wave at normal incidence excites both PS modes.
he approximate solutions for the reflection coefficients RPS1

�0� and
PS2

�0� are

RPS1
�0� =

g2

4�1 + g�
�− sin 2�1�cos 2�1��1 − �1� + �1�

+ cos�
2 − 
1�sin 2�2�cos 2�2��2 − �2� + �2�

�17�

=
g2

4�1 + g�	−
1

VP0,1
�dVP,1���

d�
�

�=�1

+ cos�
2 − 
1�
1

VP0,2
�dVP,2���

d�
�

�=�2


 , �18�

RPS2
�0� =

g2

4�1 + g�
�sin�
2 − 
1�sin 2�2�cos 2�2��2 − �2�

+ �2� �19�

=
g2

4�1 + g�
sin�
2 − 
1�

1

VP0,2
�dVP,2���

d�
�

�=�2

.

�20�

It is clear from the symmetry of the model �TTI-over-TTI� that the
ormal-incidence reflection coefficients should depend just on the
ifference 
2 − 
1, which is confirmed by equations 17–20. Indeed,
simultaneous azimuthal rotation of both symmetry axes can

hange only the azimuthal direction of the polarization vectors of the
S-waves. When the vertical-symmetry planes of the two TI half-
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paces coincide �when 
1 = 
2�, equations 17 and 18 reduce to
quations 14 and 15, respectively, and RPS2

�0� = 0.
Despite the relative azimuthal rotation of the symmetry axes, the

erms involving the tilt of the symmetry axis and the anisotropy pa-
ameters in equations 17 and 19 keep the same form as the corre-
ponding terms for the simpler isotropic-over-TTI model examined
bove. Both linearized reflection coefficients are governed just by
he velocity ratio g, the azimuthal angle between the symmetry axes,
nd the derivatives of the P-wave phase velocity. This result is par-
icularly surprising for the PS2-wave �the SH-wave� whose velocity
fter the reflection is controlled by the parameter �1, which does not
ontribute at all to the coefficient RPS2

�0�. The absence of the � pa-
ameters in equations 17 and 19 can be explained by the indepen-
ence of the stiffness coefficients c34 and c35 �which are responsible
or RPS�0�� from both �1 and �2. It also is noteworthy that the param-
ters of the reflecting half-space do not contribute to RPS1

�0� when
he symmetry axes lie in orthogonal planes �i.e., �
1 − 
2� = 90°�.

As we discussed above, if both TI half-spaces have the same
-wave phase-velocity functions �i.e., the same parameters 
, �, �,
nd ��, the linearized RPS1

�0� and RPS2
�0� �equations 17–20� go to

ero. Figure 8 confirms that the exact coefficient RPS2
�0� in this case


1 = 
2� is indeed insignificant �although not exactly zero�. On the
ther hand, if the symmetry axes are tilted in opposite directions
rom the vertical �i.e., if �1 = �2, but 
1 − 
2 = 180°�, the normal-
ncidence reflection coefficient may exceed 0.1 even for moderately
nisotropic models �Figure 8�.

AVO GRADIENTS

TheAVO gradients of the split PS-waves can be computed numer-
cally by estimating the best-fit initial slope of the exact reflection
oefficient expressed as a function of sin 	. In the linearized weak-
nisotropy, weak-contrast approximation, the gradient G is obtained
xplicitly as the multiplier of sin 	 �equation 11�. The approximate
VO gradients of the waves PS1 and PS2 are given inAppendix B.

sotropic-over-TTI interface

If the incidence medium is isotropic, wave PS1 becomes an SV
ode polarized in the incidence plane, and wave PS2 represents an
H-wave. Because there is no P-to-SH conversion in isotropic me-
ia, the gradient GPS2

= GPSH is purely anisotropic, although GPS1
=

PSV contains both isotropic and anisotropic terms �equations B-1
nd B-2�.

