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A fish otolith assemblage from the Messinian ‘Lago-mare’ deposits of the Colombacci Formation cropping out in the
Montecalvo in Foglia Syncline, Marche, central Italy, is described. The assemblage displays a low diversity and consists
of seven taxa belonging to three families: the Gobiidae, Myctophidae and Sciaenidae. Sciaenid otoliths are the most abundant
elements representing 88% of the entire assemblage. The palaeoecological analysis reveals a coastal shallow marine
environment strongly influenced by continental outflow. The low diversity and high abundance of the euryecious sciaenids
are indicative of a very simplified food web, which probably represented an ecological response to the fluctuating environmental
parameters and available food resources. The fish remains documented here provide an unambiguous evidence that normal
marine conditions were present in the Mediterranean, at least in the upper part of the ‘Lago-mare’ event, and unquestionably
demonstrate that the marine refilling preceded the Mio-Pliocene boundary. These findings clearly demonstrate that fishes,
because of their mobility and migratory behaviour, represent a useful tool for the large-scale interpretation of the environmental
conditions of theMessinianMediterranean water body. The necessity of a new scenario of palaeoenvironmental evolution for the
post-evaporitic Messinian of the Mediterranean is also discussed. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The events related to theMediterraneanMessinian Salinity Crisis are among the most intriguing and well studied of

Cenozoic history. In this period the marine basin of early Messinian (Late Miocene) times underwent a progressive

desiccation so that its base level lay several kilometres below normal sea level (e.g. Hsü et al. 1973). As a

consequence, the marine ecosystem was completely destroyed and thick and extensive evaporites were deposited in

the entire basin, resulting in the removal of more than 5% of dissolved oceanic salts (Hsü et al. 1977; Rouchy 1982),

with a relevant effect on world oceanographic and climatic patterns (Thunnell et al. 1987). The Mediterranean was

refilled during the Zanclean (Early Pliocene) deluge and its faunal content and physico-chemical characters

returned to normal. Summarizing, the Messinian Salinity Crisis can be defined as the interval of the Mediterranean

history before the Pliocene flooding, characterized by evaporite deposition and by the subsequent fresh- to

brackish-water sedimentation of the ‘Lago-mare’ facies. The desiccation of the basin was triggered by the

progressive isolation of the Mediterranean Basin from the Atlantic Ocean during late Miocene time. Although
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glacio-eustatic sea-level lowering has often been proposed as the main reason for explaining the isolation of the

Mediterranean from the open ocean (Adams et al. 1977; Hodell et al. 1986; Aharon et al. 1993), recent studies have

demonstrated that tectonic uplift along the African and Iberian continental margins must be considered as the only

cause for the closure of the two marine gateways in the Betic and Rifean areas (Garćes et al. 1998; Duggen et al.

2003; Krijgsman et al. 2004). Because of the evocated spectacular catastrophic scenario, the Messinian Salinity

Crisis is one of the most discussed topics in Earth Sciences. The scientific debate about this event started early in the

1970s and has stimulated intense investigations in several fields of geological sciences (e.g. palaeontology,

stratigraphy, sedimentology, geochemistry) for more than 30 years. Biologists also benefited of the hypothesised

palaeogeographic framework in order to justify the present distribution of terrestrial and freshwater organisms in

the peri-Mediterranean region (e.g. Bianco 1990). The concept that the Messinian Mediterranean Sea was at times

completely desiccated received remarkable publicity through popular articles and books (e.g. Hsü 1984). As a

consequence of this considerable attention, the Messinian desiccation of the Mediterranean has been widely

accepted by the scientific community and has been included in scientific textbooks as a well-documented event of

Cenozoic history (e.g. Stanley 1986). However, the understanding of the different aspects related to this event is not

completely clear and many important questions remain unanswered. Several aspects of the palaeogeographical,

climatological and palaeoenvironmental setting of the Mediterranean and the physico-chemical structure of the

water column through the Messinian remain obscure and the results of the studies often contrasting. The recent

stratigraphic advances obtained after the adoption of the astronomical cyclostratigraphy and modern physical

stratigraphic concepts have greatly improved our knowledge about the progression of the Salinity Crisis, leading to

the calibration of geomagnetic and biostratigraphic Neogene time scales that allowed a detailed and accurate tuning

of certain Messinian events. Based on these studies the base of the Messinian (Tortonian–Messinian boundary) has

been fixed at 7.25Ma and its end (Messinian–Zanclean boundary) dated at 5.33Ma (Lourens et al. 1996; Hilgen

et al. 2000). The top of this stage corresponds to the so-called ‘Terminal Messinian Flooding’, a catastrophic return

to fully marine conditions synchronous in the whole Mediterranean. The well developed and widely distributed

cyclic arrangement of the Messinian deposits suggested the classical three phase subdivision (see Krijgsman et al.

1999b): (1) Pre-evaporitic phase, characterized by cyclic diatomite-sapropel sedimentation that affected the basin

in response to the precessional forcing of ocean stratification (7.25–5.96Ma); (2) Evaporitic phase (¼Lower

Evaporites; 5.96–5.59Ma); (3) Post-evaporitic phase (5.52–5.33Ma). The second and the third phases correspond

to the Salinity Crisis event. Astronomical cyclostratigraphic considerations indicate that the onset of these phases

can be interpreted as synchronous throughout the Mediterranean, implying a marked climatic and/or geodynamic

control. The cyclostratigraphic calibration of evaporite and post-evaporite cycles suggested the existence of a small

hiatus between 5.59 and 5.52Ma, the so-called ‘Messinian gap’, which was probably caused by the definitive

isolation from the world-wide network of oceans (Krijgsman et al. 1999b) and the subsequent desiccation and

associated isostatic rebound processes (Norman and Chase 1986). The stratigraphic resolution within the three phases

is very different, mainly because of the lack of biostratigraphic control in the evaporitic and post-evaporitic phases,

classically included in the so-called ‘Non Distinctive Zone’. The lack of biostratigraphic control limits

the possibility to obtain a detailed stratigraphic framework for this interval. Moreover, the scarcity of fossils and the

heterogeneity of sedimentary products that characterizes the Salinity Crisis-related deposits makes difficult the

understanding of the physico-chemical and palaeoenvironmental conditions of the water body during the span of

this event and the resulting palaeogeographical setting of the Mediterranean (see Cita and Corselli 1990).

