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Abstract

Crystal size distributions can follow any function, provided the total crystal content is less than 100%. However, many theories
suggest that they approximate a number of ideal distribution models. The most widely adopted model for igneous rocks produces a
straight line on a ‘classic’ CSD diagram of In (population density) versus size. Lognormal by size distributions have been proposed
for igneous and metamorphic rocks and materials that crystallise at low temperatures. Lognormal models are difficult to prove with
simple linear frequency histograms or on a classic CSD diagram. Instead, it is better to use a normalized cumulative distribution
function diagram, which gives a straight line for lognormal distributions. Similarly, fractal size distributions can best be verified
simply by using a bi-logarithmic diagram. Statistical measures can be used to invalidate a null hypothesis, but with much caution
for real data, especially those derived from two-dimensional measurements and with a limited range in sizes. These methods are
applied to CSDs of plagioclase in three igneous rock samples to illustrate the pitfalls of model fitting. A simple nomenclature is

proposed for ideal CSD shapes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In petrology we generally examine rocks so that we
may understand the nature of the starting materials and
the processes which they have undergone. This inverse
problem has no unique solution but the petrogenesis of a
rock can be constrained by making observations of the
widest possible scope. Chemical and isotopic measure-
ments dominate many current petrological studies, but
the rock textures should not be ignored: Crystals change
in size, shape, orientation and position during solidifi-
cation or melting, hence, textures can convey petrologic

* Tel.: +1 418 545 5011x5052; fax: +1 418 545 5012.
E-mail address: mhiggins@uqac.ca.

0377-0273/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.jvolgeores.2005.09.015

information. Early textural studies were qualitative and
did not add much to the petrologic story. However,
recent advances in the quantification of textures have
considerably augmented their utility. By far the most
commonly applied quantitative textural measurement is
crystal size distributions (CSD).

The crystal size distribution of a rock is just the
number of crystals of a mineral per unit volume within a
series of defined size intervals. If a large number of
crystals are measured then the width of the size intervals
can be decreased and the CSD eventually becomes a
smooth function. The CSD is an intrinsic property of a
solid, like the density or the composition. Like other
parameters, it can be measured and presented in
different ways, but there is only one CSD for each


http://dx.doi.org/10.1016/j.jvolgeores.2005.09.015
mailto:mhinggins@uqac.ca

M.D. Higgins / Journal of Volcanology and Geothermal Research 154 (2006) 8—16 9

phase in a rock. A small caveat is perhaps the meaning
of crystal size: it can be defined in many ways, but all
reflect in some way the dimensions of the crystals
(Higgins, 2000). CSDs can vary enormously between
different rocks and phases, although they have closure
limits, like chemical compositions and other parameters
(Higgins, 2002a).

The CSD of rock is generally just a view of the last
stage of textural evolution, although glimpses of earlier
textures may be sometimes observed (Higgins, 1998).
The initial solidification of an igneous rock is dominated
by the kinetic effects of crystal nucleation and growth
(Fig. 1). However, once crystals have formed then their
abundance may be changed by mechanical processes
such as sorting and compaction. In many rocks a
relaxation of the crystallisation driving force may enable
the texture to evolve towards equilibrium, which can be
observed in CSDs by coarsening (Higgins, 1998). Each
of these processes produces characteristic changes in the
CSDs, some of which may converge from different
original CSDs towards a unique final CSD shape. Many
authors have tried to establish petrologic models from
observations of CSD shapes. Most rocks have complex
histories and it is clearly necessary to find special
situations where one process dominates, or overwrites
carlier textures. Marsh (1988) suggested that many
igneous CSDs are straight lines when plotted on a graph
of In (population density) versus size. Indeed, this
diagram is commonly referred to as the ‘CSD diagram’.
Some authors have considered that many CSDs have a
lognormal frequency distribution (e.g. Eberl et al., 1998;
Kile et al., 2000). Others have found CSDs that have a
fractal (power law) size distribution (e.g. Armienti and
Tarquini, 2002). In this paper I will show how these
proposed CSD models can be verified using diagrams
and statistical methods that are appropriate for these
purposes. I want to also point out the pitfalls associated
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Fig. 1. Development of igneous rock textures—role of kinetic,
mechanical and equilibrium processes.

with data produced by certain analytical methods and
the limitations of model fitting.