In the linearized approximation, the reflection coefficients for iso-
ropic media coincide with the isotropic terms in the coefficients for
he isotropic-over-TTI interface �Appendix B�. For example, the ex-
ression for GPSV reduces to the familiar gradient for isotropic media
e.g., Nefedkina and Buzlukov, 1999�, if �2 = �2 = �2 = 0. Numeri-
al testing shows that for common values of the velocity ratio g, the
VO gradients are not distorted significantly by the anisotropy �Fig-
re 9�. The influence of the anisotropy in the reflecting half-space
rimarily changes the normal-incidence coefficient RPS�0�, which
oes to zero in the isotropic model. Although the AVO gradients of
oth PS-waves vary with azimuth, their average values are close to
hose for isotropic media, and the magnitude of the azimuthal varia-
ions is relatively insignificant. In particular, gradient GPSH is small,
nd the reflection coefficient of the PSH-wave is almost constant
Figure 9�.

Because the dependence of the AVO gradients on the Thomsen
arameters of the reflecting medium is rather complicated, in partic-
igure 7. Comparison of the exact normal-incidence �black curve�
nd the zero-offset �gray curve� PS1-wave reflection coefficients for
TTI-over-VTI interface. The normal-incidence coefficient is com-
uted for a vertical slowness vector of the incident wave and would
e recorded at nonzero offset. The model parameters are listed in Ta-
igure 8. Exact RPS1
�0� for a TTI-over-TTI interface as a function of

he difference between the azimuths of the symmetry axes. The tilt �
nd anisotropy parameters �, �, and � �listed in Table 1� are the same
n both half-spaces. Note that the tilt is measured from the vertical to-
ard the radius vector oriented at an azimuth 
.
igure 9. Exact PS-wave reflection coefficients �top row� and AVO
radients �bottom row� for isotropic-over-isotropic and isotropic-
ver-TTI interfaces �Table 1�.
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lar for the PSV-wave �equation B-1�, we studied the behavior of the
xact gradients using numerical modeling. As was the case for
PS�0�, the influence of �2 on both GPSV and GPSH increases with the

ilt �2, whereas the influence of �2 on those parameters decreases
ith the tilt. In contrast to the normal-incidence reflection coeffi-

ients, both AVO gradients depend on parameter �2, and the contri-
ution of �2 grows with �2.

The gradient GPSH goes to zero when the symmetry axis lies in the
ncidence plane and there is no P-to-SH conversion �Figure 9, 
2

0°� or when the symmetry axis lies in the plane orthogonal to the
cquisition line �
2 = 90°�. Because the PSH-wave vanishes for a
eflecting VTI half-space, the gradient GPSH increases with �2 as the
ymmetry axis deviates from the vertical direction.

TI-over-TTI interface

Because of the limitations related to the contribution of the polar-
zation angle � �see above�, the AVO gradients of the PS1- and
S2-waves for a TTI-over-TTI interface were derived only for two
pecial cases �see Appendix B�. The symmetry axis of the incidence
alf-space was assumed to be confined either to the incidence plane
equations B-3 and B-4� or to the horizontal plane �HTI medium;
quations B-5 and B-6�. We also present numerical results for an ar-
itrary orientation of the symmetry axis of the incidence medium.

As Figures 10 and 11 illustrate, the two AVO gradients are sensi-
ive to different anisotropy parameters of the incidence medium.

hereas the gradient GPS1
is controlled by �1 and �1 �Figure 10�, GPS2

epends only on �1 �Figure 11�. To explain this result for an arbitrary
rientation of the symmetry axis of the incidence half-space, note
hat the velocity of the S1-wave is a function of �1 and �1 �S1 would
ecome SV in VTI media�. In contrast, the only anisotropy parame-
er responsible for the velocity of the S2-wave is �1 �S2 would be-
ome SH in VTI media�.

