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S U M M A R Y
We present 2.5-D forward and inverse algorithms for modelling low-frequency electromagnetic
scattering problems. These algorithms are intended to be used for interpretation of large-
scale electromagnetic geophysical data. The algorithms are based on an integral equation
approach. To solve the forward problem, a standard conjugate gradient normal residual method
is employed, while the inverse problem is solved with the so-called multiplicative regularized
contrast source inversion method. Inversion results with low-frequency electromagnetic data for
single- and cross-well configurations are presented. Furthermore the advantages of combining
the long-offset single-well and cross-well data are discussed.

Key words: electromagnetic induction, inverse problem, perturbation method, numerical
techniques.

1 I N T RO D U C T I O N

To extend the sensitivity of this electromagnetic technology, in the last decade, alternative technologies such as the low-frequency electromag-

netic cross-well logging Wilt et al. (1995); Alumbaugh & Newman (1997); Abubakar & van den Berg (2000); Zhdanov & Yoshioka (2003)

and the long-offset single-well logging (Alumbaugh & Wilt 2001) have been developed. By using these technologies the conductivity map

for the region beyond a couple of metres from the wells can be obtained. In the cross-well logging, when the measurements are collected

using only two adjacent wells the use of full 3-D inversion approach is not recommended, since only the conductivity distribution on the

cross-section between the two wells can be determined reliably (Spies & Habashy 1995). We, therefore, have to reduce the number of unknown

conductivity parameters to meet the limited amount of available measurement data. One obvious possibility is to assume that the configuration

is invariant in the direction orthogonal to the plane of observation. However, since we are working in the low-frequency regime (diffusive),

the 2-D approximation of the electromagnetic scattering problem at hand will lead to incorrect results, because the electromagnetic field of

magnetic dipole sources will maintain its 3-D character. Especially in the near field region, which is always the case in our applications,

the electromagnetic fields behaviour in 3-D and in 2-D are completely different, see Allers et al. (1994); Druskin & Knizhnerman (1994);

Torres-Verdin & Habashy (1994).

We, therefore, consider the so-called 2.5-D problem, where the configuration is 2-D, but the electromagnetic field is treated in a full

vector 3-D fashion. Unlike other 2.5-D algorithms Allers et al. (1994); Druskin & Knizhnerman (1994); Torres-Verdin & Habashy (1994),

in this paper we use a full integral equation (IE) approach to solve the 2.5-D forward and inverse scattering problems. Using a spatial Fourier

transformation with respect to the coordinate in the invariant direction, the 3-D electromagnetic field problem is reduced to a number of

2-D problems. Since we are only interested in the field in the cross-section of the plane of observation, it is anticipated that the 2-D forward

problem and 2-D inverse problems have to be solved only for a few Fourier spectral parameters.

We first discuss the solution of the 2.5-D forward problem. We assume that the conductivity in a bounded domain differs from the

constant conductivity of the background medium. This is mathematically expressed by stating that the conductivity in a bounded domain

exhibits a conductivity contrast with respect to the one of the background medium. After Fourier transformation in the invariant direction, for

each Fourier parameter, the problem is reduced to the problem of solving a 2-D IE over the domain of the contrasting conductivity. In view of

the later work for the inverse scattering problem, we solve this 2.5-D IE by a conjugate gradient for normal residual (CGNR) method (van den

Berg 1984). In fact all the 2-D problems of each Fourier parameter are solved simultaneously. After that the inverse Fourier transformation
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is carried out to obtain the electromagnetic fields at the points of observation. Some numerical experiments are carried out to investigate the

influence of the discretization in the Fourier domain on the forward modelling results.

Second, we formulate the 2.5-D inverse scattering problem in terms of the contrast source IEs (Habashy et al. 1990, 1994). The inversion

method used in this paper is known as the contrast source inversion (CSI) method (van den Berg & Kleinman 1997). In this CSI method, the

unknown contrast sources (the internal fields multiplied by the contrasts) and the unknown contrasts are reconstructed by minimization of a

cost functional. This cost functional is the weighted sum of the error norm in matching the model to the data and the error norm in satisfying

of the IE inside the domain of interest. Earlier, Zhdanov & Chernyak (1987) have proposed an inversion scheme based on an unweighted

sum of these error norms, but ample experience has shown that the proper weighting is essential to the success of the CSI method and its

application to present problem. The minimization procedure is carried in two alternate steps:

(a) the contrast sources are updated via a CG direction of the cost functional and

(b) the contrasts are found by direct minimization of the appropriate terms in the cost functional, which is equivalent to find the least-square

fit of the constitutive relations between the contrast sources and the internal fields. In this way the total complexity of each iteration in the CSI

method is approximately equal to the complexity of two iterations of the CG of the equivalent forward problems.

When the number of data is very limited and a significant noise level is present in the data, which is always the case in our applications,

the CSI method will not provide one with a reasonable resolution of the reconstruction results. Hence, in the work reported in this paper we

will employ the weighted L2-norm regularizer as a multiplicative constraint in our CSI method (Abubakar et al. 2003). This regularization

factor has all the advantages of the total variation regularization term (Vogel 2002), however, this factor is a L2-norm (quadratic functional).

The main advantage of using this multiplicative constraint is that the weighting parameter of the regularization factor used in the inversion

algorithm is determined automatically by the optimization process. This significantly increases the robustness of the inversion method. This

method is denoted as the multiplicative regularized CSI method (MR-CSI).

As numerical examples we present inversion from the cross-well and the long-offset single-well measurement system. In the cross-well

inversion the advantage of using the source–receiver reciprocity will be demonstrated. Further some advantages of using joint inversion of

cross-well and single-well data either sequentially or simultaneously will also be discussed.

2 T H E S C AT T E R I N G P RO B L E M

We consider an IE formulation of the electromagnetic problem. We assume that a non-magnetic scatterer with support Dsct is located in a

homogeneous background medium with permeability μ0 and electrical conductivity σ 0. We define an object domain D such that Dsct ∈ D. A

Cartesian coordinate system is centred in D with a position vector denoted by x = (x 1, x 2, x 3). The problem is invariant along the x2-direction.

We, therefore, introduce the transverse position vector xT = (x 1, x 3). The scattering problem is formulated in the frequency domain with a

time factor exp (−iωt), where ω is the angular frequency and t is the time. We assume that the frequency is sufficiently low to neglect the

displacement current. Consequently, the wavenumber of the background medium is given by k0 = (iωμ0σ0)
1
2 , where Re(k 0) > 0. The object

domain D is characterized by a contrast function defined as follows:

χ (xT ) = σ (xT )

σ0

− 1 , (1)

where σ (xT ) is the spatially dependent electrical conductivity (S/m).

In order to take advantage of the 2-D structure of the configuration, we introduce the 1-D spatial Fourier transform and its inverse with

respect to the x2-coordinate as follows:

ũ = F{u} =
∫ ∞

x2=−∞
exp(ik2x2)u(xT , x2) dx2 , (2)

u = F−1{ũ} = 1

2π

∫ ∞

k2=−∞
exp(−ik2x2)ũ(xT , k2) dk2 . (3)

It is well known that the scattered electric field Esct = Esct(xT , x 2) and the scattered magnetic field Hsct = Hsct(xT , x 2) are given by de

Hoop (1995):

Esct(xT , x2) = (
k2

0 + ∇∇·) A(xT , x2) , (4)

Hsct(xT , x2) = σ0∇ × A(xT , x2) , (5)

where the symbol ∇ = (∂ 1, ∂ 2, ∂ 3) denotes spatial differentiation with respect to the position vector x. The normalized vector potential A is

given by

A (xT , x2) =
∫ dA

x′
T ∈D

∫ ∞

x ′
2=−∞

dx ′
2G(xT − x′

T , x2 − x ′
2)χ (x′

T )E(x′
T , x ′

2), (6)
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where E(xT , x 2) denotes the total electric field and G denotes the Green function of the homogeneous background, where

G(xT , x2) = exp
(
ik0

√
|xT |2 + x2

2

)
4π

√
|xT |2 + x2

2

= 1

(2π )3

∫
k∈IR3

exp(−ik · x)

k · k − k2
0

dVk, (7)

in which k = (k 1, k 2, k 3) is the 3-D Fourier transform parameter. In view of the fact that the contrast function χ is invariant in the x2-direction,

we transform eqs (4) and (5) to the 1-D spatial Fourier domain,

Ẽsct(xT , k2) = (
k2

0 + ∇̃∇̃·) Ã(xT , k2) , (8)

H̃
sct

(xT , k2) = σ0∇̃ × Ã(xT , k2) , (9)

where ∇̃ = (∂1, −ik2, ∂3). The transformed normalized vector potential is obtained as

Ã(xT , k2) =
∫

x′
T ∈D

G̃(xT −x′
T , k2)χ (x′

T )Ẽ(x′
T , k2) d A, (10)

where

G̃(xT , k2) =
∫ ∞

x2=−∞
exp(ik2x2)G(xT , x2) dx2. (11)

Using eq. (7) in eq. (11) we obtain

G̃(xT , k2) = 1

(2π )2

∫
kT ∈IR2

exp(−ikT · xT )

kT · kT − (
k2

0 −k2
2

) d Ak

= i

4
H (1)

0 [γ0(k2) |xT|] ,

(12)

where γ 0(k 2) = (k2
0 − k2

2)1/2 and kT = (k 1, k 3). Before discussing the IE we first describe the incident field, which is the electromagnetic field

from a magnetic dipole in a homogeneous background medium.