2. Theoretical CSDs and appropriate diagrams

Randolph and Larson (1971) developed a theoretical
treatment of CSDs in continuously fed, steady-state,
industrial crystallizers. They found that growth rates
were independent of crystal size and that the CSDs were
linear when plotted on a graph of In (population density)
versus crystal size (Fig. 2A). The slope of this graph is
equal to —1/(growth rate x residence time). This model
is fundamentally kinetic—sorting and equilibration
have not occurred. Marsh (1988) proposed that a
volcanic magma chamber could approximate such a
reactor. Cashman and Marsh (1988) then applied these
ideas to a lava lake and determined some of the kinetic
controls on crystallisation. However, although a lava
lake is not a steady-state system Marsh (1998)
concluded that closed systems of batch crystallisation
at may also be linear in these coordinates. However, in
batch systems the significance of the residence time is
not clear. Since then many other studies have found
CSDs with similar shapes, now commonly referred to as
straight CSDs. Commonly, the residence time has been
calculated from the slope and growth rate estimates,
even if the system is far from steady-state. Not all
authors have adopted this semi-logarithmic CSD model.

Normal or lognormal distributions are often thought
to be common in natural systems. An example well
known to geologists is chemical abundance, although
recent analysis shows that this is rarely true in practice
(Reimann and Filzmoser, 2000). Lognormal by volume
or mass distributions (i.e. the dependant variable that is
lognormally distributed is the mass or volume of
material in each size interval, not the numbers of grains)
are commonly proposed for sediments (Lewis and
McConchie, 1994). A lognormal by number distribution
has also been proposed for CSDs of crystals grown at
low temperatures in aqueous systems (Eberl et al., 1998;
Kile et al., 2000). These authors considered that such
lognormal distributions were fundamentally kinetic in
origin, as a result of nucleation and growth. They
showed that lognormal CSDs can be produced if it is
assumed that growth rate is proportional to crystal size.
This model has been subsequently extended to mag-
matic systems, with the assumption that such CSDs are
kinetic in origin (Bindeman, 2003). Many metamorphic
(Cashman and Ferry, 1988) and plutonic rocks (Higgins,
1998) have CSDs that are concave-down on a semi-
logarithmic CSD diagram and commonly approximately
lognormal. Kinetic effects are clearly important in these
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Fig. 2. Graphical display of three different theoretical CSD models on three different diagrams: A) Semi-logarithmic ‘Classic’ CSD diagram
(following March 1988). B) Cumulative Distribution Function (CDF) diagram. C) Bi-logarithmic cumulative size diagram. A ‘straight’ CSD (CSD-S)
has a semi-logarithmic distribution and is straight in diagram A. A lognormal distribution (CSD-L) is straight in diagram B. A fractal distribution

(CSD-F) is straight in diagram C.

rocks, however during magma or fluid present condi-
tions the texture may start to equilibrate and coarsen.
Therefore, lognormal CSDs in igneous rocks have been
interpreted as due to both kinetic and equilibrium effects
(Fig. 1).

Clear evidence of lognormal behaviour of CSDs has
not always been provided. Some authors have used linear
frequency histograms to show that their CSD data are
lognormal (e.g. Eberl et al., 1998). However, this is not
the best solution, as deviations are not clearly shown,
especially for sizes smaller than the mean. A better
approach is to use the transform of the cumulative
distribution function against In (size), the CDF diagram,
for identifying such distributions, as is done in
sedimentology (Fig. 2B; Carver, 1971). If a distribution
is lognormal then this graph is a straight line. Statistical
verifications of lognormal behaviour are discussed below.