If the incidence half-space is TTI and the symmetry axis is not
onfined to the incidence plane, there are no purely isotropic terms in
ither gradient, as equations B-5 and B-6 demonstrate for the special
ase of the HTI incidence medium. The influence of the anisotropy
n the upper half-space causes the gradients computed for a TTI-
ver-TTI interface to deviate substantially from those for the corre-
ponding isotropic model �compare Figures 12 and 9�. The azimuth-
l variation of both gradients also is much more pronounced than
hat for the isotropic-over-TTI interface. The relatively small contri-
ution that the anisotropy of the reflecting half-space makes to the
VO gradients is evident in Figure 13, where GPS1

is weakly depen-
ent on the symmetry-axis azimuth 
2.

CONCLUSIONS

In the absence of lateral heterogeneity, anisotropy is the most like-
y reason for significant PS-wave energy at small offsets observed in

any multicomponent data sets. Here, we analyze the small-angle
S-wave AVO response for transverse isotropy with a tilted symme-

ry axis �i.e., for a TTI medium�. Unless the reflector coincides with a
ymmetry plane in both half-spaces, a P-wave at normal incidence
lways generates reflected PS-waves. To examine the influence of
he anisotropy parameters on the normal-incidence PS-wave reflec-
ion coefficient and AVO gradient, we employ linearized solutions
weak-contrast, weak-anisotropy approximations� supported by nu-
erical modeling of the exact reflection coefficient.
If the incidence half-space is isotropic, the PS reflection from a

orizontal interface is polarized in the symmetry-axis plane of the
igure 10. Exact AVO gradient of the PS1-wave for a TTI-over-TTI
nterface �Table 1�, as a function of the anisotropy parameters in the
a� incidence and �b� reflecting half-spaces.
igure 11. Exact AVO gradient of the PS2-wave for a TTI-over-TTI
nterface as a function of the anisotropy parameters in the �a� inci-
ence and �b� reflecting half-spaces. The model parameters are the
igure 12. Exact AVO gradients of the �a� PS1-waves and �b� the
S2-waves as functions of the azimuth 
1 for TTI-over-TTI �solid

ine� and isotropic-over-isotropic �dashed� interfaces. The parame-
ers of the TTI-over-TTI model are listed in Table 1. As before, the
sotropic model is defined by the symmetry-direction velocities and
igure 13. Exact PS1-wave AVO gradient as a function of the azi-
uth 
1 for a TTI-over-TTI interface. The black line corresponds to
2 = 30° and the gray line to 
2 − 
1 = 30°. The other model pa-

ameters are the same as those for the TTI-over-TTI model in Figure
2.
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eflecting TTI medium. The normal-incidence reflection coefficient
PS�0� vanishes when the reflecting TI half-space is VTI or HTI, be-
ause in that case the model as a whole has a horizontal symmetry
lane. The coefficient RPS�0� increases rapidly as the symmetry axis
eviates from both the vertical and horizontal directions. Closed-
orm approximations and numerical modeling show that RPS�0� can
e as large as 0.1, even for moderate values of the anisotropy param-
ters such as those typical for shale formations. When the tilt �2 of
he symmetry axis is relatively small, the coefficient RPS�0� is con-
rolled mostly by the parameter �2 �the Thomsen parameter � in the
eflecting half-space�, the contribution of �2 becoming dominant for
arger values of �2.

When both half-spaces are anisotropic �TTI�, a P-wave at normal
ncidence excites two split PS-waves �PS1 and PS2� with polariza-
ions governed by the orientation of the symmetry axis in the inci-
ence medium. The normal-incidence reflection coefficients of both
S-waves �RPS1

�0� and RPS2
�0�� are functions of the difference be-

ween the azimuths of the symmetry axes �
2 − 
1� and do not de-
end on either azimuth individually. Interestingly, the Thomsen pa-
ameters and the tilt of the symmetry axis in both half-spaces con-
ribute to the linearized coefficients RPS1

�0� and RPS2
�0�, but that con-

ribution is completely absorbed by the first derivative of the P-wave
hase-velocity function. The coefficients RPS1

�0� and RPS2
�0� are in-

ignificant when the two half-spaces have the same symmetry-axis
rientation and the same parameters � and �, even though there may
e a jump in the velocities and densities across the interface.