3 I N C I D E N T F I E L D G E N E R AT E D B Y A M A G N E T I C D I P O L E S O U RC E

The electromagnetic field from a magnetic dipole with magnetic moment, M , located at {x S
1 , x S

3 , 0} in the homogeneous background medium

is obtained as follows:

Einc(xT , x2) = −∇G
(
xT −xS

T , x2

) × M , (13)

Hinc(xT , x2) = − 1

iωμ0

(
k2

0 + ∇∇·) G
(
xT −xS

T , x2

)
M . (14)

For the IEs discussed in the next section, we need the Fourier transform of the incident electric field inside the object domain (x ∈ D),

which directly follows from eq. (13). The Fourier transform of this field is obtained as

Ẽinc(xT , k2) = −∇̃G̃
(
xT −xS

T , k2

) × M . (15)

For different orientations of a magnetic dipole with unit magnetic moment, the incident electric field components in the 1-D spatial Fourier

domain are given by⎧⎪⎪⎨⎪⎪⎩
Ẽ inc

1 (xT , k2) = 0,

Ẽ inc
2 (xT , k2) = −∂3G̃

(
xT −xS

T , k2

)
,

Ẽ inc
3 (xT , k2) = −ik2G̃

(
xT −xS

T , k2

)
,

M = {1, 0, 0},

⎧⎪⎪⎨⎪⎪⎩
Ẽ inc

1 (xT , k2) = ∂3G̃
(
xT −xS

T , k2

)
,

Ẽ inc
2 (xT , k2) = 0,

Ẽ inc
3 (xT , k2) = −∂1G̃

(
xT −xS

T , k2

)
,

M = {0, 1, 0},

⎧⎪⎪⎨⎪⎪⎩
Ẽ inc

1 (xT , k2) = ik2G̃
(
xT −xS

T , k2

)
,

Ẽ inc
2 (xT , k2) = ∂1G̃

(
xT −xS

T , k2

)
,

Ẽ inc
3 (xT , k2) = 0,

M = {0, 0, 1},
(16)

where

∂1G̃
(
xT −xS

T , k2

) = −
(
x1−x S

1

)∣∣xT −xS
T

∣∣ γ0

i

4
H (1)

1

[
γ0(k2)

∣∣xT −xS
T

∣∣] , (17)

∂3G̃
(
xT −xS

T , k2

) = −
(
x3−x S

3

)∣∣xT −xS
T

∣∣ γ0

i

4
H (1)

1

[
γ0(k2)

∣∣xT −xS
T

∣∣] . (18)
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In the final step of solving the forward problem we have to transform the computed magnetic field components in the k2-domain back

to the spatial domain. Since we only have to know the total electric field {Ẽ1, Ẽ2, Ẽ3} in the spatial domain occupied by the scatterer, there

is no need to know the electric field distribution very precisely in the whole space. Hence, it is sufficient that we have a good approximation

for the electric field in the cross-section of the configuration where the electromagnetic sources are active. Therefore, we search for a very

limited set of k2-values such that in the inverse Fourier transform, for x 2 = 0, the infinite integral in the inverse Fourier transformation can

be approximated by the finite summation

Einc(xT , 0) ≈
∑

k2

β(k2)Ẽinc(xT , k2) . (19)

For an uniform grid, β(k 2) = 	k 2/2π , where 	k 2 denotes the grid size in the Fourier domain. Examining the functional behaviour of

Ẽinc(xT , k2) as a function of k2 we note that the largest values occur at k 2 = Re(k 0). Hence, one of the grid nodes in the Fourier domain should

coincide with the wavenumber value of Re(k 0).

4 F O RWA R D S C AT T E R I N G P RO B L E M

From eqs (8)–(10) we note that the scattered electric and magnetic fields are determined from the total electric field inside the object domain

D. By assigning the observation point xT to be inside the object domain D and by using the superposition principle,

Ẽinc(xT , k2) = Ẽ(xT , k2) − Ẽsct(xT , k2) , (20)

we arrive at an IE for the electric field in the k2-domain:

Ẽinc(xT , k2) = Ẽ(xT , k2) − (
k2

0 + ∇̃∇̃·) Ã(xT , k2) , (21)

where Ã(xT , k2) is given in eq. (10). For each k2 value, eq. (21) represents an IE from which Ẽ(xT , k2) can be determined.

We introduce an operator notation and write the IE as follows:

Ẽinc = Ẽ − G̃ D · [
χ Ẽ

]
, on D , (22)

where

G̃ D · w̃ = (
k2

0 + ∇̃∇̃·) ∫
x′

T ∈D
G̃(xT −x′

T , k2)w̃(x′
T , k2) d A . (23)

To solve eq. (22) we minimize a cost function defined by:

F(Ẽ) =

∑
k2

β(k2)‖Ẽinc − Ẽ + G̃ D · [χ Ẽ]‖2
D∑

k2

β(k2)‖Ẽinc‖2
D

, (24)

where the L2-norm on D is given by

‖Ẽ‖2
D = 〈Ẽ, Ẽ〉D =

∫
xT ∈D

Ẽ(xT , k2) · Ẽ(xT , k2) d A , (25)

in which the overline denotes the complex conjugate.

A convenient way to minimize this cost function iteratively is to use a CG updating scheme van den Berg (1984) where we update the

field as follows:

Ẽn(xT , k2) = Ẽn−1(xT , k2) + αE
n ṽn(xT , k2) , n > 1 , (26)

where ṽn is a CG direction, while the parameter αE
n is determined by minimizing eq. (24). The detail expressions of this CG direction can be

found in Abubakar & van den Berg (2004). Once Ẽn in D has been determined, the 1-D spatial Fourier transform of the scattered magnetic

field at a number of measurement points xR
T is determined through

H̃
sct(

xR
T , k2

) = σ0

∫
x′

T ∈D
∇̃R × [

G̃
(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ(x′
T , k2)

]
d A, (27)

for xR
T ∈ S, where S is the domain including all the measurement points and ∇̃ = (∂ R

1 , −ik2, ∂
R
3 ). Carrying out the differentiations with respect

to x R
1 and x R

3 , the magnetic field components at the measurement points are obtained as

H̃ sct
1

(
xR

T , k2

) = σ0

∫
x′

T ∈D

[−ik2G̃
(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ3(x′
T , k2) − ∂ R

3 G̃
(
xR

T − x′
T , k2

)
χ (x′

T )Ẽ2(x′
T , k2)

]
d A,

H̃ sct
2

(
xR

T , k2

) = σ0

∫
x′

T ∈D

[−∂ R
1 G̃

(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ3(x′
T , k2) + ∂ R

3 G̃
(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ1(x′
T , k2)

]
dA,

H̃ sct
3

(
xR

T , k2

) = σ0

∫
x′

T ∈D

[
∂ R

1 G̃
(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ2(x′
T , k2) + ik2G̃

(
xR

T −x′
T , k2

)
χ (x′

T )Ẽ1(x′
T , k2)

]
d A , (28)

where the derivatives of the Green function, ∂ R
1 G̃ and ∂ R

3 G̃, directly follow from (17) and (18) upon replacing {x 1, x 3} by {x R
1 , x R

3 } and

{x S
1 , x S

3} by {x ′
1, x ′

3}, respectively. To arrive at numerical results, the IE in (22) has to be discretized. The discretization procedure is discussed

in Appendix A.
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748 A. Abubakar, P. M. van den Berg and T. M. Habashy