The mathematical concept of fractional dimensions—
fractals—is relatively recent (Mandelbrot, 1982), but has
had a remarkable impact on the natural sciences,
particularly in geology (Turcotte, 1992). Indeed, it is
now commonly assumed that most geological struc-
tures, including rock textures, are fundamentally fractal.
Fractals may be applicable to some phenomena in

geology, but it must be proved that they can describe the
fundamental component of CSDs. So far there have
been few studies in which CSDs have been found to
have a fractal distribution: Armienti and Tarquini (2002)
found that olivine in the mantle had a fractal dis-
tribution. Here, this clearly reflects the balance between
grain size reduction caused by deformation and a return
to equilibrium via coarsening. In addition Turcotte
(1992) found grain sizes of fragmental rocks to be fractal
over significant ranges in size. It will be shown below
that some purely magmatic CSDs may also be fractal.
The classic CSD diagram was not designed to
examine if a CSD is fractal. However, it is easy to
construct the CSD diagram for this purpose, such as In
(number of crystals>size) versus In (size) (Fig. 2C). The
fractal dimension of this size distribution is equal to — 1
multiplied by the slope (Turcotte, 1992). This will be
referred to as a ‘fractal diagram’. It is very important that
the dataset has a wide range of crystal sizes, otherwise
such a fractal behaviour cannot be identified (Pickering
et al., 1995). If a fractal diagram has two or more clearly
defined slopes for different sizes then it is described as
multifractal. However, other distributions are curved on
a fractal diagram and some authors may be tempted to
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conclude that they are multifractal. It is rare that crystal
size distribution data cover a sufficient size range and
are sufficiently accurate that multifractal behaviour can
be clearly recognised.

More complex distributions can be readily proposed,
such as Weibull and Rosin-Rammler (Kotov and
Berendsen, 2002) but their utility is probably limited.
Many CSDs are the result of several sequential processes,
commonly kinetic, mechanical and equilibrium, and
hence can have very complex distributions (Fig. 1). A
better approach may be to define the effect of different
processes on crystals of different sizes and combine these
processes stochastically (e.g. Higgins, 1998).

It may be useful to classify the different ideal CSD
shapes so that confusing terms such as ‘straight CSD’
may be avoided. It is proposed here that semi-
logarithmic CSDs, those that are straight on a classic
CSD graph are referred to as S-CSD (Fig. 2). Similarly,
lognormal CSDs are L-CSD and fractal CSDs are F-
CSD. CSDs that can be produced by a combination of
simple CSDs could be designated by two letters. For
instance, mixing of two S-CSDs produces a character-
istic CSD with two straight segments (Higgins, 1996b)
that could be referred to as SS-CSD.

3. Statistical verification of distributions

“If your experiment needs statistics, you ought to
have done a better experiment.” Ernest Rutherford.

The use of statistical parameters to prop up dubious
arguments has a long history (Huff, 1954). Nevertheless,
such methods are another approach to verify if a CSD
follows an ideal distribution model. This is generally
done using the ‘null hypothesis’: this is the hypothesis
that the distribution of the data was produced by random
processes (Swan and Sandilands, 1995). If the null
hypothesis is validated then the CSD does not follow the
model; if it is rejected then it is still possible that the
CSD follows the model. The null hypothesis must be
tested using a test statistic. There is a level of
significance associated with this hypothesis, commonly
5%. This means that there is only a 5% chance that the
distribution seen occurred by random processes.

The most widely applicable test uses the value of chi-
squared.

2
2 _ (OFEJ‘)
L= Z Ej

where j is the class interval number, O, is the observed

frequency of that class and £; is the expected frequency
of that class. It is important to note that this parameter is

calculated from the entire distribution. Each class should
have at least 5 observations. Classes should be
symmetrically disposed around the mean. The signifi-
cant values of this parameter depend on the number of
observations and the required significance level. These
values are available in standard statistical texts (e.g.
Swan and Sandilands, 1995) or can be calculated using
the inverse gamma function.