According to the original hypotheses of Messinian palaeoenvironmental evolution the isolated Mediterranean was

affected, during the evaporitic phase (Lower Evaporites), by a cyclic evaporative draw down of the sea level that

shallowed up to the complete desiccation. As a consequence of the cyclic progressive desiccation, an increased

concentration of the brines culminating in the deposition of sulphate-rich evaporites widely occurred in the basin.

The evaporitic phase was followed by a short time interval characterized by non-deposition and erosion (Messinian

gap), and by the subsequent deposition of the non-marine sediments of the ‘Lago-mare’ event (Krijgsman et al.

1999b). The progressive sea-level drop and the successive desiccation of the basin were responsible for the drastic

change of the drainage pattern in the peri-Mediterranean region, resulting in the partial refill with fresh and brackish

waters of Paratethyan origin (e.g. Cita et al. 1978; McCulloch and De Dekker 1989). Thus, the desiccation model
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implies that during the Salinity Crisis the Mediterranean water body was characterized by dramatic and rapid

environmental changes, from hypersaline to completely dried out, to hyposaline. In this paper we report the

occurrence of fish otoliths in the ‘Lago-mare’ deposits of the Colombacci Formation, Montecalvo in Foglia

Syncline, Northern Apennines, Italy. The palaeoenvironmental interpretation of the fossil assemblage described

herein suggests that normal marine rather than hyposaline conditions were present in the Mediterranean at least

in the upper portion of the post-evaporitic ‘Lago-mare’ phase, thereby implying that the marine refilling of the basin

occurred before the Messinian–Zanclean boundary. Our findings reinforce the hypothesis of Mediterranean

palaeoenvironmental evolution derived from the analysis of the upper Messinian fish assemblages from Tuscany

(Carnevale et al. 2006b). We also discuss the importance of fish remains in the large-scale interpretation of the

environmental conditions of the Messinian Mediterranean water body.

2. GEOLOGICAL FRAMEWORK

2.1. Structural and palaeogeographical setting

The Apennines formed since the Oligocene in response to crustal shortening caused by plate convergence after the

main phase of collision between Europe and Africa (Kligfield 1979). This chain represents the northwest-trending

portion of an arcuate thrust belt that continues southward through Calabria and into Sicily. Thrusting occurred in

response to westward subduction of the Adriatic lithosphere beneath the Apennines (Royden et al. 1987). Since late

Tortonian times, the migration of the thrust belt toward the foreland was accompanied by back-arc type extension

and basin formation west of the chain in relation to the opening of the Tyrrhenian basin (see e.g. Malinverno and

Ryan 1986; Patacca et al. 1990; Doglioni 1991). The orogeny occurred in two distinct tectonostratigraphic realms,

the Northern and the Southern Apennines, which are separated by a tectonic line (Patacca et al. 1990; van der

Meulen et al. 1998) representing the final result of a differential passive sinking of the foreland lithosphere during

the Neogene and Quaternary convergence between Africa and Europe (Patacca and Scandone 1989).

During the main phases of uplift of the chain, the Northern Apenninic foreland basin system was characterized

by intense compressional tectonic activity. Based on seismic profile analysis, Bally et al. (1986) separated the

foreland basin system (foredeep sensu stricto) from a more marginal setting that was deeply involved in

compressional fronts during the uplift of the chain, resulting in the development of satellite basins (¼minor basins;

see e.g. Centamore et al. 1978; Cantalamessa et al. 1982). As pointed out by Ricci Lucchi (1986), the term ‘satellite

basin’ indicates a wide category of palaeogeographic units smaller in size than the coeval foredeep, characterized

by localized and highly differentiated depocentres with subsidence phenomena synchronous with those of the

foredeep.

The Marchean Apennine represents the outer part of the northeast-verging northern Apenninic chain. This sector

of the chain is bounded to the north by the Val Marecchia gravity sheet (Ligurids sensu Ruggieri 1958), a giant body

of allochthonous terranes emplaced by gravity sliding into a depression created by convergence of compressional

fronts (De Feyter 1991), and is also comprized between several transversal tectonic structures. Such structures

played a relevant role in the tectono-sedimentary evolution of the chain by influencing basin topography, and

therefore by creating differential subsidence between contiguous areas and by acting as entry points and

preferential corridors for turbidites (Ricci Lucchi 1986). During the Messinian, the synsedimentary tectonic

activity produced a basin-and-swell morphology with a series of distinct satellite basins longitudinal with respect to

the chain (Savelli and Wezel 1978). These basins, which represent embryonic structures of the compression

affecting the Miocene foredeep, are coincident with the present-day synclines and are separated from each other by

anticlines that acted as passive structural highs or sills during theMessinian (Savelli andWezel 1978; De Feyter and

Molenaar 1984; Molenaar and De Feyter 1985; Roveri et al. 1998).

The Montecalvo in Foglia Syncline is one of the satellite basins with NW-SE direction running parallel to the

chain on the Adriatic side of the Apennines (Figure 1A and B). It is located SE of the Val Marecchia gravity sheet

and is bounded by theMacerata Feltria structural high to thewest, which separates it from the Pietrarubbia Syncline
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(Bassetti 2000). More generally, in this area of the Marchean Apennines, the Macerata Feltria structural high

separates the so-called Inner Marchean Basin from the Outer Marchean Basin (Centamore and Micarelli 1991).

2.2. Stratigraphy and locality

Messinian post-evaporitic deposits are preserved in the core of the Montecalvo in Foglia Syncline (Figure 1C).