5 S Y M M E T RY W I T H R E S P E C T T O T H E T R A N S V E R S E P L A N E

Since the sources and receivers are located at x 2 = 0 and the configuration is symmetric with respect to the plane x 2 = 0, the electromagnetic

field exhibits some symmetry properties as well, see de Hoop (1995). Dependent on the polarization of the exciting source, the electromagnetic

field components are either even or odd with respect to the plane x 2 = 0, in particular we have

H1 = even, H2 = odd, H3 = even, M = {1, 0, 0},
H1 = odd, H2 = even, H3 = odd, M = {0, 1, 0},
H1 = even, H2 = odd, H3 = even, M = {0, 0, 1}. (29)

Since the odd fields vanish for x 2 = 0, we are only interested in the even field components. The latter can be approximated by a summation of

the spectral quantities over positive k2 only. As a consequence, in the computations we restrict ourselves to positive k2 values. After solving

of the forward problem for these positive spectral parameters, the even scattered magnetic field components in the plane x 2 = 0 are obtained

as, cf . (19),

Hsct
(
xR

T , 0
) ≈

∑
k2≥0

β(k2)H̃
sct

(xT , k2), (30)

where β(k 2) = 	k 2/π and the odd components of the scattered magnetic fields are enforced to be zero.

6 F O RWA R D M O D E L L I N G R E S U LT S

As a test case, we consider a configuration shown in Fig. 1. In this configuration we have two resistive layers with conductivity 0.1 S/m for

the top and 0.02 S/m for the bottom. The thicknesses of the top and bottom layers are 30 and 15 m, respectively. Embedded inside the top

layer, adjacent to the well located at x 1 = −25 m, there is an anomaly with dimension of 30 m by 15 m and with conductivity, that is, σ = 1

S/m. The background conductivity is σ 0 = 0.2 S/m. The field is generated by a magnetic point dipole located in the well at x 1 = −25 m. The

vertical position of the source is x 3 = 0. The frequency of operation of the source is 500 Hz. We assume that in another well located at x 1 =
25 m the magnetic fields are measured using an array of receivers distributed uniformly from x 3 = −60 m to x 3 = 60 m. The object domain

D is discretized using a square mesh with 	x 1 = 	x 3 = 	x (see Appendix A).

The midpoint points on each sample in the Fourier spectral domain are given by

k2,q =
(

q − 1

2

)
	k2 , q = 1, . . . , Q . (31)

−40 −20 0 20 40

−60

−40

−20

0

20

40

60

0.2 0.4 0.6 0.8 1
σ (S m−1)

x3

x1

Figure 1. The conductivity distribution of the test configuration. The well-bores are denoted by the dashed lines and are located at x 1 = −25 m and

x 1 = 25 m.
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−60 −40 −20 0 20 40 60
−4.5

−4

−3.5
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−2.5

−2

−1.5

−1
x 10

−8

1D
9 × Δk

2
 

15 × Δk
2
 

−60 −40 −20 0 20 40 60
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5
x 10

−8

1D
9 × Δk

2
15 × Δk

2

Figure 2. The vertical scattered magnetic field H sct
3 (x 1, x 3) at x 1 = 25 m as a function of x3 in a horizontally layered medium; analytical results (solid lines)

and IE results with 9 k 2-points (dashed lines) and 15 k 2-points (circles). The domain D has an extent of 320 m in the x1-direction.

As we previously mentioned, one of the k2-values should coincide with k 2 = Re(k 0) = δ−1, where δ is the skin depth of the background

medium. For our configurations and frequencies of interest, we found that a sampling distance of 	k 2 = 0.5 Re(k 0) in the spectral domain is

sufficient, as far as computational accuracy and efficiency are concerned. With a minimum skin depth of about 22 m in the configuration, a

spatial discretization of the object domain in terms of subsquares with side length of 	x = 2.5 m is sufficient. Using an equidistant mesh in

the spectral domain, the Courant condition prescribes the necessary number, N , of sampling points of the discretized Fourier integral. Hence,

N = (	k 2	x 2)−1 ≈ 40. This number includes the positive and negative samples. Hence, with the use of symmetry, we need at least Q = 20

positive sampling points in the spectral domain. A more sophisticated way to determine the optimal spectral Fourier discretization based on

the work by Ingerman et al. (2000) is currently under investigation.

In order to investigate the accuracy of our 2.5-D IE method we solve it for a horizontally layered medium. This is the configuration

of Fig. 1 without the high conductivity anomaly. We compare the IE results with the analytical results of a vertical magnetic dipole in a

horizontally layered medium using a code developed by Habashy & Luling (1994).

First, we investigate the dependence of the numerical results on the choice of the spectral parameter k2. The real and imaginary parts of

the complex vertical component of the scattered magnetic field H sct
3 are presented in Fig. 2. We observe that the results of our IE approach

for Q = 9 (dashed lines) show some visible discrepancies with the analytical 1-D results (solid lines) especially in the imaginary part of the

scattered magnetic field. Increasing the total number of sample points, we observe that for Q = 15 the results (circles) almost coincide with

the analytical 1-D results. We conclude that the total sampling length of (15 − 1
2
)	k2 = 7.5 Re(k 0) is satisfactory, and we will use the present

spectral discretization throughout this paper.

Secondly, we investigate effect of truncation on the extent of the domain D in the x1-direction. For computational efficiency, we would

like to operate with the smallest domain possible. In Fig. 3, we present the real and imaginary parts of the complex vertical component of the

scattered magnetic field for a configuration with two different sizes, 80 m and 320 m. The results for an extent of 80 m (dashed lines) deviate

from the analytical results (solid lines) by about 5 per cent whereas, the results for an extent of 320 m (circles) agree very well. In order to

save computation time we use in our inversion scheme an extent of 80 m only. We found that an error of 5 per cent does not have significant

effect on the inversion results. The discrepancies noted with the exact results are of the order of the noise level, hence, there is no need to take

a larger extent in the inversion.

To validate our results for the actual configuration of Fig. 1 including the anomaly, we compare the results of our 2.5-D IE method with

the 3-D spectral Lanczos decomposition method (SLDM) developed by Druskin et al. (1999), where the length of the object configuration in

the transversal direction, x1 and x2, is set to 1000 m. Although at first sight the results of both methods agree well (see Fig. 4), we observe

some discrepancies. We surmise that these discrepancies are mainly due to the different models of the magnetic dipole source used in the
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−60 −40 −20 0 20 40 60
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
x 10

−8  

1D
80 m long
320 m long

−60 −40 −20 0 20 40 60
−4

−3.5

−3

−2.5
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−1.5
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−0.5
x 10

−8

 

1D
80 m long
320 m long

Figure 3. The vertical scattered magnetic field H sct
3 (x 1, x 3) at x 1 = 25 m as a function of x3 in a horizontally layered medium; analytical results (solid lines)

and IE results for a domain D with an extent of 80 m (dashed lines) and 320 m (circles) in the x1-direction, respectively.

two forward modelling codes. In the IE method the magnetic dipole source is modelled as a concentrated source in a subsquare, while in the

SLDM method, the magnetic dipole is modelled as a square loop over the boundary of a subsquare.