The chi-squared test is very susceptible to the number
of classes (Swan and Sandilands, 1995): The null
hypothesis may be more commonly accepted for larger
numbers of classes. For a small number of classes failure
to reject the null hypothesis (i.e. if we accept that the
data conform to the model distribution) may be due to
broad and unimportant similarities between the data and
the model (Swan and Sandilands, 1995). These
deficiencies are generally evident on appropriate CSD
graph.

There is another problem with this approach: the
value of chi-squared in this simple calculation only
indicates the dispersion of the points about the line. It
does not say if this dispersion exceeds the individual
uncertainty (error) in each point (Fig. 3). A much better
assessment of the level of significance can be made if
the uncertainty associated with each point is known
(Bevington and Robinson, 2003). A goodness of fit
parameter, O, can then be calculated that determines the
probability that the observed discrepancies between the
observed and expected values are due to chance
fluctuations. A very low value indicates that the
discrepancies are unlikely to be due to chance fluctua-
tions. This means that either the model is wrong or the
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Fig. 3. Goodness of fit of data to a straight line. In these two sets of
data, A and B, the distributions of the data points are identical, but data
in set B are more precise. The value of chi-squared and the correlation
coefficient (+7) are only derived from the data values and hence are
identical for these two data sets. However, in A a line can be drawn
through the error bars and the O value is equal to 0.1, both indicating
that the null hypothesis can be rejected and the data may follow the
distribution indicated by the straight line. In B the same data points
have greater precision. A line cannot be drawn through all of the error
bars and the Q value is less than 0.1, hence the null hypothesis must be
accepted and the data do not follow the distribution model.
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uncertainties have been underestimated or the uncer-
tainties are not normally distributed. If Q is greater than
0.1 then the null hypothesis is rejected and the CSD may
follow the model distribution. A value of 0>0.001 may
be acceptable, because truly wrong models generally
have very small values of Q. Values higher than 0.1 do
not indicate that the data have more validity. A value
close to 1 may indicate that the errors have been
overestimated.

The Smirnov—Kolmogorov test is one of the other
statistical tests that are commonly used (Swan and
Sandilands, 1995). This test is based on the cumulative
frequency distribution of the data. The maximum
distance between the data and the ideal distribution is
evaluated in terms of the percentile. It is most sensitive
for the central part of the distribution and least sensitive
for very small or large crystals. Unfortunately, it is the
number of crystals in these parts of the CSD that show
which ideal distribution is most closely followed.
Hence, it is probably not very useful for this purpose.

A number of graphs give a straight line if the CSD
follows the theoretical distribution. In this case the data
values can be regressed by minimizing the value of chi-
squared. The value of chi-squared or the correlation
coefficient +* are commonly used to quantify how
closely the observed data correspond to a straight line.
However, if the uncertainty in each point is known then
the goodness of fit parameter Q can be calculated as
above and this is a better measure of the validity of the
model. This calculation is done in some statistical
programs and CSD reduction programs (e.g. CSDCor-
rections 1.3).

4. Measurement of real CSDs

A CSD is a physical parameter of a rock that must be
measured, wherein lie a number of limitations and
sources of uncertainty. Ideally, the most accurate CSD is
determined from three-dimensional measurements of
crystals in a rock. This can be done using X-ray
tomography, serial sectioning, and natural, chemical or
mechanical separation of crystals. However, these
methods are not commonly used for various reasons:
touching crystals are not easy to distinguish in X-ray
tomography or serial sectioning and physical crystal
separation methods are not widely applicable. In
addition the range of crystal sizes that can be measured
is limited by the resolution of the method and the
maximum image size. Hence, most CSDs are deter-
mined from measurements of crystal outlines in
sections. If the data are derived from measurements of
photographs or digital images then the range of crystal

sizes that can be measured may be restricted. This can be
overcome by the combining measurements at two
different scales (e.g. Higgins and Roberge, 2003).