We also discussed the azimuthally varying AVO gradients of PS-
aves at small incidence angles. The gradients are influenced prima-

ily by the incidence medium’s anisotropy, which causes shear-wave
plitting and pronounced azimuthal variation of the reflection coeffi-
ients of both PS modes. For an arbitrary symmetry-axis orientation,
either linearized AVO gradient contains purely isotropic terms be-
ause the contributions of the velocity and density contrasts are mul-
iplied with functions of the symmetry-axis azimuth 
1.

The linearized approximations we developed here not only pro-
ide physical insight into the behavior of the PS-wave reflection co-
fficients but also can be used to quickly evaluate PS-wave ampli-
udes for a wide range of TTI models. Potentially, these analytic ex-
ressions can help in the AVO inversion of PP and PS data for TTI
edia.
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APPENDIX A

PERTURBATION APPROACH FOR THE
REFLECTION/TRANSMISSION PROBLEM

The approximate linearized reflection and transmission coeffi-
ients are derived by using an isotropic full space as the reference
edium. A horizontal planar interface �reflector� divides the full
pace into two half-spaces, which are perturbed to obtain two weak-
y anisotropic media:

aijkl
�I� = aijkl

0 + � aijkl
�I� , �A-1�

��I� = �0 + � ��I�, �A-2�

�� aijkl
�I� �  �aijkl

0 � , �A-3�

�� ��I��  �0. �A-4�

n equation A-4, the index I �I = 1,2� stands for the incidence and
eflecting half-spaces, respectively, and aijkl

0 and �0 are the density-
ormalized stiffness coefficients and density of the background iso-
ropic medium. Because the perturbations from the isotropic back-
round in both half-spaces are small, the approximation involves
oth weak anisotropy and weak elastic contrast between the half-
paces. Using these approximations, the polarization vector �p�N��
nd the slowness vector �g�N�� can be linearized as.

g�N� � g0�N� + � g�N�,

p�N� � p0�N� + � p�N�, �A-5�

here p0�N� and g0�N� are the polarization vector and the slowness
ector, respectively, of waves propagating in the background isotro-
ic medium, and � g�N� and �p�N� are their linear perturbations. Ana-
ytic expressions for the perturbations � g�N� and �p�N� in terms of
aijkl

�I� are given in Vavryčuk and Pšenčík �1998� and Jílek �2002b�.
ubstituting these linearized expressions into equation 1 of the main

ext yields

�C0 + � C��U0 + � U� = B0 + � B . �A-6�

ere, C0 is the stiffness matrix of the background medium and �U is
he perturbation of the reflection and transmission coefficients in the
ackground isotropic medium �U0�. Because the background is ho-
ogeneous, U0 is given by

U0 = �0, 0, 0, 0, 0, 1�T. �A-7�

xpanding equation A-6 and retaining only the leading terms in
mall quantities results in the equation

� U = �C0�−1�� B − � C · U0� , �A-8�

here

� C = �
�g1

�1� �g1
�2� �g1

�3� − �g1
�4� − �g1

�5� − �g1
�6�

�g2
�1� �g2

�2� �g2
�3� − �g2

�4� − �g2
�5� − �g2

�6�

�g3
�1� �g3

�2� �g3
�3� − �g3

�4� − �g3
�5� − �g3

�6�

�X1
�1� �X1

�2� �X1
�3� − �X1

�4� − �X1
�5� − �X1

�6�

�X2
�1� �X2

�2� �X2
�3� − �X2

�4� − �X2
�5� − �X2

�6�

�X3
�1� �X3

�2� �X3
�3� − �X3

�4� − �X3
�5� − �X3

�6�

� ,

�A-9�

� B = − ��g1
�0�, �g2

�0�, �g3
�0�, �X1

�0�, �X2
�0�, �X3

�0��T. �A-10�
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herefore, the perturbed vector of the reflection-over-transmission
oefficients is obtained as

�U = �C0�−1��g1
�6� − �g1

�0�, �g2
�6� − �g2

�0�, �g3
�6�

− �g3
�0�, �X1

�6� − �X1
�0�, �X2

�6� − �X2
�0�, �X3

�6� − �X3
�0�� .