7 I N V E R S E P RO B L E M

In the inverse problem we assume that we collect the data using a number of triaxial sources ( j = 1, 2, . . . , J ). This numbering includes the

different source locations and the three different orientations of the magnetic dipoles sources. For each source of certain orientation at x 2 = 0

we measure the electromagnetic field with a number of receivers at xR
T ∈ S in the cross-section x 2 = 0. With the three measured magnetic-field

components, the data equation has the form:

Hsct
j

(
xR

T , 0
) =

∑
k2≥0

β(k2)

∫
x′

T ∈D
σ0∇̃

R × [
G̃

(
xR

T −x′
T , k2

)
w̃j (x

′
T , k2)

]
d A, xR

T ∈ S , (32)

where in eq. (32) we have introduced the contrast source defined by,

w̃j (xT , k2) = χ (xT )Ẽ j (xT , k2). (33)

In the 2.5-D configuration under consideration and for each source–receiver spacing, we have five non-zero components of the magnetic field

which we represent in the following operator form

Hsct
j =

∑
k2≥0

β(k2) G̃S · w̃j , on S . (34)

where G̃S ·w̃j = [G̃S ·w̃j ](x
R
T , k2) is given by

G̃S ·w̃j =
∫

x′
T ∈D

σ0∇̃
R × [

G̃
(
xR

T −x′
T , k2

)
w̃j (x

′
T , k2)

]
d A. (35)

Eq. (34) is referred to as the data equation. Note that, for each k2, G̃S is an operator mapping L2(D) into L2(S). Further we also define the

L2-norm over the data domain S as follows:∥∥Hsct
j

∥∥2

S
= 〈

Hsct
j , Hsct

j

〉
S

=
∫

xR
T ∈S

Hsct
j

(
xR

T , 0
) · Hsct

j

(
xR

T , 0
)

d A . (36)

Introducing the contrast sources in the IE of eq. (22), we obtain the object equation

χ Ẽinc
j = w̃j − χ G̃ D · w̃j , on D , (37)
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where G̃ D · w̃j = [G̃ D · w̃j ] (xR
T , k2) is given by

G̃ D · w̃j = (
k2

0 + ∇̃∇̃ · ) ∫
x′

T ∈D
G̃ (xT − x′

T , k2) χ (x′
T ) Ẽ(x′

T , k2) d A . (38)

For each k2, G̃ D is an operator mapping L2(D) into itself. The inverse scattering problem can be formulated as follows: solving the data

equation in eq. (34) to determine the contrast function χ on the object domain D from the knowledge of the incident electric fields Ẽinc
j on D

and the scattered magnetic fields Hsct
j on the data domain S subject to the necessary condition that the contrast sources w̃j and the contrast χ

satisfy the object equation in (37).

In the CSI method (van den Berg & Kleinman 1997), the inverse scattering problem is formulated as an optimization problem to find

the contrast χ and the contrast sources w̃j . To that end we define the following cost functional:

F(χ, w̃j ) = F S(w̃j ) + F D(χ, w̃j ) , (39)

where

F S(w̃j ) =
∑

j

∥∥Hsct
j − ∑

k2≥0 β(k2) G̃S · w̃j

∥∥2

S∑
j

∥∥Hsct
j

∥∥2

S

(40)

and

F D(χ, w̃j ) =
∑

k2≥0 β(k2)
∑

j

∥∥χ Ẽinc
j − w̃j + χ G̃ D · w̃j

∥∥2

D∑
k2≥0 β(k2)

∑
j

∥∥χ Ẽinc
j

∥∥2

D

. (41)

In each iteration, the contrast sources w̃j and the contrast χ are updated alternatingly.

8 U P DAT I N G T H E C O N T R A S T S O U RC E S

The contrast sources are updated using a CG approach. In the nth iteration, we define the data error to be

ρ j,n = Hsct
j −

∑
k2≥0

β(k2) G̃S · w̃j,n , (42)

and the object error to be

r̃ j,n = χn Ẽinc
j − w̃j,n + χn G̃ D · w̃j,n . (43)

From the knowledge of the (n − 1)th iteration, w̃j,n−1 and χ n−1, we update w̃j by the following CG step

w̃j,n(xT , k2) = w̃j,n−1(xT , k2) + αw
n ṽ j,n(xT , k2), (44)

where αw
n is a constant minimizer and ṽ j,n is an update direction. This update direction is the Polak-Ribière conjugate gradient direction

ṽ j,0(xT , k2) = 0,

ṽ j,n(xT , k2) = g̃ j,n(xT , k2)+ξn ṽ j,n−1(xT , k2) , n ≥ 1,
(45)

where g̃ j is the gradient of the cost functional with respect to w̃j evaluated at w̃j,n−1 and χ n−1. Explicitly, the gradient for the updating of the

contrast source is found to be

g̃ j,n = −ηS G̃∗
S · ρ j,n−1 − ηD

n−1

[
r̃ j,n−1 − G̃∗

D · (χn−1r̃ j,n−1)
]
, (46)

where the normalization factors are given by

ηS =
(∑

j

∥∥Hsct
j

∥∥2

S

)−1

,

ηD
n−1 =

(∑
k2≥0

β(k2)
∑

j

∥∥χn−1 Ẽinc
j

∥∥2

D

)−1

. (47)

In eq. (46), G̃∗
S is the adjoint of G̃S mapping L2(S) into L2(D, k 2) and G̃∗

D is the adjoint of G̃ D mapping L2(D) into itself. The adjoint operator

G̃∗
S · ρ j,n−1 = [G̃∗

S · ρ j,n−1](xT , k2) is given by

G̃∗
S · ρ j,n−1 =

∫
xR

T ∈S
σ0∇̃

R × [
G̃

(
xR

T −xT , k2

)
ρ j,n−1

(
xR

T

)]
d A , (48)

while the adjoint operator G̃∗
D · r̃ j,n−1 = [G̃∗

D · r̃ j,n−1](xT , k2) is given by

G̃∗
D · r̃ j,n−1 =

∫
x′

T ∈D
G̃(x′

T −xT , k2)
(
k2

0 + ∇̃′∇̃′·)r̃ j,n−1(x′
T , k2) d A. (49)
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The parameter ξ n in the Polak-Ribière direction of (45) is computed from:

ξn =
Re

[∑
k2≥0 β(k2)

∑
j 〈g̃ j,n, g̃ j,n − g̃ j,n−1〉D

]
∑
k2≥0

β(k2)
∑

j

‖g̃ j,n−1‖2
D

. (50)

With the update directions completely specified, the real parameter αw
n in eq. (44) is determined to minimize the cost functional

Fn = ηS
∑

j

∥∥∥∥∥Hsct
j −

∑
k2≥0

β(k2)G̃S · w̃j,n

∥∥∥∥∥
2

S

+ ηD
n−1

∑
k2≥0

β(k2)
∑

j

∥∥χn−1 Ẽinc
j − w̃j,n + χn−1G̃ D · w̃j,n

∥∥2

D

= ηS
∑

j

∥∥∥∥∥ρ j,n−1 − αw
n

(∑
k2≥0

β(k2)G̃S · ṽ j,n

)∥∥∥∥∥
2

S

+ ηD
n−1

∑
k2≥0

β(k2)
∑

j

∥∥r̃ j,n−1− αw
n (ṽ j,n − χn−1G̃ D · ṽ j,n)

∥∥2

D
, (51)

and it is found explicitly to be

αw
n = Re

{
ηS

∑
j

〈
ρn−1,

∑
k2≥0

β(k2)G̃S · ṽ j,n

〉
S

+ ηD
n−1

∑
k2≥0

β(k2)
∑

j

〈
r̃ n−1, h̃ j,n

〉
D

}

×
⎧⎨⎩ηS

∑
j

∥∥∥∥∥∑
k2≥0

β(k2)G̃S · ṽ j,n

∥∥∥∥∥
2

S

+ ηD
n−1

∑
k2≥0

β(k2)
∑

j

∥∥h̃ j,n

∥∥2

D

⎫⎬⎭
−1

, (52)

with

h̃ j,n = ṽ j,n − χn−1G̃ D ·ṽ j,n . (53)

At this stage, all quantities that are needed to update the contrast sources are known and w̃j,n can be then calculated. The starting values

for w̃j,n must still be chosen. Unless stated otherwise, as starting values, we choose the contrast sources that minimize the data error, which

are the contrast sources obtained by back projection,

w̃j,0 =

∑
k2≥0

β(k2)
∑

l

∥∥G̃∗
S · Hsct

l

∥∥2

D

∑
l

∥∥∥∥∥ ∑
k2≥0

β(k2)G̃S · (
G̃∗

S · Hsct
l

)∥∥∥∥∥
2

D

G̃∗
S · Hsct

j . (54)

9 U P DAT I N G T H E C O N T R A S T

We first determine the corresponding total field quantity Ẽ j,n = Ẽ j,n(xT , k2) for a given contrast source w̃j,n as follows:

Ẽ j,n = Ẽinc
j + G̃ D · w̃j,n . (55)

Then the contrast χ n = χ n(xT ) is obtained by the minimization of the numerator of the second term of the right-hand side of eq. (39), that is,

χn = min χ

{
ηD

n−1

∑
k2≥0

β(k2)
∑

j

‖χ Ẽ j,n − w̃j,n‖2
D

}
. (56)

This norm is minimized when

χn = Re

⎧⎨⎩
∑

k2≥0 β(k2)
∑

j w̃j,n · Ẽ j,n∑
k2≥0 β(k2)

∑
j |Ẽ j,n|2

⎫⎬⎭ . (57)

Note that the update for the contrast is carried out by an explicit minimization. This procedure has circumvented somehow the ill-posed nature

of the inverse problem. In the next section, we discuss the multiplicative regularization to limit large variations in the reconstructed contrast.