It is not simple to calculate a CSD, which is a three-
dimensional parameter, from two-dimensional data
(Peterson, 1996; Higgins, 2000). Indeed there are no
exact solutions to this problem (except for spheres) but
approximate results can be obtained if the crystal shapes
and the nature of the fabric are defined (Higgins, 2000).
Conversion cannot be done for individual crystals, but
only for sub-populations groups in different size bins.
Hence an original continuous 2D distribution becomes
discontinuous in 3D. It should be remembered that in
many early papers, and a few recent ones, the authors
used incorrect conversion equations that resulted in
inaccurate, though precise, CSDs. Such data should be
converted using more accurate methods (Higgins,
2000).

The nature and position of the lower and upper size
limits must be established. One consequence of
stereologically correct conversions is that many CSDs
have poor precision for small crystal sizes. In addition,
many methods have limits to their resolution—for
instance the pixels of a digital image. Therefore we must
distinguish clearly between a methodological (analyti-
cal) lower size limit, where we have no idea if there are
smaller crystals, and an actual lack of small crystals.
This is particularly important in the identification of
lognormal and fractal CSDs. The upper limit of a CSD is
generally not well defined, as crystal numbers are small.
However, field observations can commonly identify the
maximum crystal size.

5. CSD data—typical samples

Three samples have been chosen to represent the
common range of CSDs in magmatic rocks and typical
two-dimensional analytical methods. Three were chosen
from my studies, because I have complete control on the
stereological conversion and can also discuss the data
quality and limits. Q values are calculated for semi-
logarithmic (classic) and fractal diagrams as uncertain-
ties in the data points have been calculated. However,
this cannot be done for CDF diagrams as the uncertainly
in each point is not easy to determine.

Egmont volcano, on Mt Taranaki, New Zealand is an
active andesite volcano. The initial study of the
plagioclase CSDs of these rocks used an inappropriate
conversion method (Higgins, 1996a), but the data were
recalculated in a later paper (Higgins, 2002a). Plagio-
clase is the major phenocryst phase in these rocks, and
comprises 7 to 30% of the rock. The sample shown here,
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NZ-12, has 7% plagioclase (Fig. 4A). The lower size
limit of the analytical method was 0.05 mm. The CSD is
generally almost straight on a classic CSD diagram (Fig.
5A). The CSD descends for the lowest size interval, but
this probably reflects the error in that point. The
goodness of fit, O, of the CSD to a straight line found
to be 0.42, which is greater than the value of 0.1 needed
to indicate significance (these calculations were done by
the program CSDCorrections version 1.36, Higgins,
2000). Hence, we can surmise that the CSD is linear on a
classic CSD diagram and describe it as an S-CSD.

The same data also give a straight line when plotted
on a CDF diagram (Fig. 5B). This might be taken as
proof that the data are lognormal, which conflicts which
the conclusion above. The problem here is that the data
are undefined below a size of 0.05 mm. We do not know
from the CSD what happens below this point. If the
CSD were lognormal then there would be few or no
microlites (Fig. 2B). Inspection of the thin section
shows that there are, indeed, microlites and hence that
the CSD does not terminate at this size and therefore the
CSD cannot be lognormal (Higgins, 1996a). In an ideal
situation this would be verified by more detailed
analysis of small crystals. Here, however, I wish to
illustrate the problem with data typical of many studies.

These CSD data are strongly curved on a fractal
diagram (Fig. 5C). No three points are collinear as would
be expected if the texture were fractal. The O value is
2.2x10" '8, clearly indicating that it is far from linear.