�A-11�

APPENDIX B

APPROXIMATE PS-WAVE AVO
GRADIENTS IN TI MEDIA

Here, we present linearized expressions for the AVO gradients of
he PS1- and PS2-waves �GPS1

and GPS2
� obtained in the weak-con-

rast, weak-anisotropy limit. If the incidence half-space is isotropic,
he PS1-wave becomes a PSV mode with in-plane polarization, and
S2 becomes a transversely polarized PSH-wave. The gradients for

hese waves have the form

GPSV = GPS1
= −

2�VS0

g�
−

�2 + g���

2g�0

−
2�2 sin2 �2 sin2 
2

g
+

g

16�1 + g�
��3 + 2g��2

+ �3 − 2g���2 − �2�cos 4�2 − �1 + 2g��2

+ 2 cos 2�2��2 + 2�− 1 + 2g���2 − �2�

� cos 2
2 sin2 �2 + 2�2� + 4�2g�2 − �2 − 2g�2�

� cos 2
2 sin2 �2 , �B-1�

GPSH = GPS2
=

�2 sin2 �2 sin 2
2

g

+
g sin2 �2 sin 2
2

4�1 + g�
���2 − �2�

� �2g + �− 1 + 2g�cos 2�2� − �2 . �B-2�

TheAVO gradients for a TTI-over-TTI interface are given here for
nly two special cases. If the incidence plane contains the symmetry
xis of the incidence TTI half-space �
1 = 0°�, the gradients are giv-
n by

GPS1
= −

2�VS0

g�
−

�2 + g���

2g�0 −
2�2 sin2 �2 sin2 
2

g

+
g

16�1 + g�
�− 4�1 + g���1 − �1� + 4�− 1 + g�

���1 − �1�cos 4�1 − 8�1 cos 2�1 + 3�2 − �2

+ 2g��2 − �2� + 2��2 + 2�2�cos 2�2

+ 4 cos 2
2 sin2 �2���2 − �2��2g + �− 1

+ 2g�cos 2�2� − �2

+ �3 − 2g��� − � �cos 4�  , �B-3�
2 2 2
GPS2
=

�2 sin2 �2 sin 2
2

g
+

g sin2 �2 sin 2
2

4�1 + g�
���2 − �2�

� �2g + �− 1 + 2g�cos 2�2� − �2 . �B-4�

f the symmetry axis of the upper half-space deviates from the inci-
ence plane, fully linearized AVO gradients still can be derived for
he special case of the incidence HTI medium:

GPS1

HTI = −
2�VS0 cos 
1

g�
−

�2 + g��� cos 
1

2g�0

−
2�2 sin2 �2 sin�
2 − 
1�sin 
2

g

+
g

16�1 + g�
�4 sin2 �2 cos�2
2 − 
1����2 − �2�

� �2g + �− 1 + 2g�cos 2�2� − �2

+ cos 
1�− 8�1 + 16�1 + 3�2 − �2 + 2g��2 − �2�

+ 2��2 + 2�2�cos 2�2 − �− 3 + 2g�

� ��2 − �2�cos 4�2� , �B-5�

GPS2

HTI =
2�VS0 sin 
1

g�
+

�2 + g��� sin 
1

2g�0 −
2�1 sin 
1

g

+
2�2 sin2 �2 cos�
2 − 
1�sin 
2

g

+
g

16�1 + g�
�4 sin2 �2 sin�2
2 − 
1����2 − �2�

� �2g + �− 1 + 2g�cos 2�2� − �2

− sin 
1�3�2 − �2 + 2g��2 − �2� + 2��2 + 2�2�

� cos 2�2 − �− 3 + 2g���2 − �2�cos 4�2� . �B-6�
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