As in other sectors of the Apenninic foredeep, the post-evaporitic succession of this basin can be subdivided into

two separated allostratigraphic units (p-ev1 and p-ev2; e.g. Roveri et al. 1998, 2001, 2003) that together with the lower

portion of the Pliocene Argille Azzurre Formation constitute a large-scale synthem recording a regional-scale phase

Figure 1. Schematic geological maps of the northern part of the Marchean Apennine region (B), and of the investigated area of the Montecalvo
in Foglia Syncline (C). MFS, Montecalvo in Foglia Syncline. PPS, Peglio-Pietrarubbia Syncline. VMGS, Val Marecchia gravity sheet.
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of tectonic deformation of the Apenninic chain (Roveri et al. 1998, 2003). The two units are characterized mostly

by terrigenous facies and correspond respectively to the Terreni di Tetto and Colombacci formations. The

Colombacci Formation continuously and conformably underlies the Argille Azzurre Formation. Although not

formally defined, the Colombacci Formation (¼p-ev2) seems to record the ‘Lago-mare’ phase of the Mediterranean

Messinian history in the Apennine foredeep. According to the recent lithostratigraphic analysis provided by

Bassetti (2000), in the Montecalvo in Foglia Syncline the di Tetto Formation ( p-ev1 unit) reaches 500–600m in

thickness and consists of grey-blue silty marls interbedded with thin sandstone (turbiditic) beds. In this basin the

Colombacci Formation consists of more than 500m of clays interbedded with coarse-grained sand bodies, and five

well bedded and laminated ‘Colombacci’ layers. The clays show a characteristic mineralogical composition with a

sharp predominance of illite and montmorillonite, and a minor portion of chlorite, kaolinite and attapulgite

(Colalongo et al. 1976). The analysis of the whole clay mineral association in the Colombacci Formation suggests a

limited alkaline depositional environment, represented by a coastal lagoon characterized by a continuous input of

continental ions and sporadically flooded by marine waters (Colalongo et al. 1976). The coarse-grained units are

mainly arenaceous representing channelized sand-bodies of prodelta shelf to upper submarine fan sedimented by

immature turbidites and hyperpycnal flows. The composition of these deposits suggests the emergence of the

Apenninic chain and the subsequent development of a drainage system that eroded the so-called ‘ligurid’ terrains.

The ‘Colombacci’ consist of whitish or yellowish micritic or laminated limestone horizons recognizable as a single

well-laminated bed or as thin layers interbedded with varved pelites or calcareous marls. The origin of these

limestones have been discussed by several authors (e.g. Casati et al. 1976; Colalongo et al. 1976, 1978; Cremonini

and Farabegoli 1977; Savelli and Wezel 1978; Molenaar and De Feyter 1985) and a recent multidisciplinary study

performed by Bassetti et al. (2004) concluded that they were precipitated inorganically in an anoxic environment

during periods of eustatic maxima.

The Colombacci Formation succession cropping out in the Montecalvo in Foglia Syncline, likewise to that of

other basins of the Apenninic foredeep, is characterized by a cyclical architecture superimposed on an overall

transgressive trend (see e.g. Bassetti et al. 2004). The cyclicity of the succession is exemplified by the vertical

repetition of coarse- to fine-grained couplets characterized by thin-bedded ‘Colombacci’ horizons, which represent

the depositional product of the periods of eustatic maximum and decrease of terrigenous input into the basin.

The studied section is located close to the village of Bronzo, in the northern part of the Montecalvo in Foglia

Syncline (Figure 1). The section was described in detail by Carloni et al. (1974) and Borsetti et al. (1975) who

considered it as one of the most representative of the Colombacci Formation (more than 500m thick) in the northern

sector of the Marchean Apennines (Ca0 Ciuccio section; Figure 2). The fossiliferous layer occurs 1m below the

Mio-Pliocene boundary, approximately 40 cm below a sandstone body characterized by low-angle cross-

stratification (Figure 2). The fossil assemblage is included in a dark grey, organic-rich layer and mostly consists of

thin-shelled gastropods, bivalves and fish otoliths. The analysis of the microfauna has revealed the presence of a

moderately abundant ostracod fauna (Cyprideis, loxoconchids) which is interpreted as authochthonous based on

the co-occurrence of specimens corresponding to different ontogenetic stages. Foraminiferans are represented by a

mixture of reworked (e.g.Uvigerina) and authochthonous (Ammonia) benthic forms. The mollusc fauna was briefly

described by Bellagamba (1978) who recognized 15 taxa belonging to the genera Dreissena, Euxinicardium,

Limnocardium, Plagiodacna, Prosodacna, Hydrobia, Melanopsis and Melanoides. The age of the fossil

assemblage can be interpreted based on its stratigraphic position that is placed between the uppermost

‘Colombacci’ layer and the Mio-Pliocene boundary. Since this boundary has been dated at 5.33Ma (Lourens et al.

1996) and each ‘Colombacci’ cycle probably had an average duration of 20 kyr (e.g. Vai 1997; Roveri et al. 1998),

the age of fossils described herein can be included in the time interval between 5.35 and 5.33Ma.

3. MATERIALS AND METHODS

Otoliths are calcareous structures associated with the ear in teleost fishes that are considered to be involved in both

auditory and vestibular functions (Popper and Fay 1993). There are three pairs of otoliths in the labyrinths of the
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neurocranium of the teleost fishes. The saccular otolith, the Sagitta, is the largest in most fishes and, because of its

broad interspecific morphological variation it is currently used in species-level taxonomic studies (e.g. Nafpaktitis

and Paxton 1969; Trewavas 1977). The saccular otolith can be considered as a sort of ‘black box’ that records the

age, as well as seasonal or annual events occurring during the lifecycle of fishes (Lecomte-Finiger 1999). Otoliths

are very common fossils in a wide spectrum of marine sedimentary environments, representing the most common

Figure 2. Columnar log of the Ca0 Ciuccio section, Montecalvo in Foglia Syncline (modified from Borsetti et al. 1975), with an enlargement of
the upper portion showing the position of the fossiliferous horizon containing fish otoliths (modified from Bellagamba 1978).
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way in which teleost fishes fossilize (Nolf 1995). For this reason, the study of fossil otoliths has largely contributed

to our knowledge of the palaeontological history of fishes, providing the opportunity to infer the palaeobathymetry,

palaeotemperatures and other environmental conditions in which assemblages originated (Nolf 1995). The

taxonomical identification of fossil otoliths is based on comparative studies with the sagittae of the closest recent

relatives (Nolf 1985).