Soufriere Hills volcano, Montserrat, is also an
andesite volcano that started its most recent eruption
in 1996 (Robertson et al., 2000). Plagioclase is the major
phase and has a large range in size from microlites to
phenocrysts 1.5 mm long (Fig. 4B; Higgins and
Roberge, 2003). For this reason, intersection data were
collected at two different scales and combined to give a
single CSD with a much greater range in measured
crystal sizes than the Egmont volcano sample (Fig. SA
and D). Inspection of thin sections confirms that crystals
continue below the smallest size measured in this study
(0.04 mm), hence the CSD is undefined below this size.
On a semi-logarithmic diagram the CSD is strongly
curved concave-up throughout the measured range in
crystal sizes (Fig. 5D). This is reflected in the Q value of
1.18x10™*.

On a CDF diagram (Fig. 5SE) almost the entire curve
lies above the median size (0.045 mm). This is because
about half of the small crystals are in the lowest size bin.
The CDF is strongly curved also, firmly establishing
that this distribution is not lognormal, even if the
number of crystals smaller than the detection limit is not
known.

A: NZ 12 plagioclase

1mm 2

B: MMMon2 plagioclase
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Fig. 4. Digitized outlines of the three thin sections that were used to
construct the CSD diagrams of Fig. 5. A: NZ 12, plagioclase in an
andesite lava from Egmont volcano, Mt Taranaki, New Zealand
(Higgins, 1996a). These data were recalculated using CSDCorrections
1.36 (Higgins, 2000). B: MMMon2, plagioclase in an andesite from
Soufriere Hills volcano, Montserrat (Higgins and Roberge, 2003). The
section was digitized at two different scales, so that a larger size range
of crystals could be quantified. C: MH-94-60, plagioclase in troctolite
from the Kiglapait intrusion, Nain, Canada (Higgins, 2002b).
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Fig. 5. Three contrasting rock CSDs displayed in three different ways: A, D, G) Classic CSD diagram; B, E, H) Cumulative distribution function
(CDF) diagram; C, F, I) bi-logarithmic diagram. Crystal size is in mm. The uncertainly in the points on the classic CSD diagram is that calculated by
the program CSDCorrections (Higgins, 2000). These uncertainties are also used in the fractal diagram. Uncertainties in points on the CDF diagram
can only be calculated for 3D measurements and are hence absent here. The nature of each data point is shown in the legend at the bottom. A vertical
line indicates a true termination of the CSD and that there are no smaller or larger crystals. If a CSD ends in an open circle then the CSD is not defined
for smaller or more rarely larger crystals. This type of termination is an artefact of the analytical method.

The CSD is almost straight on a fractal diagram (Fig.
5F) with a fractal dimension of 2.4. It should be noted
that the range in sizes here is nearly two orders of
magnitude, much greater than that of the other samples
discussed here. However, the Q value for all data is
4x 1022, which reflects the deviation from the trend of
the leftmost point. It is likely that the error in this point
has been underestimated: If it is omitted then 0=0.04
and the CSD may be considered to be fractal and termed
F-CSD.

The Kiglapait intrusion, Labrador, Canada presents
one of the best-exposed sections through a medium-
sized layered gabbroic intrusion (Morse, 1969). I have
recently published CSDs of plagioclase, olivine and
clinopyroxene (Higgins, 2002b). The sample shown in
Fig. 4C differs considerably from the two samples
discussed earlier as it is completely crystalline and all
crystals have been measured. The plagioclase CSD
shown in Fig. 4D is typical of the intrusion. This
plutonic rock differs from the volcanic samples in that it
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lacks crystals smaller than 0.5 mm. Hence, the right part
of the CSD (Fig. 5G) is concave up and population
density peaks at about 1.0 mm and descends for smaller
crystals to —infinity (zero crystals in the interval). The O
value of the right part of the CSD was found to be
0.0001, which is not significant.