1 0 M U LT I P L I C AT I V E R E G U L A R I Z AT I O N

It has been shown that the quality of the reconstruction for the CSI method will improve substantially by employing a multiplicative

regularization technique (Abubakar et al. 2003; Abubakar & van den Berg 2004). In this MR-CSI method the contrast is found from the

extended cost functional defined as follows:

Cn(χ, w̃j,n) = Fn(χ, w̃j,n) F R
n (χ ) , (58)

where the multiplicative regularization factor FR
n is a weighted L2-norm, namely,

F R
n (χ ) = 1∫

xT ∈D d A

∫
xT ∈D

|∇χ (xT )|2 + δ2
n

|∇χn−1(xT )|2 + δ2
n−1

d A , (59)
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in which the positive parameter,

δ2
n = F D

n (χn−1, w̃j,n,) (	x)−2 , (60)

decreases as the iterations proceeds. We note that |∇χ |2 = |∂ 1χ |2 + |∂ 3χ |2 is now the variation of the contrast in the transverse plane. A

stronger regularization can be obtained with the Cartesian definition of the weighted L2-norm regularization factor,

F R
n (χ ) = 1

2
∫

xT ∈D d A

∫
xT ∈D

[ |∂1χ (xT )|2 + δ2
n

|∂1χn−1(xT )|2 + δ2
n−1

+ |∂3χ (xT )|2 + δ2
n

|∂3χn−1(xT )|2 + δ2
n−1

]
d A

= ‖b1,n∇χ‖2
D + δ2

n‖b1,n‖2
D + ‖b3,n∇χ‖2

D + δ2
n‖b3,n‖2

D, (61)

where

b1,n =
[
2

(∫
xT ∈Dd A

) (|∂1χn−1|2 + δ2
n−1

)]−1/2

, (62)

b3,n =
[
2

(∫
xT ∈Dd A

) (|∂3χn−1|2 + δ2
n−1

)]−1/2

. (63)

Note that when the so-called steering parameter δ2
n is very large, the regularization factor is equal to one, and in this case no regularization

takes place. On the other hand, when the steering parameter is small, the regularization is effect. With our choice of eq. (60) we have a large

steering parameter at the beginning of the optimization process when the data misfit is large and a decreasing one as the iteration proceeds

since the data misfit is decreasing.

The contrast will now be updated by finding the minimizer of the full cost functional given in eq. (61). Starting from the update for the

contrast in eq. (57) we make an additional minimization step as follows:

χ R
n = χn + αχ

n dn . (64)

The search direction dn is given by the Polak-Ribière conjugate gradient and is given by

d0 = 0 , dn = gR
n + Re

〈
gR

n , gR
n − gR

n−1

〉
D∥∥gR

n−1

∥∥2

D

dn−1, n > 1. (65)

We take

gR
n =

[
∂ F D

n (χ,w̃ j,n )

∂χ
F R

n (χ ) + Fn(χ, w̃j,n)
∂ F R

n (χ )

∂χ

]
χ=χn∑

k2
β(k2)

∑
j |E j,n|2 = Fn(χn, w̃j,n)

∂1 · (
b2

1,n∂1χn

) + ∂2 · (
b2

2,n∂2χn

)∑
k2

β(k2)
∑

j |E j,n|2 (66)

being a preconditioned gradient of the cost functional Cn(χ, w̃j,n) with respect to changes in the contrast around the point χ = χ n . Note that

there is no contribution from the gradient of FD
n since around χ = χ n the corresponding gradient has vanished.

This procedure of updating the contrast enables us to find the update parameter αχ
n in a closed form, provided that αχ

n is assumed to be a

real quantity. Another advantage is that we are able to show that the cost function is a convex function of this real parameter (Abubakar et al.
2003). The real parameter αχ

n is found from a line minimization of the cost functional in eq. (58),

αχ
n = minreal α

χ
{

Fn

(
χn + αχ dn, w̃j,n

)
F R

n

(
χn + αχ dn

)}
. (67)

This minimization of a fourth-degree polynomial in αχ can be performed analytically Press et al. (1992),

Fn(αχ ) = [A + B (αχ )2][X + 2Yαχ + Z (αχ )2] , (68)

where

X = ‖b1,n∂1χn‖2
D + δ2

n‖b1,n‖2
D + ‖b2,n∂2χn‖2

D + δ2
n‖b2,n‖2

D , (69)

Y = Re〈b1,n∂1χn, b1,n∂1dn〉D + Re〈b2,n∂2χn, b2,n∂2dn〉D, (70)

Z = ‖b1,n∂1dn‖2
D + ‖b2,n∂2dn‖2

D, (71)

A = Fn(χn, w̃j,n) , (72)

B = ηD
n−1

∑
k2

β(k2)
∑

j

‖dn Ẽ j,n‖2
D . (73)

1 1 R E C I P RO C I T Y B A S E D C O M P L E T I O N O F DATA

In many practical situations we can generate extra data set using the principle of source/receiver reciprocity de Hoop (1995). For example, in

the cross-well logging problem, the sources are located in the first well, while the receivers are located in the second one. Using reciprocity we
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Figure 4. The vertical scattered magnetic field component H 3(x 1, x 3) at x 1 = 25 m as a function of x3 in the configuration of Fig. 1; results of the 3-D SLDM

method for an object of 320-m-long (solid lines), 2.5-D IE results (dashed lines marked by circles).

may interchange each source/receiver pair. In this way we are able to construct extra field data generated by a source in the second well and

measured by receivers in the first well. Obviously, such extra data are redundant, however, incorporating this extra data, helps in symmetrizing

the sensitivity of inversion around the transmitter and receiver wells.

1 2 I N V E R S I O N R E S U LT S

As an example we consider the configuration shown in Fig. 1. This example is a representative configuration of monitoring fluid movement in a

reservoir. The data used in the inversion is assumed to be triaxial data. For each source–receiver pair we have nine components of the magnetic

fields. However, note that since the configuration is 2-D, only five components of the magnetic field are non-zeros. These components are H 11,

H 13, H 22, H 31 and H 33 where the first subscript denotes the source orientation while the second subscript denotes the receiver orientation.

The synthetic data sets for the inversion experiments are generated by solving the forward problem numerically using the 3-D SLDM code

Druskin et al. (1999). After generation of these data sets we added a 5 per cent random white noise according to:

Hsct, noise
j = 0.05 [1 + (φ j + i ψ j )]Hsct

j , j = 1, . . . , (74)

where φ j and ψ j are different random numbers for each j varying from −1 to +1. In order to measure the quality of the inverted conductivity

distribution, we define the error in the reconstructed conductivity as follows:

ERRn = 1∫
xT ∈D d A

∫
xT ∈D

∣∣∣∣σn(xT ) − σ true(xT )

σ true(xT )

∣∣∣∣ d A , (75)

where σ n(xT ) is the reconstructed conductivity distribution at the nth iteration and σ exact is the true conductivity distribution. We will consider

inversion using the cross-well, single-well and joint cross-well-single-well data.

12.1 Cross-well data inversion

In the cross-well inversion experiment we have 29 sources located uniformly at the left well-bore (x 1 = −25 m) from x 3 = −70 m up to

x 3 = 70 m. For each source we measured the data using 30 receivers located at right well-bore (x 1 = 25 m) from x 3 = −72.5 m up to

x 3 = 72.5 m. These source and receiver wells are denoted by the dashed lines in Fig. 1. The frequency operation of the sources is 500 Hz.

The employed cross-well measurement system is very similar to the one used by Wilt et al. (1995).