The presence of otoliths in a fossiliferous layer of the Ca0 Ciuccio section, in the Montecalvo in Foglia Syncline,

was first reported by Bellagamba (1978). In the course of a project on the analysis of the macropalaeontological

record of Messinian post-evaporitic deposits of Italy the entire section has been re-examined, including the

productive layer described by Bellagamba (1978). The otoliths were extracted from a 200 kg sample after

processing with hydrogen peroxide, drying and sieving (smallest screen 0.5mm). These are well preserved and fine

structures necessary for taxonomic diagnosis are usually clearly discernible. Because of the good preservation of

the fish otoliths, we conclude that the fossil assemblage from the Colombacci Formation described herein reflects

autochthonous embedding, thereby excluding the possibilities of reworking from older rocks and contamination

from younger deposits. This is also supported by the mollusc shell preservation and by the mutual occurrence of

juvenile and adult ostracod valves.

All the studied otoliths are sagittae. The morphological terminology followed is that of Nolf (1985).

Measurements of the otoliths belonging to the family Sciaenidae follow the method proposed by Schwarzhans

(1993). All the described material is deposited in the Dipartimento di Scienze della Terra, Università di Pisa.

4. SYSTEMATIC DESCRIPTIONS

Subdivision Teleostei sensu Patterson and Rosen, 1977

Order Myctophiformes Regan, 1911

Family Myctophidae Gill, 1893

Diaphus sp.

Figure 3A

Material. 2 specimens

Measurements. Ratio length/height (L/H)¼ 1.14–1.21.

Description. The otoliths are almost quadrangular in outline. The ventral rim is moderately curved and bears 5–7

irregularly disposed obtuse spines. The posterior rim is nearly vertically oriented. The dorsal rim is gently curved

but slightly truncated in correspondence to the posterodorsal angle. The rostrum is more prominent than the

antirostrum and both are separated by a poorly incised excissura. The shallow dorsal area is moderately developed.

The inner face is flat. The outer face is smoothly convex.

Remarks. The overall morphology of the specimens strongly supports their placement within the genus Diaphus

(see Brzobohaty and Nolf 1995, 2000). More precisely, the nearly vertical posterior rim and the general structure of

the rostrum, antirostrum and excissura are shared with those of the group of species composed by Diaphus debilis

(Koken), Diaphus kokeni (Prochazka) and Diaphus taaningi Norman (see Nolf 1977; Steurbaut 1979; Brzobohaty

and Nolf 2000). Among these taxa, the otoliths reported herein are the nearest to those of D. taaningi, from which

they slightly differ in having a much more developed rostrum.

Order Perciformes sensu Johnson and Patterson, 1993

Family Sciaenidae Cuvier, 1829

‘‘Sciaenidarum’’ sp. nov.

Figure 3C-I

Material. 230 specimens

Measurements. L/H¼ 1.55–1.70; L/T¼ 2.80–3.25; H/T¼ 1.84–2.03; cl/ol¼ 1.07–1.50; ol/oh¼ 1.36–1.66; cci

(x/y)¼ 3–5.75.
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Description. The otoliths are moderately elongate and moderately thick. The outer surface is generally convex

whereas the inner surface is flat. The ventral margin is gently curved and rounded. The dorsal rim is irregular, with a

sharp posterodorsal angle. The anterior tip is slightly rounded and progressively narrow, often terminating in a

distinct and well-recognisable rostrum. A small excissura can be observed in selected specimens. The posterior rim

is slightly rounded to angular. The ostium is short, narrow and ovoid, with a slightly concave and sometimes

irregularly sculptured surface; the midventral notch is slightly marked and the postostial lobe usually present in

fossil and recent sciaenid otoliths is absent. A small precaudal depression is often present. The precaudal joint is

vertical to slightly oblique. The cauda is moderately elongate and clearly incised; it is rather wide and extends close

to the posteroventral margin of the otolith. The downturned portion of the cauda is short and very slightly bent. The

posterior end of the cauda is poorly distinct. The dorsal depression is large and extends parallel to the cauda towards

its posterior end. A ventral furrow is also absent in certain specimens.

Remarks. The overall morphology of the otoliths justifies their placement in the family Sciaenidae, among which

they show an unusual combination of plesiomorphic features such as the short, narrow and ovoid (with a slightly

marked midventral notch and devoid of a postostial lobe) ostium with an often differentiated rostrum and excissura

Figure 3. Fish otoliths from the Colombacci Formation, Ca0 Ciuccio section, Montecalvo in Foglia Syncline. A: Diaphus sp., B: Umbrina sp.,
C–I: different growth stages of Sciaenidarum sp. nov., J: Gobius aff. truncatus Schwarzhans, 1979, K: Gobius sp., L: Gobiidarum aff. weileri

Bauza Rullan, 1955, M: Gobiidae indet. Scale bars 1mm.
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ostii, and the slightly bent downward cauda. They show some general resemblance with the otoliths of the living

species Seriphus politus Ayres and Cynoscion striatus (Cuvier) (see Schwarzhans 1993) and the fossil

Sciaenidarum teutonicus Weiler (see Huyghebaert and Nolf 1979) from which they differ by their overall

morphology, and presence of a shorter and narrower ostium, less developed cauda, and larger dorsal depression.

The primitive nature of the otolith morphology is also evidenced by their remarkable similarity with those

characteristic of the juvenile stages of several other sciaenids (e.g. Sciaenops ocellatus Linnaeus; Nolf and Aguilera

1998). Although the specimens examined show a unique combination of features and may belong to a new, not yet

described species, we prefer to postpone the formal description of a new taxon awaiting better-preserved material.

Umbrina sp.

Figure 3B

Material. 3 specimens

Measurements. L/H¼ 1.5–1.7; L/T¼ 3–3.4; H/T¼ 1.9–2; cl/ol¼ 1.06–1.07; ol/oh¼ 1.10–1.11; cci (x/y)¼
0.97–1.02.

Description. The otoliths are moderately elongate, more or less oval in outline. The ventral rim is regularly

convex. The dorsal rim is irregular or crenulate, and slightly concave in its posterior sector. The posterior rim is

curved. The inner face is smoothly convex. The outer face is flat or irregularly convex. The sulcus occupies a

relevant portion of the inner face of the otolith. The ostium is strongly enlarged, characterized by a scarcely

developed postostial lobe. The midventral notch appears to be absent. The surface of the ostium is smooth or

slightly sculptured. The precaudal depression is usually well recognisable. The cauda is remarkably large and

moderately deep. The downturned portion of the cauda is shorter than the horizontal one. The dorsal area is

moderately depressed.