The right part of the CDF diagram is almost straight,
as for the Taranaki sample, but again almost all the data
lie to the right of the mean (Fig. S5H). In addition, the left
end of the CDF descends vertically to —infinity, as there
are no small crystals. Overall, this is very far from a
lognormal distribution.

The CSD on the fractal diagram (Fig. 51) is strongly
curved, again indicating a lack of self-similarity. At
small sizes the curve becomes horizontal as no more
crystals are added when the size is decreased. Hence, the
CSD is clearly not fractal.

6. Conclusions

Different diagrams can be used to verify if a CSD
dominantly follows a known distribution model. A
semi-logarithmic distribution, as proposed originally for
rocks by Marsh (1988), can be verified using the classic
CSD diagram of In (population density) versus size.
However, attention must be paid to the nature of the
lower size limit: measurement artefact or real size limit.
Few samples follow this model exactly, but many basic
volcanic rocks have almost straight CSDs on this
diagram.

Lognormal distributions are particularly difficult to
prove, partly because of the poor precision of data on
smaller crystals. A good approach is with the CDF
diagram. However, again the nature of the lower size
limit is very important. Semi-logarithmic distributions
can closely resemble lognormal distributions except
that they do not lack small crystals. It may be
necessary to combine methods or measure the data at
two different scales to prove this distribution. If a
CSD is lognormal then we would commonly call the
texture porphyritic.

Fractal size distributions can be verified using a bi-
logarithmic diagram. Again, a large range in measured
crystal sizes is commonly necessary. If a CSD is fractal,
then we would commonly call the texture bimodal or
even porphyritic. The term bimodal is a confusing one
as there is clearly only one size mode. What is generally
meant is that there are two populations of crystals.
Clearly, this texture is completely different from a
texture with a lognormal CSD, which was also described
as porphyritic, as it contains small crystals. However,
this distinction is not always made by petrographers.
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Appendix A. Calculation methods

Calculation of the ‘Classic CSD Diagram’ is
described in many studies (e.g. Higgins, 2000). In
brief, the vertical axis is the natural logarithm of the
population density. The population density is the
number of crystals divided by the volume and the
width of the size interval measured. The horizontal
axis is the size, generally interpreted as the longest 3D
dimension of the crystal. The @ value can be
calculated using CSDCorrections 1.36 or statistical
programs, but not with most general purpose spread-
sheet programs.

The CDF diagram is explained in many texts on
sedimentary petrology (e.g. Carver, 1971). The vertical
axis is derived from crystal numbers in each interval.
For 3D data-sets this is easily determined, but is more
complex for section data. CSDCorrections 1.3 (Higgins,
2000) gives the crystal number in each interval, which
can be used to calculate this parameter. The crystal
numbers are summed and normalized so that the largest
interval has a value of | and the smallest interval is 0.
These values give the familiar double curve of a normal
distribution. They can be linearised using the inverse
function of the standard normal cumulative distribution
(Available in Excel as the function NORMSINV). The
horizontal axis is the natural logarithm of the size, but
base 10 logarithms can also be used. There are a number
of dedicated programs that can be used to fit lognormal
and other distributions to size data. One of the more
widely used is STF (sequential fragmentation/transport)
by Ken Wohletz (http://www.eesl.lanl.gov/Wohletz/
SFT.htm).

Many different diagrams can be used to determine if
a size distribution is scale invariant (Turcotte, 1992).
Here, the vertical axis is the natural logarithm of the
number of crystals larger than the true, 3D size. The
horizontal axis is the natural logarithm of the size.
Natural logarithms are used here so that the data more
resembles those in the other diagrams, but base 10
logarithms can also be used for both axes. It should be
noted that aspects of the texture other than the size may
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also be tested for scale invariance, such as the actual
space occupied by the crystals or their outline.

An Excel spreadsheet is available at http://wwwdsa.
ugac.ca/%7Emhiggins/csd_calc.xls that shows sample
calculations.
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