The inversion domain D has dimensions of 80 m in the x1-direction and 120 m in the x3-direction. This domain is subdivided into

32 × 48 subsquares. This discretization of 2.5 m represents about 5 per cent of the well spacing, which is expected to be the resolution of our
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Figure 5. The conductivity σ (S/m) distribution of the back-propagation (a) and the full inversion (b) from cross-well data without invoking reciprocity.

measurement system. First we carry out an inversion without using the reciprocity approach described in the previous section. In this case the

total number of data points is equal to 5 × 29 × 30. The results of the back-propagation step are given in Fig. 5(a) and the results of the full

inversion process after 1024 iterations are given in Fig. 5(b). The relative error in the reconstructed conductivity after the back-propagation

step and the full non-linear inversion step amounts to ERR 0 = 1.307 and ERR1024 = 1.020, respectively.

Next in order to improve the inversion results we use the reciprocity principle. As a result of this process, the number of data points is

doubled. The back-propagation and the inversion results from this set of data are given in Figs 6(a) and (b). The relative error in the conductivity

after 1024 iterations now amounts to 0.371. We observe that by using the reciprocity principle we can significantly improve the reconstruction

results. However, this technique nearly doubles the computational time. In all of the next cross-well inversion results, reciprocity will be

invoked.

12.2 Single-well data inversion

We consider the inversion of the configuration shown in Fig. 1, however, the data is now collected using triaxial single-well measurements. In

the tool configuration, we have one triaxial source and two triaxial receivers. The distances between the source and receivers are 2 and 5 m.

Hence at each logging point we have 5 × 2 complex-valued data points.

The data set is collected in the well located at x 1 = −25 m using 25 logging points distributed uniformly from x 3 = −60 m up to x 3 =
60 m. The back-propagation and the full inversion results using this one-side single-well data set are given in Figs 7(a) and (b), respectively.

The relative error in the reconstructed conductivity at the end of the optimization process is equal to 0.666. We observe that the inverted

conductivity distribution has a good resolution near the well-bore. However, the resolution of the inverted conductivity distribution in the

region beyond 15 m (approximately equal to one-third the skin depth in the background medium) from the well-bore degrades significantly.

Further, in Figs 8(a) and (b) we show the back-propagation and the full inversion results using the single-well data set collected at the

two wells. The wells are located at x 1 = −25 m and x 1 = 25 m. In each well we have 25 logging points. In this case the total complex-valued

data points equal to 5 × 50 × 2. In Fig. 8(b) we now obtain a good resolution in the inverted conductivity distribution around the well located

at x = 25 m. The relative error in the reconstructed conductivity is equal to ERR1024 = 0.287.

12.3 Joint single-well and cross-well data inversion

In this subsection we consider the inversion of both single-well and cross-well data. This joint inversion is carried out either sequentially or

simultaneously.

In the sequential joint inversion we first invert the single-well data using the 1-D version of the inversion algorithm presented in this

paper. The results of this 1-D inversion are given in Fig. 9(a) using the one side single-well data set. The relative error in the reconstructed
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Figure 6. The conductivity σ distribution of the back-propagation (a) and the full inversion (b) from cross-well data invoking reciprocity.
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Figure 7. The conductivity σ distribution of the back-propagation (a) and the full inversion (b) from single-well data collected at x 1 = −25 m.

conductivity due to this 1-D inversion is 0.335. Note that although the value and the location of the conductivity of the bottom layer is

reconstructed very well, the value of the conductivity of the top layer is way overestimated. In the next step, we use this inversion result as the

initial estimate for inverting the cross-well data set. Note that in this second step we also use the reciprocity data set. The inversion result is

given in Fig. 9(b) and the corresponding relative conductivity error amounts to ERR1024 = 0.100.
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Figure 8. The conductivity σ distribution of the back-propagation (a) and the full inversion (b) from single-well data collected at x 1 = −25 m and

x 1 = 25 m.

−40 −20 0 20 40

−60

−40

−20

0

20

40

60

0.2 0.4 0.6 0.8 1

−40 −20 0 20 40

−60

−40

−20

0

20

40

60

0.2 0.4 0.6 0.8 1

σ (S m−1)

(a) (b)

Figure 9. The conductivity σ distribution of the initial estimate (a) obtained with 1-D inversion of single-well data collected at x 1 = −25 m and the full

inversion result (b) obtained from cross-well data invoking reciprocity.

In Fig. 10 we repeat the same inversion of the previous example, however, with an initial estimate obtained from the single-well data

collected at both wells (at x 1 = −25 m and x 1 = 25 m). The results of this 1-D inversion is given in Fig. 10(a). The corresponding relative

error in the reconstructed conductivity is 0.246. Unlike the 1-D results given in Fig. 9(a), the value of the conductivity of the top layer in

Fig. 10(a) is slightly below the value of the background conductivity (σ 0 = 0.2 S/m). The final inversion results using this initial estimate are

given in Fig. 10(b). The relative error in the reconstructed conductivity after 1024 iterations is 0.117.
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Figure 10. The conductivity σ distribution of the initial estimate (a) obtained with 1-D inversion of single-well data collected at x 1 = −25 and x 1 = 25 m

and the full inversion result (b) obtain from cross-well data invoking reciprocity.

In Fig. 11 we present the results when inverting both single-well and cross-well data sets simultaneously. The corresponding cost

functional for carrying out this joint inversion is given by

Cn

(
χ, w̃c

j , w̃
s
j

) = [
F s

n

(
χ, w̃s

j

) + F c
n

(
χ, w̃c

j

)]
F R

n (χ ) , (76)

where F s
n (χ, w̃s

j ) and F c
n (χ, w̃c

j ) are the cost functionals with respect to the single-well and cross-well data, respectively. In each iteration of

the optimization step, we first update the contrast sources w̃s
j and w̃c

j and then the contrast χ . The results after the full non-linear inversion

are given in Fig. 11(b). The relative error in the reconstructed conductivity after 1024 iterations is 0.091. This experiment shows that it is

advantageous to start the inversion process with an initial estimate where some a priori information is taken into account.

Finally we remark that the typical total computational time of the algorithm is about 1–2 hr to invert one data set on a personal computer

with a Pentium IV 3.02 GHz processor and 2 GB memory.

1 3 C O N C L U S I O N S

In this paper we presented forward and inverse algorithms based on the IE method for solving 2.5-D low-frequency electromagnetic geophysical

problems.

In the forward problem, by using a Fourier transformation in the invariant direction of the configuration, the 3-D scattering problem

can be reduced to the problem of solving a number of 2-D IEs over the domain of the scatterers. Since we are only interested in the fields

in the plane where the sources and receivers are located, the number of Fourier parameters needed to accurately calculate those fields are

significantly small. We employ the CGNR method to solve this linear system of equations. By using the CGNR method the convergence of

our forward solver is guaranteed for any scatterer and for any frequency of operation. To obtain a positive definite matrix we multiply the

original matrix by its adjoint, hence squaring the condition number of the inversion kernel leading to a slow convergence of the method in

some cases. Another type of solvers such as the bi-conjugate gradient stabilized (BICGSTAB) by van der Vorst (1992) or the Generalized

Minimal Residual (GMRES) by Saad & Schlutz (1986) can be employed to speed up the convergence. However, this investigation is beyond

the scope of the paper. After the fields inside the scattering domain are obtained for a number of spatial frequency components, the inverse

Fourier transformation is carried out to obtain the fields at the points of observation.

In the inverse problem we employed the MR-CSI method. The advantages of using this particular algorithm are:

(1) There is no full forward problem solved at each step of the optimization process. This allows us to address large-scale inverse problems.

(2) It employs a multiplicative regularization technique. Hence the weighting for the regularization term is determined automatically by

the optimization process itself.
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Figure 11. The conductivity σ distribution of the initial estimate (a) obtained with 1-D inversion of single-well data collected at x 1 = −25 and x 1 = 25 m

and the full inversion (b) from cross- and single-well data collected at x 1 = −25 m and x 1 = 25 m.

(3) It uses a weighted L2-norm regularizer. This regularizer has all the advantages of the well-known total variation regularizer by Vogel

(2002). We presented inversion from the cross-well and long-offset single-well low-frequency electromagnetic geophysical measurements. In

the cross-well inversion the advantage of using the source–receiver reciprocity principle was demonstrated. Some advantages of using joint

inversion of cross-well and single-well data either sequentially or simultaneously are also shown.

Finally we remark that the extension of the presented inversion algorithm for multifrequency data is rather straightforward, see

Bloemenkamp et al. (2001).