Remarks. The overall morphology of the specimens suggests their alignment with the so-called Sciaena

morphological pattern defined by Chao (1978), and in particular with those genera belonging to the tribe Sciaenini.

This tribe (see Trewavas 1977) includes the extant species of the genera Sciaena and Umbrina plus a number of

fossil taxa, most of which were referred by Schwarzhans (1993) to the genus Trewasciaena. A detailed comparative

morphological and morphometrical analysis of the otoliths examined herein has revealed a marked resemblance

with those ofUmbrina kokeni (Schubert) from theMiocene of Paratethys, from which they differ by having a larger

and wider cauda and for the absence of a prominent posterodorsal projection (see Schubert 1901; Nolf 1981;

Schwarzhans 1993). Although the specimens show several autapomorphic features that support their placement in a

new undescribed taxon, they are left unnamed within the genus Umbrina, awaiting a more complete series, in order

to properly define their morphologic and ontogenetic variability (see Chaine 1938).

Family Gobiidae Bonaparte, 1832

Gobius aff. truncatus Schwarzhans, 1979

Figure 3J

Material. 7 specimens

Measurements. L/H¼ 1.14–1.33.

Description. The otoliths are moderately thick, roughly subrectangular with a well-developed posterodorsal

corner. The dorsal rim is irregular, asymmetrically convex. The anterior and posterior margins are slightly concave

at their midheights. Both the inner and outer faces are convex. The outer surface lacks any ornamentation. The

sulcus is relatively narrow, irregular or roughly ovoid in outline. The area depressa is often well developed. The

ventral furrow is deeply incised.

Remarks. The overall morphology of the specimens examined strongly supports their inclusion within the genus

Gobius. The placement at the species level is rather difficult, mostly because of the wide infraspecific variability

and scarcity of autapomorphic features that characterize the otoliths of the species of this genus, and more generally

of the family Gobiidae (see e.g. Nolf 1985; Nolf and Cappetta 1989). However, the otoliths are very close to those of
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the extinct species Gobius truncatus Schwarzhans, known from the Mediterranean Neogene (Schwarzhans 1979,

1986; Nolf and Cappetta 1989; Nolf and Cavallo 1995; Nolf et al. 1998), from which they differ in their shorter and

more regular outline of the sulcus.

Gobius sp.

Figure 3K

Material. 12 specimens

Measurements. L/H¼ 1.06–1.18.

Description. The otoliths are subrectangular in outline. The dorsal rim is irregular, characterized by a central

convex apophysis. The ventral rim is flat to slightly convex. The posterior rim has a small concavity at its midheight.

The outer face is convex. The sulcus is relatively narrow. The area depressa is moderately large. The ventral furrow

is well developed.

Remarks. The specimens are close to those of the species Gobius niger Linnaeus and Gobius multipinnatus

(Von Meyer) and for this reason they are assigned to the genus Gobius; however, they differ from these species in

their more regular outline and narrower sulcus.

‘‘Gobiidarum’’ aff. weileri Bauza Rulan, 1955

Figure 3L

Material. 12 specimens

Measurements. L/H¼ 1.50–1.53.

Description. The specimens are elongate, dorsoventrally depressed and characterized by a pronounced

posterodorsal corner. The dorsal rim is irregularly convex. A delicate notch can be observed in the midheight of the

anterior and posterior rims. The sulcus is relatively narrow. The ostium is slightly wider than the cauda.

Remarks. The general morphology of the otoliths is consistent with that of the material referred to Gobiidarum

weileri (see Schwarzhans 1986; Nolf and Cappetta 1989; Nolf and Cavallo 1995; Nolf and Girone 2000). However,

they differ from those of this taxon for their narrow and elongate rather than short and ovoid sulcus.

Gobiidae indet.

Figure 3M

Material. A single juvenile specimen

Measurements. L/H¼ 1.13.

Description. The specimen is roughly rectangular, with rounded corners. The dorsal rim is irregularly convex.

The ventral and anterior rims are convex, whereas the posterior rim has a concavity in its midheight. The outer face

is convex. The sulcus is relatively wide, nearly ovoid in outline. The area depressa is rather large. The ventral furrow

is well developed.

Remarks. The otolith is a clear representative of the family Gobiidae. Unfortunately, the juvenile nature of the

material available does not allow a more precise taxonomic placement.

5. PALAEOENVIRONMENT

It is not possible to assume that the composition of a fossil otolith assemblage faithfully reflects the structure of the

original fauna. The otoliths of some families (e.g. Gasterosteiformes, Scombroidei, Tetraodontiformes) do not

fossilise well or at all, and taphonomic processes may otherwise alter the assemblage. More generally speaking, the

diversity of a fossil biotic community must be regarded as an underestimate, even when dealing with organisms

with a hard skeleton (e.g. Nebelsick 1996), and its interpretative analysis must be subject to several tests (e.g.
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Bennington and Bambach 1996). Although the fossil record preserves neither entire original communities nor

original proportions of different ecological categories, it can certainly reveal evidences of taxonomic composition,

relative abundance, as well as of other synecologic features of ancient communities. The study of the taxonomic

composition of a fossil assemblage can provide several well-documented information concerning the physical and

chemical conditions of a determinate palaeoenvironment. Moreover, as evidenced by recent studies (see e.g. Nehm

and Geary 1994; Kohn and Arua 1999), for later Cenozoic and Quaternary periods, the ecological knowledge of

extant relatives can provide a large amount of data which are independent from those derived directly from the

fossils and their matrices, but can be combined to better define the palaeobiology of extinct species and their role in

ancient communities and palaeoenvironments.

The otolith assemblage examined herein displays a low diversity showing a marked oligotypic character. The

taxonomic analysis of the assemblage suggests that at least seven taxa were present, representing three families.