A C K N O W L E D G M E N T S

The authors would like to thank Vladimir Druskin of Schlumberger-Doll Research, Ridgefield, CT, USA and Leonid Knizhnerman of the

Central Geophysical Expedition, Moscow, Russia for providing us with their 3-D SLDM code for benchmarking purposes and generating

independent synthetic data.

R E F E R E N C E S

Abubakar, A. & van den Berg, P.M., 2000. Three-dimensional inverse scat-

tering applied to cross-well induction sensors, IEEE Transactions on Geo-
science and Remote Sensing, 38, 1669–1681.

Abubakar, A., van den Berg, P.M. & Semenov, S.Y., 2003. Two- and three-

dimensional algorithms for microwave imaging and inverse scattering,

Journal of Electromagnetic Waves and Applications, 17, 209–231.

Abubakar, A. & van den Berg, P.M., 2004. Iterative forward and inverse algo-

rithms based on domain integral equations for three-dimensional electric

and magnetic objects, Journal of Computational Physics, 195, 236–262.

Allers, A., Sezginer, A. & Druskin, V.L., 1994. Solution of 2.5-dimensional

problems using the Lanczos decomposition, Radio Science, 29, 955–963.

Abramowitz, M. & Stegun, I.A., 1968. Handbook of Mathematical Func-
tions, Dover Publications, New York.

Alumbaugh, D.L. & Newman, G.A., 1997. 3-D massively parallel electro-

magnetic inversion; part b—analysis of cross well EM experiment, Geo-
physical Journal International, 128, 355–363.

Alumbaugh, D.L. & Wilt, M.J., 2001. A numerical sensitivity study of three-

dimensional imaging from a single borehole, Petrophysics, 42, 19–31.

Bloemenkamp, R.F., Abubakar, A. & van den Berg, P.M., 2001. Inversion

of experimental multi-frequency data using the contrast source inversion

method, Inverse Problems, 17, 1611–1622.

de Hoop, A.T., 1995. Handbook of Radiation and Scattering of Waves, Aca-

demic Press, London.

Druskin, V.L. & Knizhnerman, L.A., 1994. Spectral approach to solving

three-dimensional Maxwell’s diffusion equations in the time and fre-

quency domain, Radio Science, 29, 937–953.

Druskin, V.L., Knizhnerman, L.A. & Lee, P., 1999. New spectral Lanczos

decomposition method for induction modeling in arbitrary 3-D geometry,

Geophysics, 64, 701–706.

Habashy, T.M., Chow, E.Y. & Dudley, D.G., 1990. Profile inversion using the

renormalized source-type integral equation approach, IEEE Transactions
on Antennas and Propagation, 38, 668–682.

Habashy, T.M., Oristaglio, M.L. & de Hoop, A.T., 1994. Simultaneous non-

linear reconstruction of two-dimensional permittivity and conductivity,

C© 2006 The Authors, GJI, 165, 744–762

Journal compilation C© 2006 RAS



760 A. Abubakar, P. M. van den Berg and T. M. Habashy

Radio Science, 29, 1101–1118.

Habashy, T.M. & Lulling, M., 1994. A point magnetic dipole radiator in
a layered TI-anisotropic medium, Technical Report, Schlumberger-Doll

Research, Ridgefield, Connecticut, USA.

Ingerman, D., Druskin, V.L. & Knizhnerman, L.A., 2000. Optimal finite

difference grids and rational approximations of the square root I. Ellip-

tic problems, Communications on Pure and Applied Mathematics, LIII,
1039–1066.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1992. Nu-
merical Recipes in Fortran: The Art of Scientific Computing, Cambridge

University Press, New York.

Richmond, J.H., 1965. Scattering by a dielectric cylinder of arbitary cross

section shape, IEEE Transactions on Antennas and Propagation, 13, 334–

341.

Saad, Y. & Schultz, M.N., 1986. GMRES: A generalized minimal resid-

ual algorithm for solving nonsymmetric linear system, SIAM J. Aci. Stat.
Comp., 7, 856–859.

Spies, B.R. & Habashy, T.M., 1995. Sensitivity analysis of crosswell elec-

tromagnetics, Geophysics, 60, 834–845.

Torres-Verdin, C. & Habashy, T.M., 1994. Rapid 2.5-dimensional forward

modeling & inversion via a new nonlinear scattering approximation, Radio
Science, 29, 1051–1079.

van Bladel, J., 1991. Singular Electromagnetic Fields and Sources,

Clarendon, Oxford.

van den Berg, P.M., 1984. Iterative computational techniques in scattering

based upon the integrated square error criterion, IEEE Transactions on
Antennas and Propagation, 32, 1063–1071.

van den Berg, P.M. & Kleinman, R.E., 1997. A contrast source inversion

method, Inverse Problems, 13, 1607–1620.

van der Vorst, H.A., 1992. BICGSTAB: A fast & smoothly convergence

variant of Bi-CG for the solution of nonsymmetric linear system, SIAM J.
Aci. Stat. Comp., 13, 631–644.

Vogel, C.R., 2002. Computational Methods for Inverse Problems, SIAM

Frontiers in Applied Mathematics, pp. 129–150.

Wilt, M.J., Alumbaugh, D.L., Morrison, H.F., Becker, A., Lee, K.H. &

Deszcz-Pan, M., 1995. Crosswell electromagnetic tomography: sys-

tem design considerations and field results, Geophysics, 60, 871–

885.

Zhdanov, M.S. & Chernyak, V.V., 1987. An automated method of solving the

two-dimensional inverse problem of electromagnetic induction within the

Earth, Transactions (Doklady) USSR Academy of Sciences, Earth Science
Sections, 296, 59–63.

Zhdanov, M.S. & Yoshioka, K., 2003. Cross-well electromagnetic imaging

in three dimensions, Exploration Geophysics, 34, 34–40.

Zwamborn, A.P.M. & van den Berg, P.M., 1992. The three dimensional

weak form of the conjugate gradient FFT method for solving scatter-

ing problems, IEEE Transactions Microwave Theory and Techniques, 40,
1757–1766.

A P P E N D I X A : D I S C R E T I Z AT I O N P RO C E D U R E

We assume that the computational domain D is a rectangular domain with boundaries along the x1 and x3 directions. We discretize the domain

D uniformly in rectangular subdomains of dimensions 	x 1 by 	x 3 with centre points located at:

x1;m = x1; 1
2

+ (m−1)	x1, m = 1, . . . , M, (A1)

x3;n = x3; 1
2

+ (n−1)	x3, n = 1, . . . , N , (A2)

in which x 1;1/2 and x 3;1/2 denote the lower left corner of the rectangle computation domain. In each subdomain, we assume the conductivity

contrast χ to be constant and equal to the value at the centre point, namely, χ m,n = χ (x 1,m , x 3,n). In this appendix we give the weighting

procedure to discretize the gradient-divergence operator and the weakening procedure to obtain the discrete version of the normalized vector

potential. Further, for completeness, the explicit expressions for the adjoint operators are also given.

A1 Weighting procedure

We define three sequences of basis functions over the domain D, namely, a sequence ψ (1)
m,n,(x 1, x 3) that is continuous in the x 1−direction and

may allow jumps in the x 3−direction, a sequence ψ (2)
m,n,(x 1, x 3) that may allow jumps in both the x 1− and x 3−directions, and a sequence

ψ (3)
m,n,(x 1, x 3) that may allow jumps in the x 3−direction and is continuous in the x 3−direction. The most simple basis functions, which meet

these requirements are the rooftop functions Zwamborn & van den Berg (1992). In order to construct the rooftop functions that meet our

objectives, we define two 1-D functions. The first is a piecewise constant function, namely, the pulse function, with support 	y, defined as

�(y|	y) =

⎧⎪⎪⎨⎪⎪⎩
1 if − 1

2
	y < y < 1

2
	y ,

1
2

if |y| = 1
2
	y ,

0 elsewhere .

(A3)

The second is a piecewise linear and continuous function, namely, the triangle function, with support 2	y, defined as

�(y|, 	y) =

⎧⎪⎪⎨⎪⎪⎩
(
1 + y

	y

)
if − 	y < y < 0 ,(

1 − y
	y

)
if 0 < y < 	y ,

0 elsewhere .