The most abundant fish family was the Sciaenidae, representing 88% of the 267 otoliths examined. Nearly all the

sciaenids were represented by Sciaenidarum sp. nov. (87% of the whole assemblage). The Gobiidae comprised

approximately 11% of individuals but was the most diverse family with four taxa. Myctophid otoliths were very

rare, represented by two specimens (1% of the whole assemblage).

Fossil and Recent relatives of the taxa recognized in the assemblage are typical for marine-euryhaline

(Sciaenidae, Gobiidae) and—stenohaline (Myctophidae) environments. Fishes of the family Sciaenidae (drums or

croakers) commonly occur in temperate to tropical coastal waters and estuaries worldwide, where they are

particularly abundant at the mouth of continental rivers (Sasaki 1989). Most sciaenids are large demersal

carnivorous (piscivores, epipsammivores, infaunal feeders) species with a key role in estuarine ecosystems. In a

recent categorisation of major fish groups utilising brackish environments (Whitfield 1999), these fishes have been

placed in the marine stragglers guild, which includes marine species where only a small part of the overall

population makes use of brackish biotopes. Gobies (family Gobiidae) are small benthic fishes that are very

abundant in coastal marine and brackish environments, where they are cryptic bottom dwelling carnivores. The

speciose group of euryhaline gobies consists of species of marine origin that usually reside in brackish

environments as juveniles and/or adults but have a marine larval phase (estuarine migrants sensu Whitfield 1999).

Myctophids (lanternfishes) are mesopelagic fishes that usually occur at depths between 300 and 1200m,

undergoing diurnal migration to the surface layers (Nafpaktitis et al. 1977). Lanternfishes are characterized by an

opportunistic feeding behaviour and represent the most consumed preys of numerous piscivorous fishes.

Lanternfishes of the genus Diaphus are small- to medium-sized fishes distributed in tropical, subtropical and

temperate waters of all the oceans (Nafpaktitis et al. 1977). Several species of this genus are pseudoceanic (land-

associated) and may appear irregularly in areas close to deltas or estuaries (marine adventitious visitors sensu

Mathieson et al. 2000).

The fish assemblage documented herein points to a coastal shallow marine environment strongly influenced by

freshwaters of continental origin. The data deriving from the otolith assemblage are consistent with the

sedimentological interpretation of Bassetti (2000) who suggested a proximal to distal fan-delta front depositional

environment affected by fluvial catastrophic floods. As reported above, the ostracod fauna is dominated by

Cyprideis valves and articulated carapaces that are indicative of a delta or marine coastal environment (see

Athersuch et al. 1989). Ostracods of the genus Cyprideis are generally found in NaCl-dominant (marine-derived)

waters (Anadon et al. 1986), but they can also inhabit environments characterized by aberrant alkaline or

hypersaline waters (Van Harten 1990). As far as concerns the mollusc fauna, it appears dominated by euryhaline

taxa (hydrobiids, limnocardids) most of which are indicative of an estuarine or intertidal environment (e.g. Asmus

and Asmus 1985; Bandel and Kowalke 1999; Barnes 1999) probably characterized by soft bottom and turbid

waters. In conclusion, the geological and palaeontological data concur to indicate that the Messinian post-

evaporitic sediments of the Montecalvo in Foglia Syncline record, at least in their upper portion, the final marine

depositional zone of a flood-dominated fluvio-deltaic system (see Mutti et al. 1996).

The most abundant fish taxon, Sciaenidarum sp. nov., probably was the most important member of the original

fauna. Aquatic environments affected by fluctuations of the salinity and/or other physical and chemical factors are

typically characterized by a low ichthyofaunal diversity but high abundance of individual taxa, most of which
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exhibit wide tolerance limits to the unstable conditions found within these systems (e.g. Day and Grindley 1981;

Whitfield 1993; 1999). The synergistic effect of many interacting physical factors directly and indirectly

determines the structure of fish populations in these environments (see Blaber 1997). Low ichthyofaunal diversity

and high abundance of individual taxa are mainly associated to systems characterized by fluctuating salinity and

highly turbid waters (e.g. Cyrus and Blaber 1987; Whitfield 1999). Turbidity is caused by suspended silt and

detritus that reduce light penetration; when large quantities are deposited as a result of river flooding, they smother

submerged plants and algae, thus reducing habitat diversity. The low diversity of turbid systems may therefore be

linked to the indirect effect of silt deposition and sediment disturbance of aquatic plants and their associated

invertebrates, rather than turbidity (see Day et al. 1981). For this reason, herbivorous fishes are uncommon in such

systems. The sharp dominance of a single taxon is probably related to the strict dependence of fishes on the detrital

food web, which represents the major supply of energy in these systems (Naiman and Sibert 1979), conferring

ecological stability by extending the availability of fixed biomass. Abundant detritus is available in these systems

throughout the year, whereas plankton biomass varies both spatially and seasonally. The detritus consists of a

mixture of plant debris, amorphous organic matter and autotrophic and heterotrophic bacteria (see Bowen 1976)

representing an important food source for many invertebrates which are in turn consumed by carnivorous fishes

(Whitfield 1989). The abundance of available detritus and benthic invertebrates (molluscs) is the primary reason

why fishes are attracted to these systems.

The asymmetric structure of the fish assemblage documented herein can be explained in terms of ecological

response to the fluctuating environmental parameters and adaptation to the available food resources. From an

ecological-energetic point of view, the low diversity and high abundance of an individual taxon reflect a very

simplified food web, with the most successful species in the system, Sciaenidarum sp. nov., being that remarkably

euryecious and with the broadest niche.

Although the assemblage is dominated by euryhaline fishes (99% of individuals), the occurrence of

representatives of the marine stenohaline family Myctophidae, even if very rare (1% of individuals), is highly

significant from a palaeoenvironmental and palaeogeographical point of view. The presence of the mesopelagic

lanternfishes in a coastal marine environment influenced by fluvial outflow was probably related to their nightly

migration to the surface over the continental shelf, or, alternatively, they were brought into this assemblage by

piscivorous predators foraging in oceanic waters. Thus, their presence in the assemblage described herein does not

modify the interpretation of the palaeoenvironmental conditions of the depositional setting. Nevertheless, they

provide unquestionable information about the presence of open marine conditions very close to the depositional

environment testified by the assemblage examined.