(A4)

The expansion functions are now defined as

ψ (1)
m,n (x1, x3) = �(x1−x1; m |	x1)�(x3−x3;n|	x3) ,

ψ (2)
m,n (x1, x3) = �(x1−x1; m |	x1)�(x3−x3;n|	x3) ,

ψ (3)
m,n (x1, x3) = �(x1−x1;m |	x1)�(x3−x3;n|	x3

) ,

(A5)

for m = 1, . . . , M and n = 1, . . . , N . Let us further define the quantities

Ẽm,n = Ẽ(x1;m, x3;n, k2) , (A6)
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Ãm,n = Ã(x1;m, x3;n, k2) . (A7)

Then, (21) is discretized as

Ẽinc
m,n = Ẽm,n − k2

0 Ãm,n − [∇̃∇̃· Ã]m,n, (A8)

for m = 1, . . . , M and n = 1, . . . , N . Using the expansion functions of (A5) each component of the last term of (A8) is replaced by its weak

version as

[∇̃∇̃ · Ã]κ;m,n =
∫

x1,x3∈D ψ (κ)
m,n(x1, x3) [∇̃∇̃ · Ã] κ (x1, x3) d A∫
x1,x3∈D ψ

(κ)
m,n (x1, x3) d A

, (A9)

while the component of the normalized vector potential Ã is expanded in a sequence of the basis functions, as follows

Ãκ (x1, x3, k2) =
∑
q,r

Ãκ; q,rψ
(κ)
q,r (x1, x3), κ = 1, 2, 3. (A10)

We then arrive at

[∇̃∇̃· Ã]1;m,n = Ã1;m+1,n − 2 Ã1;m,n + Ã1;m−1,n

(	x1)2
− ik2

Ã2;m+1,n − Ã2;m−1,n

2	x1

+ Ã3;m−1,n−1− Ã3;m−1,n+1− Ã3;m+1,n−1+ Ã3;m+1,n+1

4	x1	x3

,

[∇̃∇̃· Ã]2;m,n = −ik2

Ã1;m+1,n − Ã1;m−1,n

2	x1

− k2
2 Ã2;m,n − ik2

Ã3;m,n+1 − Ã3;m,n−1

2	x3

,

[∇̃∇̃· Ã]3;m,n = Ã1;m−1,n−1− Ã1;m−1,n+1− Ã1;m+1,n−1+ Ã1;m+1,n+1

4	x1	x3

− ik2

Ã2;m,n+1 − Ã2;m,n−1

2	x3

+ Ã3;m,n+1, − 2 Ã3;m,n + Ã3;m,n−1

(	x3)2
. (A11)

Note that the results in (A11) are identical to the ones if we had replaced (A9) directly by its finite-difference approximation Abramowitz &

Stegun (1968).

A2 Weak form of the normalized vector potential

Next, we have to replace the continuous representation of the normalized vector potential Ã by a discrete one. In order to cope with the

singularity of the Green function, we take the circular mean of the normalized vector potential in the 2-D Cartesian space. We integrate Ã

over a circular domain in the Cartesian 2-D space with centre at the point (x 1;m , x 3;n) and with radius a = √
	x1	x3/π . The results are

divided by the circular area πa2. Note that the latter area is equal to the area 	x 1	x 3 of a rectangular sub domain We then may write for

each component, κ = 1, 2, 3, of the vector potential

Ãκ (x1;m, x3;n, k2) =
∫

|x′′ |<a Ãκ (x1;m + x ′′
1 , x3;n + x ′′

3 , k2) d A∫
|x′′ |<a d A

=
∫

x ′
1,x ′

2∈D
G̃(x1;m − x ′

1, x3;n − x ′
3, k2)χ (x ′

1, x ′
3)Ẽκ (x ′

1, x ′
3, k2) d A , (A12)

where we have interchanged the order of integrations, such that

G̃(x1, x3, k2) =
∫

[(x ′′
1 )2+(x ′′

3 )2]
1
2 <a

G̃(x1 + x ′′
1 , x3 + x ′′

3 , k2) d A∫
[(x ′′

1 )2+(x ′′
3 )2]

1
2 <a

d A
. (A13)

Computation of the circular mean G̃ = G̃(x1, x3, k2) leads to

G̃ =

⎧⎪⎪⎨⎪⎪⎩
i

2k0a
H (1)

1 (k0a)J0(k0 R) − 1

π (k0a)2
, R ≤ a,

i

2k0a
J1(k0a)H (1)

0 (k0 R), R ≥ a,

(A14)

where the 2-D distance function R is given by

R(x1, x3) = (
x2

1 + x2
3

) 1
2 . (A15)

Note that, for the limiting case a → 0, the weak form of the Green function, G̃ in case |x| > a, tends to its strong form G̃. In fact, G̃(x1, x3, k2)

is the mean value of the Green function over a circular domain with centre at (x 1, x 3). Note that this weakening of the singularity is different

from the technique used by van Bladel (1991), where the spatial differentiations are acting on the Green function directly, while we compute

first the normalized vector potential Ã, in which the Green function has been weakened by taking its circular mean (Richmond 1965), and

subsequently the differentiations are carried out numerically on the normalized vector potential Ã. This technique has proven to yield an

efficient, stable, and accurate algorithm. But note that the choices of discretization points in Zwamborn & van den Berg (1992) are far more

complicated than the one used in Abubakar & van den Berg (2004).

After this weakening procedure, we are now able to compute the integral over D in (A12) numerically. In view of the functional properties

of Ẽκ , we approximate the integral in (A12) using a midpoint rule. We then arrive at

Ãm,n = Ã(x1;m, x3;n, k2) = 	x1	x3

M∑
m′=1

N∑
n′=1

G̃m−m′,n−n′χm′,n′ Ẽm′,n′ , (A16)
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for m = 0, . . . , M + 1 and n = 0, . . . , N + 1, where

G̃m−m′,n−n′ = G̃(x1;m − x1;m′ , x3;n − x3;n′ , k2) . (A17)

Note that each component, Ãκ; m,n, κ = 1, 2, 3, is a discrete convolution in m′ and n′, and can efficiently be computed by a 2-D fast Fourier

transform (FFT) routine Press et al. (1992).

A3 Explicit expression of the adjoint operator

The adjoint operator G̃ D is defined through the relation

〈r̃ , G̃ Dχ Ẽ〉D = 〈
χ G̃∗

D r̃ , Ẽ
〉
D

, (A18)

where r̃ and Ẽ are both in the same vector space, in domain D. Substituting the expression of the operator G̃ DχẼ in the left-hand side of

(A18) and interchanging the various summations, the adjoint operator G̃∗
D is recognized as(

G̃∗
D r̃

)
κ;m,n

= 	x1	x3

M+1∑
m′=0

N+1∑
n′=0

G̃m′− m,n′−n F̃κ; m′,n′ , (A19)

for m = 1, . . . , M and n = 1, . . . , N , where

F̃1; m,n = k2
0 r̃1;m,n + r̃1;m−1,n − 2r̃1;m,n + r̃1;m+1,n

(	x1)2
+ ik2

r̃2;m−1,n − r̃2;m+1,n

2	x1

+ r̃3;m+1,n − r̃3;m+1,n − r̃3;m−1,n + r̃3;m−1,n

4	x1	x3

,

F̃2; m,n = k2
0 r̃2;m,n + r̃1,m+1,n+1 − r̃1;m+1,n−1 − r̃1;m−1,n+1 + r̃1;m−1,n−1

4	x1	x2

+ k2
2 r̃2;m,n + ik2

r̃3;m,n−1 − r̃3;m,n+1

2	x3

,

F̃3; m,n = k2
0 r̃3;m,n + r̃1;m+1,n − r̃1;m+1,n − r̃1;m−1,n + r̃1;m−1,n

4	x1	x3

+ ik2

r̃2; m,n−1 − r̃2;m,n+1

2	x3

+ r̃3;m,n+1 − 2r̃3;m,n + r̃3;m,n−1

(	x3)2
. (A20)

Since according to (A19) m′ runs from 0 to M + 1 and n′ runs from 0 to N + 1, we set in the expressions of (A20)

r̃κ;m,n = 0 , m = −1, 0, M + 1, M + 2 , ∀n,

r̃κ;m,n = 0 , n = −1, 0, N + 1, N + 2 , ∀m.
(A21)

Note that (G̃∗
D r̃ )κ;m,n are discrete convolutions in m′ and n′, and these convolutions can be computed efficiently by 2-D FFT routines (Press

et al. 1992).

C© 2006 The Authors, GJI, 165, 744–762

Journal compilation C© 2006 RAS