6. DISCUSSION

The palaeoenvironmental significance of the Messinian post-evaporitic deposits of the Apennine foredeep has been

largely debated since the pioneering studies performed by Selli, who in the extensive monograph ‘Il bacino del

Metauro’, divided for the first time the post-evaporitic succession into two lithostratigraphic units, the Terreni di

Tetto and Colombacci formations, considering the presence or absence of limestone beds (Selli 1954). The

Colombacci formation was named after the name used by the miners to designate the limestone layers that crop out

in Messinian post-evaporitic successions in the Marche and Romagna regions. The increased interest around the

Messinian Salinity Crisis event in the 1970s opened a season of multidisciplinary studies on the post-evaporitic

deposits of the entire Mediterranean area, including those of the Apennine foredeep. However, despite the

potentially high stratigraphic resolution offered by the Apenninic post-evaporitic sequences, only a few studies

were realised, mostly focused on the understanding of the palaeoenvironmental significance of the deposits of the

Colombacci Formation (e.g. Casati et al. 1976; Colalongo et al. 1976; Savelli and Wezel 1978) and of the events

occurring at the Mio-Pliocene boundary. The renewed interest around the Messinian question in the last few years

has led to the re-examination of the post-evaporitic successions of the Apennines which have been reinterpreted in

detail from a physical-stratigraphic (Bassetti et al. 1994; Roveri et al. 1998, 2001, 2003; Bassetti 2000; Manzi et al.
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2005), palaeomagnetic (Krijgsman et al. 1999a), and geochemical (Bassetti et al. 2004) point of view. These studies

have greatly improved our knowledge of the Messinian stratigraphy and palaeogeography of this area of the

Apennines providing innovative ideas about the mechanism of triggering and progression of the Salinity Crisis

event in the whole Mediterranean. Both the litho- and magneto-stratigraphic attempts to quantitatively estimate the

duration of the post-evaporitic phase recognized the existence of eight sedimentary cycles probably controlled by

astronomical precession (Roveri et al. 1998; Krijgsman et al. 1999a). The possibility of an orbital (precessional)

forcing for depositional cyclicity during the post-evaporitic phase of the Messinian is also suggested by the

occurrence, in other areas of the Mediterranean, of sequences originated in the same time interval and characterized

by a similar vertical organisation (see e.g. Ghibaudo et al. 1985; Krijgsman et al. 2001). The cyclic nature of the

post-evaporitic sequences of the Apennines has also been recorded by palynological studies which recognized eight

climatic oscillations expressed by vegetational changes (Bertini 1994, 2002). The Colombacci Formation consists

of three sedimentary cycles that are well recognisable in the satellite basins of the Adriatic side of the Apennines. In

this setting, the three ‘Colombacci’ horizons (each characterized by several limestone layers; see e.g. Bassetti et al.

2004) intercalated in the clastic sequence have been interpreted as the result of reduced terrigenous input to the

basin during base-level maxima (Roveri et al. 1998; Bassetti et al. 2004). Although the chronological and

stratigraphic framework of the Colombacci Formation has been defined in detail, there is still controversy about the

chemical characteristics of the depositional environment. The interpretation of the composition of the water body

during the deposition of the Colombacci Formation has been largely debated and several studies of isotope

geochemistry, clay mineralogy and palaeontology (foraminiferans, ostracods, molluscs) have been produced,

resulting in a rather confused scenario of fresh, brackish, oligohaline or mesohaline waters. The geochemical

measurements have been carried out in marls and limestone from several localities where the Colombacci

Formation is exposed (Casati et al. 1976; Molenaar and De Feyter 1985; Bassetti et al. 2004). The isotope

composition (carbon and oxygen) of the two lower ‘Colombacci’ horizons is indicative of a marine-derived water

characterized by a strong meteoric dilution, whereas the upper (third) ‘Colombacci’ horizon originated from a

‘quasi-marine’ water salinity (Bassetti et al. 2004). The isotope composition of the Colombacci Formation is

consistent with those measured from coeval deposits of other regions of the Mediterranean Basin (Longinelli 1979;

Rouchy et al. 2001). However, as pointed out by Molenaar and De Feyter (1985) and Bassetti et al. (2004), the

isotope values are only relevant in a comparative sense and cannot be used to estimate absolute palaeosalinities. The

strontium isotope composition of the ‘Colombacci’ carbonates (Bassetti et al. 2004) is in the range of the values

measured from other ‘Lago-mare’ deposits (e.g. McCulloch and De Dekker 1989; Müller and Mueller 1991;

Fortuin et al. 1995), suggesting an origin from diluted seawater by means of continental run-off. The interpretation

of strontium isotopes is rather problematic because although their values do not preserve a normal seawater isotopic

signature, they provide no evidence indicating that during this period the Mediterranean was isolated from the

global ocean network (Flecker et al. 2002; Bassetti et al. 2004). The isotopic compositions of ‘Lago-mare’ deposits

of the Colombacci Formation concur to indicate an enhanced meteoric inflow in the depositional environment. An

increased run-off related to a humid phase (Griffin 2002) has also been suggested by the occurrence of floristic taxa

(e.g. Sciadopitys; Taxodium) typical of moist forests (Bertolani Marchetti andMarzi 1988; Bertini 1994), and by the

architecture of the sequence, which is characterized by the cyclic presence of coarse-grained terrigenous sediments

deposited by flood-related mass flows (Bassetti 2000; Bassetti et al. 2004). The analysis of clay minerals suggested

that their deposition occurred in an alkaline environment flooded by marine waters and characterized by a constant

input of continental ions (Colalongo et al. 1976). An alkaline environment subject to salinity fluctuations was also

hypothesized by other authors (Molenaar and De Feyter 1985). In summary, both geochemical and mineralogical

analyses indicate a depositional environment with fluctuating salinities related to a massive supply of continental

waters in the basin. Although the broad contribution of meteoric waters to the salinity fluctuations in the

depositional environment of the Colombacci Formation has been demonstrated by means of different approaches,

the real chemical nature (chemical pathway) of the original water body remains dubious. The water dilution, even

considering the highly humid climate, was probably enhanced by the palaeophysiography of the basin which

strongly influenced its hydrological balance. As pointed out by Roveri et al. (1998) the intricate tectonic

movements which affected this region during the Late Miocene probably produced emergent or submerged sills,
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which created small nearly independent basins each characterized by their own water circulation and chemical

composition (see also Bassetti et al. 2004). The contribution of the humid phase to the water dilution of these

satellite basins was clearly related to their relative position with respect to the main Mediterranean water body.

Several geological evidences suggest that the Montecalvo in Foglia Basin was relatively distant from the emerging

Apenninic chain and the fossils documented herein point to a marine environment influenced by continental

outflow. Considering the complex palaeogeographic scenario of this area and the variable influences of the

humidity and continental ions input to the water composition of the basins, it is reasonable to conclude that the

structure of their benthic fauna (molluscs, ostracods, benthic foraminiferans) reflected their physical and chemical

structure, thereby representing only a local indicator of palaeoenvironmental conditions. In this setting, it is

possible to observe a trend of progressive increase of the oligo- meso-haline character of the fossil assemblages

moving towards the inner and marginal basins (sensu Bassetti et al. 2004) of the Adriatic foredeep, as suggested by

the ostracod faunas of the Giaggiolo-Cella (Colalongo et al. 1976) and Sapigno (Bassetti et al. 2003; Gliozzi and

Grossi 2004) synclines, which are characterized by rich and diverse assemblages of taxa of Paratethyan affinity.

Most of these taxa appeared in the Sarmatian of Central Paratethys (see Gliozzi 1999) and were probably adapted to

the anomalous (marine) alkaline (Piller and Harzhauser 2005; Carnevale et al. 2006a) conditions that occurred in

the Paratethyan realm since that period. The migration of Paratethyan ostracods in the Mediterranean probably

preceded the post-evaporitic phase of the Messinian, since molluscs (Cipollari et al. 1999) and dinocysts

(Kontopoulos et al. 1997) of Paratethyan affinity were already present in this area, at least during the first part of the

Messinian. However, the dramatic radiation of the biota of Paratethyan affinity in the Mediterranean occurred later

due to the combined effect of the wide development of marginal and satellite basins in coincidence with one of the

strongest phase of geodynamic activity of the Neogene, with a major reorganisation of the African–Eurasian

convergent plate boundary zone (see Meulenkam and Sissingh 2003), and of the humid conditions related to the

northern displacement of the monsoonal system (Griffin 2002; Cosentino et al. 2005). Thewidespread development

of marginal basins and the humid phase related to the onset of a monsoonal regime, created, in the entire

Mediterranean region, optimal conditions for the rapid diffusion and demographic explosion of the taxa of

Paratethyan affinity. The formation of nearly independent basins characterized by marine-derived waters with

continuous salinity fluctuations and a strong continental input was superimposed on to a general transgressive trend

(e.g. Bassetti et al. 2004), resulting in a progressive filling of inner basins and in a contemporaneous increased

exposition of the external basins (e.g. Montecalvo in Foglia) to the influences of the main Mediterranean water

body, as demonstrated by the fish remains described herein. The integrated palaeoecological analysis of the entire

fossil assemblage (benthic foraminiferans, ostracods, molluscs, fishes) highlights the key role of fish remains as

palaeoenvironmental indicators. Because of their mobility and frequent migratory behaviour, marine fishes can

co-occur with fresh- or brackish-water organisms, and, at the same time, provide useful information for the

interpretation of the palaeoenvironmental conditions of the areas surrounding those testified by the resident biota

(Carnevale et al. 2006b). As discussed above, the assemblage consists of marine euryhaline fishes which are unable

to complete their life cyclewithout normal marine conditions. The physiological homeostasis of these fishes in their

ecosystem is determined by a number of complex biochemical and metabolic pathways that are very sensitive to

permanent changes in water chemistry and ion balance (see Evans 1993). Moreover, the possibility of a

physiological adaptation to the oligo- or meso-haline conditions traditionally postulated for the Mediterranean

environment during the ‘Lago-mare’ phase must be completely excluded because of the presence in the assemblage

of unquestionable marine stenohaline organisms such as the lanternfishes. The lanternfishes belong to a well-

defined and diversified clade, the Myctophiformes, which exclusively inhabited the marine realm since their

appearance in the Cretaceous (e.g. Goody 1969).

The results presented herein greatly reinforce those derived from the study of fish remains from the coeval

deposits of Cava Serredi, in Tuscany, where nine fossiliferous horizons characterized by rather diversified fish

assemblages have been recently investigated (Carnevale et al. 2006b). The analysis of fossil fish remains clearly

indicates that a new palaeoenvironmental interpretation of the Messinian ‘Lago-mare’ event is necessary, and

provides an unquestionable demonstration that the re-establishment of normal marine conditions in the

Mediterranean preceded the Mio-Pliocene boundary. The possibility of an intra-Messinian marine reflooding has
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been proposed by several authors (e.g. Butler et al. 1995; Riding et al. 1998, 1999; Pedley and Maniscalco 1999;

Steffahn and Michalzik 2000a,b; Griffin 2002; Aguirre and Sánchez-Almazo 2004), and evidences of at least

periodical marine influxes are rather common in the ‘Lago-mare’ sedimentary record (e.g. Iaccarino and Bossio

1999; Iaccarino et al. 1999; Rouchy et al. 2001; Crescenti et al. 2002; Clauzon et al. 2005). However, the

hypothesis of pre-Pliocene reflooding has never been commonly accepted, as the proposed evidence has been

considered weak or inadequate (e.g. Fortuin et al. 2000; Fortuin and Krijgsman 2003). Fossil fish remains indicate

that the rapid and catastrophic Pliocene inundation from the Atlantic was preceded by a progressive transgression

that re-established the marine biotic communities. Our findings are in agreement with the scenario postulated by

Keogh and Butler (1999) who suggested that during the ‘Lago-mare’ phase the base-level of the Mediterranean was

within the range of the world’s oceans even though the water body probably had a different but internally

homogeneous isotopic composition.
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della Società Geologica Italiana 18: 135–170.

Chaine J. 1938. Recherches sur les otolithes des poissons. Etude descriptive et comparative de la sagitta des téléostéens; 5. Actes de la Société
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